/* MIPS-specific support for 32-bit ELF Copyright 1993, 1994, 1995, 1996 Free Software Foundation, Inc. Most of the information added by Ian Lance Taylor, Cygnus Support, . This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* This file handles MIPS ELF targets. SGI Irix 5 uses a slightly different MIPS ELF from other targets. This matters when linking. This file supports both, switching at runtime. */ #include "bfd.h" #include "sysdep.h" #include "libbfd.h" #include "bfdlink.h" #include "genlink.h" #include "elf-bfd.h" #include "elf/mips.h" /* Get the ECOFF swapping routines. */ #include "coff/sym.h" #include "coff/symconst.h" #include "coff/internal.h" #include "coff/ecoff.h" #include "coff/mips.h" #define ECOFF_32 #include "ecoffswap.h" static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup PARAMS ((bfd *, bfd_reloc_code_real_type)); static void mips_info_to_howto_rel PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *)); static void bfd_mips_elf32_swap_gptab_in PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *)); static void bfd_mips_elf32_swap_gptab_out PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *)); static boolean mips_elf_sym_is_global PARAMS ((bfd *, asymbol *)); static boolean mips_elf32_object_p PARAMS ((bfd *)); static boolean mips_elf_create_procedure_table PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *, struct ecoff_debug_info *)); static int mips_elf_additional_program_headers PARAMS ((bfd *)); static boolean mips_elf_modify_segment_map PARAMS ((bfd *)); static boolean mips_elf32_section_from_shdr PARAMS ((bfd *, Elf32_Internal_Shdr *, char *)); static boolean mips_elf32_section_processing PARAMS ((bfd *, Elf32_Internal_Shdr *)); static boolean mips_elf_is_local_label PARAMS ((bfd *, asymbol *)); static struct bfd_hash_entry *mips_elf_link_hash_newfunc PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); static struct bfd_link_hash_table *mips_elf_link_hash_table_create PARAMS ((bfd *)); static int gptab_compare PARAMS ((const void *, const void *)); static boolean mips_elf_final_link PARAMS ((bfd *, struct bfd_link_info *)); static void mips_elf_relocate_hi16 PARAMS ((bfd *, Elf_Internal_Rela *, Elf_Internal_Rela *, bfd_byte *, bfd_vma)); static void mips_elf_relocate_got_local PARAMS ((bfd *, bfd *, asection *, Elf_Internal_Rela *, Elf_Internal_Rela *, bfd_byte *, bfd_vma)); static void mips_elf_relocate_global_got PARAMS ((bfd *, Elf_Internal_Rela *, bfd_byte *, bfd_vma)); static boolean mips_elf_adjust_dynindx PARAMS ((struct elf_link_hash_entry *, PTR)); static boolean mips_elf_relocate_section PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **)); static boolean mips_elf_create_dynamic_sections PARAMS ((bfd *, struct bfd_link_info *)); static boolean mips_elf_create_compact_rel_section PARAMS ((bfd *, struct bfd_link_info *)); static boolean mips_elf_create_got_section PARAMS ((bfd *, struct bfd_link_info *)); static boolean mips_elf_check_relocs PARAMS ((bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *)); static boolean mips_elf_adjust_dynamic_symbol PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *)); static boolean mips_elf_size_dynamic_sections PARAMS ((bfd *, struct bfd_link_info *)); static boolean mips_elf_finish_dynamic_symbol PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *, Elf_Internal_Sym *)); static boolean mips_elf_finish_dynamic_sections PARAMS ((bfd *, struct bfd_link_info *)); static boolean mips_elf_add_symbol_hook PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *, const char **, flagword *, asection **, bfd_vma *)); static bfd_reloc_status_type mips_elf_final_gp PARAMS ((bfd *, asymbol *, boolean, char **, bfd_vma *)); static bfd_byte *elf32_mips_get_relocated_section_contents PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *, bfd_byte *, boolean, asymbol **)); /* This is true for Irix 5 executables, false for normal MIPS ELF ABI executables. FIXME: At the moment, we default to always generating Irix 5 executables. */ #define SGI_COMPAT(abfd) (1) /* This structure is used to hold .got information when linking. It is stored in the tdata field of the bfd_elf_section_data structure. */ struct mips_got_info { /* The symbol index of the first global .got symbol. */ unsigned long global_gotsym; /* The number of local .got entries. */ unsigned int local_gotno; }; /* The number of local .got entries we reserve. */ #define MIPS_RESERVED_GOTNO (2) /* Instructions which appear in a stub. For some reason the stub is slightly different on an SGI system. */ #define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000) #define STUB_LW(abfd) \ (SGI_COMPAT (abfd) \ ? 0x8f998010 /* lw t9,0x8010(gp) */ \ : 0x8f998000) /* lw t9,0x8000(gp) */ #define STUB_MOVE 0x03e07825 /* move t7,ra */ #define STUB_JALR 0x0320f809 /* jal t9 */ #define STUB_LI16 0x34180000 /* ori t8,zero,0 */ #define MIPS_FUNCTION_STUB_SIZE (16) /* Names of sections which appear in the .dynsym section in an Irix 5 executable. */ static const char * const mips_elf_dynsym_sec_names[] = { ".text", ".init", ".fini", ".data", ".rodata", ".sdata", ".sbss", ".bss", NULL }; #define SIZEOF_MIPS_DYNSYM_SECNAMES \ (sizeof mips_elf_dynsym_sec_names / sizeof mips_elf_dynsym_sec_names[0]) /* The number of entries in mips_elf_dynsym_sec_names which go in the text segment. */ #define MIPS_TEXT_DYNSYM_SECNO (3) /* The names of the runtime procedure table symbols used on Irix 5. */ static const char * const mips_elf_dynsym_rtproc_names[] = { "_procedure_table", "_procedure_string_table", "_procedure_table_size", NULL }; /* These structures are used to generate the .compact_rel section on Irix 5. */ typedef struct { unsigned long id1; /* Always one? */ unsigned long num; /* Number of compact relocation entries. */ unsigned long id2; /* Always two? */ unsigned long offset; /* The file offset of the first relocation. */ unsigned long reserved0; /* Zero? */ unsigned long reserved1; /* Zero? */ } Elf32_compact_rel; typedef struct { bfd_byte id1[4]; bfd_byte num[4]; bfd_byte id2[4]; bfd_byte offset[4]; bfd_byte reserved0[4]; bfd_byte reserved1[4]; } Elf32_External_compact_rel; typedef struct { unsigned int ctype : 1; /* 1: long 0: short format. See below. */ unsigned int rtype : 4; /* Relocation types. See below. */ unsigned int dist2to : 8; unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ unsigned long konst; /* KONST field. See below. */ unsigned long vaddr; /* VADDR to be relocated. */ } Elf32_crinfo; typedef struct { unsigned int ctype : 1; /* 1: long 0: short format. See below. */ unsigned int rtype : 4; /* Relocation types. See below. */ unsigned int dist2to : 8; unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ unsigned long konst; /* KONST field. See below. */ } Elf32_crinfo2; typedef struct { bfd_byte info[4]; bfd_byte konst[4]; bfd_byte vaddr[4]; } Elf32_External_crinfo; typedef struct { bfd_byte info[4]; bfd_byte konst[4]; } Elf32_External_crinfo2; /* These are the constants used to swap the bitfields in a crinfo. */ #define CRINFO_CTYPE (0x1) #define CRINFO_CTYPE_SH (31) #define CRINFO_RTYPE (0xf) #define CRINFO_RTYPE_SH (27) #define CRINFO_DIST2TO (0xff) #define CRINFO_DIST2TO_SH (19) #define CRINFO_RELVADDR (0x7ffff) #define CRINFO_RELVADDR_SH (0) /* A compact relocation info has long (3 words) or short (2 words) formats. A short format doesn't have VADDR field and relvaddr fields contains ((VADDR - vaddr of the previous entry) >> 2). */ #define CRF_MIPS_LONG 1 #define CRF_MIPS_SHORT 0 /* There are 4 types of compact relocation at least. The value KONST has different meaning for each type: (type) (konst) CT_MIPS_REL32 Address in data CT_MIPS_WORD Address in word (XXX) CT_MIPS_GPHI_LO GP - vaddr CT_MIPS_JMPAD Address to jump */ #define CRT_MIPS_REL32 0xa #define CRT_MIPS_WORD 0xb #define CRT_MIPS_GPHI_LO 0xc #define CRT_MIPS_JMPAD 0xd #define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) #define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) static void bfd_elf32_swap_compact_rel_out PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *)); static void bfd_elf32_swap_crinfo_out PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *)); #define USE_REL 1 /* MIPS uses REL relocations instead of RELA */ enum reloc_type { R_MIPS_NONE = 0, R_MIPS_16, R_MIPS_32, R_MIPS_REL32, R_MIPS_26, R_MIPS_HI16, R_MIPS_LO16, R_MIPS_GPREL16, R_MIPS_LITERAL, R_MIPS_GOT16, R_MIPS_PC16, R_MIPS_CALL16, R_MIPS_GPREL32, /* The remaining relocs are defined on Irix, although they are not in the MIPS ELF ABI. */ R_MIPS_UNUSED1, R_MIPS_UNUSED2, R_MIPS_UNUSED3, R_MIPS_SHIFT5, R_MIPS_SHIFT6, R_MIPS_64, R_MIPS_GOT_DISP, R_MIPS_GOT_PAGE, R_MIPS_GOT_OFST, R_MIPS_GOT_HI16, R_MIPS_GOT_LO16, R_MIPS_SUB, R_MIPS_INSERT_A, R_MIPS_INSERT_B, R_MIPS_DELETE, R_MIPS_HIGHER, R_MIPS_HIGHEST, R_MIPS_CALL_HI16, R_MIPS_CALL_LO16, R_MIPS_max }; static reloc_howto_type elf_mips_howto_table[] = { /* No relocation. */ HOWTO (R_MIPS_NONE, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_NONE", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ false), /* pcrel_offset */ /* 16 bit relocation. */ HOWTO (R_MIPS_16, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_16", /* name */ true, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* 32 bit relocation. */ HOWTO (R_MIPS_32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_32", /* name */ true, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ /* 32 bit symbol relative relocation. */ HOWTO (R_MIPS_REL32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_REL32", /* name */ true, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ /* 26 bit branch address. */ HOWTO (R_MIPS_26, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 26, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ /* This needs complex overflow detection, because the upper four bits must match the PC. */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_26", /* name */ true, /* partial_inplace */ 0x3ffffff, /* src_mask */ 0x3ffffff, /* dst_mask */ false), /* pcrel_offset */ /* High 16 bits of symbol value. */ HOWTO (R_MIPS_HI16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ _bfd_mips_elf_hi16_reloc, /* special_function */ "R_MIPS_HI16", /* name */ true, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* Low 16 bits of symbol value. */ HOWTO (R_MIPS_LO16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ _bfd_mips_elf_lo16_reloc, /* special_function */ "R_MIPS_LO16", /* name */ true, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* GP relative reference. */ HOWTO (R_MIPS_GPREL16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ _bfd_mips_elf_gprel16_reloc, /* special_function */ "R_MIPS_GPREL16", /* name */ true, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* Reference to literal section. */ HOWTO (R_MIPS_LITERAL, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ _bfd_mips_elf_gprel16_reloc, /* special_function */ "R_MIPS_LITERAL", /* name */ true, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* Reference to global offset table. */ HOWTO (R_MIPS_GOT16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ _bfd_mips_elf_got16_reloc, /* special_function */ "R_MIPS_GOT16", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* 16 bit PC relative reference. */ HOWTO (R_MIPS_PC16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ true, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_PC16", /* name */ true, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* 16 bit call through global offset table. */ /* FIXME: This is not handled correctly. */ HOWTO (R_MIPS_CALL16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_CALL16", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* 32 bit GP relative reference. */ HOWTO (R_MIPS_GPREL32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ _bfd_mips_elf_gprel32_reloc, /* special_function */ "R_MIPS_GPREL32", /* name */ true, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ /* The remaining relocs are defined on Irix 5, although they are not defined by the ABI. */ { 13 }, { 14 }, { 15 }, /* A 5 bit shift field. */ HOWTO (R_MIPS_SHIFT5, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 5, /* bitsize */ false, /* pc_relative */ 6, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_SHIFT5", /* name */ true, /* partial_inplace */ 0x000007c0, /* src_mask */ 0x000007c0, /* dst_mask */ false), /* pcrel_offset */ /* A 6 bit shift field. */ /* FIXME: This is not handled correctly; a special function is needed to put the most significant bit in the right place. */ HOWTO (R_MIPS_SHIFT6, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 6, /* bitsize */ false, /* pc_relative */ 6, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_SHIFT6", /* name */ true, /* partial_inplace */ 0x000007c4, /* src_mask */ 0x000007c4, /* dst_mask */ false), /* pcrel_offset */ /* A 64 bit relocation. Presumably not used in 32 bit ELF. */ { R_MIPS_64 }, /* Displacement in the global offset table. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_GOT_DISP, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_GOT_DISP", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Displacement to page pointer in the global offset table. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_GOT_PAGE, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_GOT_PAGE", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Offset from page pointer in the global offset table. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_GOT_OFST, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_GOT_OFST", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* High 16 bits of displacement in global offset table. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_GOT_HI16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_GOT_HI16", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Low 16 bits of displacement in global offset table. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_GOT_LO16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_GOT_LO16", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* 64 bit subtraction. Presumably not used in 32 bit ELF. */ { R_MIPS_SUB }, /* Used to cause the linker to insert and delete instructions? */ { R_MIPS_INSERT_A }, { R_MIPS_INSERT_B }, { R_MIPS_DELETE }, /* Get the higher values of a 64 bit addend. Presumably not used in 32 bit ELF. */ { R_MIPS_HIGHER }, { R_MIPS_HIGHEST }, /* High 16 bits of displacement in global offset table. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_CALL_HI16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_CALL_HI16", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false), /* pcrel_offset */ /* Low 16 bits of displacement in global offset table. */ /* FIXME: Not handled correctly. */ HOWTO (R_MIPS_CALL_LO16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_MIPS_CALL_LO16", /* name */ true, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ false) /* pcrel_offset */ }; /* Do a R_MIPS_HI16 relocation. This has to be done in combination with a R_MIPS_LO16 reloc, because there is a carry from the LO16 to the HI16. Here we just save the information we need; we do the actual relocation when we see the LO16. MIPS ELF requires that the LO16 immediately follow the HI16. As a GNU extension, we permit an arbitrary number of HI16 relocs to be associated with a single LO16 reloc. This extension permits gcc to output the HI and LO relocs itself. */ struct mips_hi16 { struct mips_hi16 *next; bfd_byte *addr; bfd_vma addend; }; /* FIXME: This should not be a static variable. */ static struct mips_hi16 *mips_hi16_list; bfd_reloc_status_type _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { bfd_reloc_status_type ret; bfd_vma relocation; struct mips_hi16 *n; /* If we're relocating, and this an external symbol, we don't want to change anything. */ if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && reloc_entry->addend == 0) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } ret = bfd_reloc_ok; if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0) { boolean relocateable; bfd_vma gp; if (ret == bfd_reloc_undefined) abort (); if (output_bfd != NULL) relocateable = true; else { relocateable = false; output_bfd = symbol->section->output_section->owner; } ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, &gp); if (ret != bfd_reloc_ok) return ret; relocation = gp - reloc_entry->address; } else { if (bfd_is_und_section (symbol->section) && output_bfd == (bfd *) NULL) ret = bfd_reloc_undefined; if (bfd_is_com_section (symbol->section)) relocation = 0; else relocation = symbol->value; } relocation += symbol->section->output_section->vma; relocation += symbol->section->output_offset; relocation += reloc_entry->addend; if (reloc_entry->address > input_section->_cooked_size) return bfd_reloc_outofrange; /* Save the information, and let LO16 do the actual relocation. */ n = (struct mips_hi16 *) bfd_malloc (sizeof *n); if (n == NULL) return bfd_reloc_outofrange; n->addr = (bfd_byte *) data + reloc_entry->address; n->addend = relocation; n->next = mips_hi16_list; mips_hi16_list = n; if (output_bfd != (bfd *) NULL) reloc_entry->address += input_section->output_offset; return ret; } /* Do a R_MIPS_LO16 relocation. This is a straightforward 16 bit inplace relocation; this function exists in order to do the R_MIPS_HI16 relocation described above. */ bfd_reloc_status_type _bfd_mips_elf_lo16_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { arelent gp_disp_relent; if (mips_hi16_list != NULL) { struct mips_hi16 *l; l = mips_hi16_list; while (l != NULL) { unsigned long insn; unsigned long val; unsigned long vallo; struct mips_hi16 *next; /* Do the HI16 relocation. Note that we actually don't need to know anything about the LO16 itself, except where to find the low 16 bits of the addend needed by the LO16. */ insn = bfd_get_32 (abfd, l->addr); vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address) & 0xffff); val = ((insn & 0xffff) << 16) + vallo; val += l->addend; /* The low order 16 bits are always treated as a signed value. Therefore, a negative value in the low order bits requires an adjustment in the high order bits. We need to make this adjustment in two ways: once for the bits we took from the data, and once for the bits we are putting back in to the data. */ if ((vallo & 0x8000) != 0) val -= 0x10000; if ((val & 0x8000) != 0) val += 0x10000; insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff); bfd_put_32 (abfd, insn, l->addr); if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0) { gp_disp_relent = *reloc_entry; reloc_entry = &gp_disp_relent; reloc_entry->addend = l->addend; } next = l->next; free (l); l = next; } mips_hi16_list = NULL; } else if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0) { bfd_reloc_status_type ret; bfd_vma gp, relocation; /* FIXME: Does this case ever occur? */ ret = mips_elf_final_gp (output_bfd, symbol, true, error_message, &gp); if (ret != bfd_reloc_ok) return ret; relocation = gp - reloc_entry->address; relocation += symbol->section->output_section->vma; relocation += symbol->section->output_offset; relocation += reloc_entry->addend; if (reloc_entry->address > input_section->_cooked_size) return bfd_reloc_outofrange; gp_disp_relent = *reloc_entry; reloc_entry = &gp_disp_relent; reloc_entry->addend = relocation - 4; } /* Now do the LO16 reloc in the usual way. */ return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message); } /* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset table used for PIC code. If the symbol is an external symbol, the instruction is modified to contain the offset of the appropriate entry in the global offset table. If the symbol is a section symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit addends are combined to form the real addend against the section symbol; the GOT16 is modified to contain the offset of an entry in the global offset table, and the LO16 is modified to offset it appropriately. Thus an offset larger than 16 bits requires a modified value in the global offset table. This implementation suffices for the assembler, but the linker does not yet know how to create global offset tables. */ bfd_reloc_status_type _bfd_mips_elf_got16_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { /* If we're relocating, and this an external symbol, we don't want to change anything. */ if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && reloc_entry->addend == 0) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* If we're relocating, and this is a local symbol, we can handle it just like HI16. */ if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) != 0) return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message); abort (); } /* We have to figure out the gp value, so that we can adjust the symbol value correctly. We look up the symbol _gp in the output BFD. If we can't find it, we're stuck. We cache it in the ELF target data. We don't need to adjust the symbol value for an external symbol if we are producing relocateable output. */ static bfd_reloc_status_type mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, pgp) bfd *output_bfd; asymbol *symbol; boolean relocateable; char **error_message; bfd_vma *pgp; { if (bfd_is_und_section (symbol->section) && ! relocateable) { *pgp = 0; return bfd_reloc_undefined; } *pgp = _bfd_get_gp_value (output_bfd); if (*pgp == 0 && (! relocateable || (symbol->flags & BSF_SECTION_SYM) != 0)) { if (relocateable) { /* Make up a value. */ *pgp = symbol->section->output_section->vma + 0x4000; _bfd_set_gp_value (output_bfd, *pgp); } else { unsigned int count; asymbol **sym; unsigned int i; count = bfd_get_symcount (output_bfd); sym = bfd_get_outsymbols (output_bfd); if (sym == (asymbol **) NULL) i = count; else { for (i = 0; i < count; i++, sym++) { register CONST char *name; name = bfd_asymbol_name (*sym); if (*name == '_' && strcmp (name, "_gp") == 0) { *pgp = bfd_asymbol_value (*sym); _bfd_set_gp_value (output_bfd, *pgp); break; } } } if (i >= count) { /* Only get the error once. */ *pgp = 4; _bfd_set_gp_value (output_bfd, *pgp); *error_message = (char *) "GP relative relocation when _gp not defined"; return bfd_reloc_dangerous; } } } return bfd_reloc_ok; } /* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must become the offset from the gp register. This function also handles R_MIPS_LITERAL relocations, although those can be handled more cleverly because the entries in the .lit8 and .lit4 sections can be merged. */ static bfd_reloc_status_type gprel16_with_gp PARAMS ((bfd *, asymbol *, arelent *, asection *, boolean, PTR, bfd_vma)); bfd_reloc_status_type _bfd_mips_elf_gprel16_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { boolean relocateable; bfd_reloc_status_type ret; bfd_vma gp; /* If we're relocating, and this is an external symbol with no addend, we don't want to change anything. We will only have an addend if this is a newly created reloc, not read from an ELF file. */ if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && reloc_entry->addend == 0) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (output_bfd != (bfd *) NULL) relocateable = true; else { relocateable = false; output_bfd = symbol->section->output_section->owner; } ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, &gp); if (ret != bfd_reloc_ok) return ret; return gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data, gp); } static bfd_reloc_status_type gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data, gp) bfd *abfd; asymbol *symbol; arelent *reloc_entry; asection *input_section; boolean relocateable; PTR data; bfd_vma gp; { bfd_vma relocation; unsigned long insn; unsigned long val; if (bfd_is_com_section (symbol->section)) relocation = 0; else relocation = symbol->value; relocation += symbol->section->output_section->vma; relocation += symbol->section->output_offset; if (reloc_entry->address > input_section->_cooked_size) return bfd_reloc_outofrange; insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address); /* Set val to the offset into the section or symbol. */ if (reloc_entry->howto->src_mask == 0) { /* This case occurs with the 64-bit MIPS ELF ABI. */ val = reloc_entry->addend; } else { val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff; if (val & 0x8000) val -= 0x10000; } /* Adjust val for the final section location and GP value. If we are producing relocateable output, we don't want to do this for an external symbol. */ if (! relocateable || (symbol->flags & BSF_SECTION_SYM) != 0) val += relocation - gp; insn = (insn &~ 0xffff) | (val & 0xffff); bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address); if (relocateable) reloc_entry->address += input_section->output_offset; /* Make sure it fit in 16 bits. */ if (val >= 0x8000 && val < 0xffff8000) return bfd_reloc_overflow; return bfd_reloc_ok; } /* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset from the gp register? XXX */ static bfd_reloc_status_type gprel32_with_gp PARAMS ((bfd *, asymbol *, arelent *, asection *, boolean, PTR, bfd_vma)); bfd_reloc_status_type _bfd_mips_elf_gprel32_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { boolean relocateable; bfd_reloc_status_type ret; bfd_vma gp; /* If we're relocating, and this is an external symbol with no addend, we don't want to change anything. We will only have an addend if this is a newly created reloc, not read from an ELF file. */ if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && reloc_entry->addend == 0) { *error_message = (char *) "32bits gp relative relocation occurs for an external symbol"; return bfd_reloc_outofrange; } if (output_bfd != (bfd *) NULL) { relocateable = true; gp = _bfd_get_gp_value (output_bfd); } else { relocateable = false; output_bfd = symbol->section->output_section->owner; ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, &gp); if (ret != bfd_reloc_ok) return ret; } return gprel32_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data, gp); } static bfd_reloc_status_type gprel32_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data, gp) bfd *abfd; asymbol *symbol; arelent *reloc_entry; asection *input_section; boolean relocateable; PTR data; bfd_vma gp; { bfd_vma relocation; unsigned long val; if (bfd_is_com_section (symbol->section)) relocation = 0; else relocation = symbol->value; relocation += symbol->section->output_section->vma; relocation += symbol->section->output_offset; if (reloc_entry->address > input_section->_cooked_size) return bfd_reloc_outofrange; if (reloc_entry->howto->src_mask == 0) { /* This case arises with the 64-bit MIPS ELF ABI. */ val = 0; } else val = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address); /* Set val to the offset into the section or symbol. */ val += reloc_entry->addend; /* Adjust val for the final section location and GP value. If we are producing relocateable output, we don't want to do this for an external symbol. */ if (! relocateable || (symbol->flags & BSF_SECTION_SYM) != 0) val += relocation - gp; bfd_put_32 (abfd, val, (bfd_byte *) data + reloc_entry->address); if (relocateable) reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* A mapping from BFD reloc types to MIPS ELF reloc types. */ struct elf_reloc_map { bfd_reloc_code_real_type bfd_reloc_val; enum reloc_type elf_reloc_val; }; static CONST struct elf_reloc_map mips_reloc_map[] = { { BFD_RELOC_NONE, R_MIPS_NONE, }, { BFD_RELOC_16, R_MIPS_16 }, { BFD_RELOC_32, R_MIPS_32 }, { BFD_RELOC_CTOR, R_MIPS_32 }, { BFD_RELOC_32_PCREL, R_MIPS_REL32 }, { BFD_RELOC_MIPS_JMP, R_MIPS_26 }, { BFD_RELOC_HI16_S, R_MIPS_HI16 }, { BFD_RELOC_LO16, R_MIPS_LO16 }, { BFD_RELOC_MIPS_GPREL, R_MIPS_GPREL16 }, { BFD_RELOC_MIPS_LITERAL, R_MIPS_LITERAL }, { BFD_RELOC_MIPS_GOT16, R_MIPS_GOT16 }, { BFD_RELOC_16_PCREL, R_MIPS_PC16 }, { BFD_RELOC_MIPS_CALL16, R_MIPS_CALL16 }, { BFD_RELOC_MIPS_GPREL32, R_MIPS_GPREL32 }, { BFD_RELOC_MIPS_GOT_HI16, R_MIPS_GOT_HI16 }, { BFD_RELOC_MIPS_GOT_LO16, R_MIPS_GOT_LO16 }, { BFD_RELOC_MIPS_CALL_HI16, R_MIPS_CALL_HI16 }, { BFD_RELOC_MIPS_CALL_LO16, R_MIPS_CALL_LO16 } }; /* Given a BFD reloc type, return a howto structure. */ static reloc_howto_type * bfd_elf32_bfd_reloc_type_lookup (abfd, code) bfd *abfd; bfd_reloc_code_real_type code; { unsigned int i; for (i = 0; i < sizeof (mips_reloc_map) / sizeof (struct elf_reloc_map); i++) { if (mips_reloc_map[i].bfd_reloc_val == code) return &elf_mips_howto_table[(int) mips_reloc_map[i].elf_reloc_val]; } return NULL; } /* Given a MIPS reloc type, fill in an arelent structure. */ static void mips_info_to_howto_rel (abfd, cache_ptr, dst) bfd *abfd; arelent *cache_ptr; Elf32_Internal_Rel *dst; { unsigned int r_type; r_type = ELF32_R_TYPE (dst->r_info); BFD_ASSERT (r_type < (unsigned int) R_MIPS_max); cache_ptr->howto = &elf_mips_howto_table[r_type]; /* The addend for a GPREL16 or LITERAL relocation comes from the GP value for the object file. We get the addend now, rather than when we do the relocation, because the symbol manipulations done by the linker may cause us to lose track of the input BFD. */ if (((*cache_ptr->sym_ptr_ptr)->flags & BSF_SECTION_SYM) != 0 && (r_type == (unsigned int) R_MIPS_GPREL16 || r_type == (unsigned int) R_MIPS_LITERAL)) cache_ptr->addend = elf_gp (abfd); } /* A .reginfo section holds a single Elf32_RegInfo structure. These routines swap this structure in and out. They are used outside of BFD, so they are globally visible. */ void bfd_mips_elf32_swap_reginfo_in (abfd, ex, in) bfd *abfd; const Elf32_External_RegInfo *ex; Elf32_RegInfo *in; { in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask); in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]); in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]); in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]); in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]); in->ri_gp_value = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gp_value); } void bfd_mips_elf32_swap_reginfo_out (abfd, in, ex) bfd *abfd; const Elf32_RegInfo *in; Elf32_External_RegInfo *ex; { bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask, (bfd_byte *) ex->ri_gprmask); bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0], (bfd_byte *) ex->ri_cprmask[0]); bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1], (bfd_byte *) ex->ri_cprmask[1]); bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2], (bfd_byte *) ex->ri_cprmask[2]); bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3], (bfd_byte *) ex->ri_cprmask[3]); bfd_h_put_32 (abfd, (bfd_vma) in->ri_gp_value, (bfd_byte *) ex->ri_gp_value); } /* In the 64 bit ABI, the .MIPS.options section holds register information in an Elf64_Reginfo structure. These routines swap them in and out. They are globally visible because they are used outside of BFD. These routines are here so that gas can call them without worrying about whether the 64 bit ABI has been included. */ void bfd_mips_elf64_swap_reginfo_in (abfd, ex, in) bfd *abfd; const Elf64_External_RegInfo *ex; Elf64_Internal_RegInfo *in; { in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask); in->ri_pad = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_pad); in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]); in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]); in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]); in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]); in->ri_gp_value = bfd_h_get_64 (abfd, (bfd_byte *) ex->ri_gp_value); } void bfd_mips_elf64_swap_reginfo_out (abfd, in, ex) bfd *abfd; const Elf64_Internal_RegInfo *in; Elf64_External_RegInfo *ex; { bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask, (bfd_byte *) ex->ri_gprmask); bfd_h_put_32 (abfd, (bfd_vma) in->ri_pad, (bfd_byte *) ex->ri_pad); bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0], (bfd_byte *) ex->ri_cprmask[0]); bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1], (bfd_byte *) ex->ri_cprmask[1]); bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2], (bfd_byte *) ex->ri_cprmask[2]); bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3], (bfd_byte *) ex->ri_cprmask[3]); bfd_h_put_64 (abfd, (bfd_vma) in->ri_gp_value, (bfd_byte *) ex->ri_gp_value); } /* Swap an entry in a .gptab section. Note that these routines rely on the equivalence of the two elements of the union. */ static void bfd_mips_elf32_swap_gptab_in (abfd, ex, in) bfd *abfd; const Elf32_External_gptab *ex; Elf32_gptab *in; { in->gt_entry.gt_g_value = bfd_h_get_32 (abfd, ex->gt_entry.gt_g_value); in->gt_entry.gt_bytes = bfd_h_get_32 (abfd, ex->gt_entry.gt_bytes); } static void bfd_mips_elf32_swap_gptab_out (abfd, in, ex) bfd *abfd; const Elf32_gptab *in; Elf32_External_gptab *ex; { bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); } static void bfd_elf32_swap_compact_rel_out (abfd, in, ex) bfd *abfd; const Elf32_compact_rel *in; Elf32_External_compact_rel *ex; { bfd_h_put_32 (abfd, (bfd_vma) in->id1, ex->id1); bfd_h_put_32 (abfd, (bfd_vma) in->num, ex->num); bfd_h_put_32 (abfd, (bfd_vma) in->id2, ex->id2); bfd_h_put_32 (abfd, (bfd_vma) in->offset, ex->offset); bfd_h_put_32 (abfd, (bfd_vma) in->reserved0, ex->reserved0); bfd_h_put_32 (abfd, (bfd_vma) in->reserved1, ex->reserved1); } static void bfd_elf32_swap_crinfo_out (abfd, in, ex) bfd *abfd; const Elf32_crinfo *in; Elf32_External_crinfo *ex; { unsigned long l; l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); bfd_h_put_32 (abfd, (bfd_vma) l, ex->info); bfd_h_put_32 (abfd, (bfd_vma) in->konst, ex->konst); bfd_h_put_32 (abfd, (bfd_vma) in->vaddr, ex->vaddr); } /* Swap in an options header. */ void bfd_mips_elf_swap_options_in (abfd, ex, in) bfd *abfd; const Elf_External_Options *ex; Elf_Internal_Options *in; { in->kind = bfd_h_get_8 (abfd, ex->kind); in->size = bfd_h_get_8 (abfd, ex->size); in->section = bfd_h_get_16 (abfd, ex->section); in->info = bfd_h_get_32 (abfd, ex->info); } /* Swap out an options header. */ void bfd_mips_elf_swap_options_out (abfd, in, ex) bfd *abfd; const Elf_Internal_Options *in; Elf_External_Options *ex; { bfd_h_put_8 (abfd, in->kind, ex->kind); bfd_h_put_8 (abfd, in->size, ex->size); bfd_h_put_16 (abfd, in->section, ex->section); bfd_h_put_32 (abfd, in->info, ex->info); } /* Determine whether a symbol is global for the purposes of splitting the symbol table into global symbols and local symbols. At least on Irix 5, this split must be between section symbols and all other symbols. On most ELF targets the split is between static symbols and externally visible symbols. */ /*ARGSUSED*/ static boolean mips_elf_sym_is_global (abfd, sym) bfd *abfd; asymbol *sym; { return (sym->flags & BSF_SECTION_SYM) == 0 ? true : false; } /* Set the right machine number for a MIPS ELF file. This is used for both the 32-bit and the 64-bit ABI. */ boolean _bfd_mips_elf_object_p (abfd) bfd *abfd; { switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) { default: case E_MIPS_ARCH_1: /* Just use the default, which was set in elfcode.h. */ break; case E_MIPS_ARCH_2: (void) bfd_default_set_arch_mach (abfd, bfd_arch_mips, 6000); break; case E_MIPS_ARCH_3: (void) bfd_default_set_arch_mach (abfd, bfd_arch_mips, 4000); break; case E_MIPS_ARCH_4: (void) bfd_default_set_arch_mach (abfd, bfd_arch_mips, 8000); break; } return true; } /* Set the right machine number for a 32-bit MIPS ELF file. */ static boolean mips_elf32_object_p (abfd) bfd *abfd; { /* Irix 5 is broken. Object file symbol tables are not always sorted correctly such that local symbols precede global symbols, and the sh_info field in the symbol table is not always right. */ elf_bad_symtab (abfd) = true; return _bfd_mips_elf_object_p (abfd); } /* The final processing done just before writing out a MIPS ELF object file. This gets the MIPS architecture right based on the machine number. This is used by both the 32-bit and the 64-bit ABI. */ /*ARGSUSED*/ void _bfd_mips_elf_final_write_processing (abfd, linker) bfd *abfd; boolean linker; { unsigned long val; unsigned int i; Elf_Internal_Shdr **hdrpp; switch (bfd_get_mach (abfd)) { case 3000: val = E_MIPS_ARCH_1; break; case 6000: val = E_MIPS_ARCH_2; break; case 4000: val = E_MIPS_ARCH_3; break; case 8000: val = E_MIPS_ARCH_4; break; default: val = 0; break; } elf_elfheader (abfd)->e_flags &=~ EF_MIPS_ARCH; elf_elfheader (abfd)->e_flags |= val; /* Set the sh_info field for .gptab sections. */ for (i = 1, hdrpp = elf_elfsections (abfd) + 1; i < elf_elfheader (abfd)->e_shnum; i++, hdrpp++) { if ((*hdrpp)->sh_type == SHT_MIPS_GPTAB) { const char *name; asection *sec; BFD_ASSERT ((*hdrpp)->bfd_section != NULL); name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); BFD_ASSERT (name != NULL && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0); sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); BFD_ASSERT (sec != NULL); (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; } } } /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ boolean _bfd_mips_elf_set_private_flags (abfd, flags) bfd *abfd; flagword flags; { BFD_ASSERT (!elf_flags_init (abfd) || elf_elfheader (abfd)->e_flags == flags); elf_elfheader (abfd)->e_flags = flags; elf_flags_init (abfd) = true; return true; } /* Copy backend specific data from one object module to another */ boolean _bfd_mips_elf_copy_private_bfd_data (ibfd, obfd) bfd *ibfd; bfd *obfd; { /* This function is selected based on the input vector. We only want to copy information over if the output BFD also uses Elf format. */ if (bfd_get_flavour (obfd) != bfd_target_elf_flavour) return true; BFD_ASSERT (!elf_flags_init (obfd) || (elf_elfheader (obfd)->e_flags == elf_elfheader (ibfd)->e_flags)); elf_gp (obfd) = elf_gp (ibfd); elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags; elf_flags_init (obfd) = true; return true; } /* Merge backend specific data from an object file to the output object file when linking. */ boolean _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd) bfd *ibfd; bfd *obfd; { flagword old_flags; flagword new_flags; /* Check if we have the same endianess */ if (ibfd->xvec->byteorder != obfd->xvec->byteorder && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN) { (*_bfd_error_handler) ("%s: compiled for a %s endian system and target is %s endian", bfd_get_filename (ibfd), bfd_big_endian (ibfd) ? "big" : "little", bfd_big_endian (obfd) ? "big" : "little"); bfd_set_error (bfd_error_wrong_format); return false; } /* This function is selected based on the input vector. We only want to copy information over if the output BFD also uses Elf format. */ if (bfd_get_flavour (obfd) != bfd_target_elf_flavour) return true; new_flags = elf_elfheader (ibfd)->e_flags; elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; old_flags = elf_elfheader (obfd)->e_flags; if (!elf_flags_init (obfd)) /* First call, no flags set */ { elf_flags_init (obfd) = true; elf_elfheader (obfd)->e_flags = new_flags; } else if (((new_flags ^ old_flags) & ~EF_MIPS_NOREORDER) == 0) /* Compatible flags are ok */ ; else /* Incompatible flags */ { /* Warn about -fPIC mismatch */ if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC)) { new_flags &= ~EF_MIPS_PIC; (*_bfd_error_handler) ("%s: needs all files compiled with -fPIC", bfd_get_filename (ibfd)); } if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC)) { new_flags &= ~EF_MIPS_CPIC; (*_bfd_error_handler) ("%s: needs all files compiled with -mabicalls", bfd_get_filename (ibfd)); } /* Warn about any other mismatches */ if (new_flags != old_flags) (*_bfd_error_handler) ("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)", bfd_get_filename (ibfd), (unsigned long) new_flags, (unsigned long) old_flags); bfd_set_error (bfd_error_bad_value); return false; } return true; } /* Handle a MIPS specific section when reading an object file. This is called when elfcode.h finds a section with an unknown type. This routine supports both the 32-bit and 64-bit ELF ABI. FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure how to. */ boolean _bfd_mips_elf_section_from_shdr (abfd, hdr, name) bfd *abfd; Elf_Internal_Shdr *hdr; const char *name; { /* There ought to be a place to keep ELF backend specific flags, but at the moment there isn't one. We just keep track of the sections by their name, instead. Fortunately, the ABI gives suggested names for all the MIPS specific sections, so we will probably get away with this. */ switch (hdr->sh_type) { case SHT_MIPS_LIBLIST: if (strcmp (name, ".liblist") != 0) return false; break; case SHT_MIPS_MSYM: if (strcmp (name, ".msym") != 0) return false; break; case SHT_MIPS_CONFLICT: if (strcmp (name, ".conflict") != 0) return false; break; case SHT_MIPS_GPTAB: if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0) return false; break; case SHT_MIPS_UCODE: if (strcmp (name, ".ucode") != 0) return false; break; case SHT_MIPS_DEBUG: if (strcmp (name, ".mdebug") != 0) return false; break; case SHT_MIPS_REGINFO: if (strcmp (name, ".reginfo") != 0 || hdr->sh_size != sizeof (Elf32_External_RegInfo)) return false; break; case SHT_MIPS_OPTIONS: if (strcmp (name, ".options") != 0 && strcmp (name, ".MIPS.options") != 0) return false; break; case SHT_MIPS_DWARF: if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0) return false; break; case SHT_MIPS_EVENTS: if (strncmp (name, ".MIPS.events.", sizeof ".MIPS.events." - 1) != 0) return false; break; default: return false; } if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name)) return false; if (hdr->sh_type == SHT_MIPS_DEBUG) { if (! bfd_set_section_flags (abfd, hdr->bfd_section, (bfd_get_section_flags (abfd, hdr->bfd_section) | SEC_DEBUGGING))) return false; } return true; } /* Handle a 32-bit MIPS ELF specific section. */ static boolean mips_elf32_section_from_shdr (abfd, hdr, name) bfd *abfd; Elf_Internal_Shdr *hdr; char *name; { if (! _bfd_mips_elf_section_from_shdr (abfd, hdr, name)) return false; /* FIXME: We should record sh_info for a .gptab section. */ /* For a .reginfo section, set the gp value in the tdata information from the contents of this section. We need the gp value while processing relocs, so we just get it now. The .reginfo section is not used in the 64-bit MIPS ELF ABI. */ if (hdr->sh_type == SHT_MIPS_REGINFO) { Elf32_External_RegInfo ext; Elf32_RegInfo s; if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext, (file_ptr) 0, sizeof ext)) return false; bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); elf_gp (abfd) = s.ri_gp_value; } /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set the gp value based on what we find. We may see both SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree. */ if (hdr->sh_type == SHT_MIPS_OPTIONS) { bfd_byte *contents, *l, *lend; contents = (bfd_byte *) bfd_malloc (hdr->sh_size); if (contents == NULL) return false; if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents, (file_ptr) 0, hdr->sh_size)) { free (contents); return false; } l = contents; lend = contents + hdr->sh_size; while (l + sizeof (Elf_External_Options) <= lend) { Elf_Internal_Options intopt; bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, &intopt); if (intopt.kind == ODK_REGINFO) { Elf32_RegInfo intreg; bfd_mips_elf32_swap_reginfo_in (abfd, ((Elf32_External_RegInfo *) (l + sizeof (Elf_External_Options))), &intreg); elf_gp (abfd) = intreg.ri_gp_value; } l += intopt.size; } free (contents); } return true; } /* Set the correct type for a MIPS ELF section. We do this by the section name, which is a hack, but ought to work. This routine is used by both the 32-bit and the 64-bit ABI. */ boolean _bfd_mips_elf_fake_sections (abfd, hdr, sec) bfd *abfd; Elf32_Internal_Shdr *hdr; asection *sec; { register const char *name; name = bfd_get_section_name (abfd, sec); if (strcmp (name, ".liblist") == 0) { hdr->sh_type = SHT_MIPS_LIBLIST; hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib); /* FIXME: Set the sh_link field. */ } else if (strcmp (name, ".msym") == 0) { hdr->sh_type = SHT_MIPS_MSYM; hdr->sh_entsize = 8; /* FIXME: Set the sh_info field. */ } else if (strcmp (name, ".conflict") == 0) hdr->sh_type = SHT_MIPS_CONFLICT; else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0) { hdr->sh_type = SHT_MIPS_GPTAB; hdr->sh_entsize = sizeof (Elf32_External_gptab); /* The sh_info field is set in final_write_processing. */ } else if (strcmp (name, ".ucode") == 0) hdr->sh_type = SHT_MIPS_UCODE; else if (strcmp (name, ".mdebug") == 0) { hdr->sh_type = SHT_MIPS_DEBUG; /* In a shared object on Irix 5.3, the .mdebug section has an entsize of 0. FIXME: Does this matter? */ if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) hdr->sh_entsize = 0; else hdr->sh_entsize = 1; } else if (strcmp (name, ".reginfo") == 0) { hdr->sh_type = SHT_MIPS_REGINFO; /* In a shared object on Irix 5.3, the .reginfo section has an entsize of 0x18. FIXME: Does this matter? */ if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) hdr->sh_entsize = sizeof (Elf32_External_RegInfo); else hdr->sh_entsize = 1; /* Force the section size to the correct value, even if the linker thinks it is larger. The link routine below will only write out this much data for .reginfo. */ hdr->sh_size = sec->_raw_size = sizeof (Elf32_External_RegInfo); } else if (SGI_COMPAT (abfd) && (strcmp (name, ".hash") == 0 || strcmp (name, ".dynamic") == 0 || strcmp (name, ".dynstr") == 0)) { hdr->sh_entsize = 0; hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; } else if (strcmp (name, ".got") == 0 || strcmp (name, ".sdata") == 0 || strcmp (name, ".sbss") == 0 || strcmp (name, ".lit4") == 0 || strcmp (name, ".lit8") == 0) hdr->sh_flags |= SHF_MIPS_GPREL; else if (strcmp (name, ".options") == 0 || strcmp (name, ".MIPS.options") == 0) { hdr->sh_type = SHT_MIPS_OPTIONS; hdr->sh_entsize = 1; } else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0) hdr->sh_type = SHT_MIPS_DWARF; else if (strncmp (name, ".MIPS.events.", sizeof ".MIPS.events." - 1) == 0) hdr->sh_type = SHT_MIPS_EVENTS; return true; } /* Given a BFD section, try to locate the corresponding ELF section index. This is used by both the 32-bit and the 64-bit ABI. Actually, it's not clear to me that the 64-bit ABI supports these, but for non-PIC objects we will certainly want support for at least the .scommon section. */ boolean _bfd_mips_elf_section_from_bfd_section (abfd, hdr, sec, retval) bfd *abfd; Elf32_Internal_Shdr *hdr; asection *sec; int *retval; { if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0) { *retval = SHN_MIPS_SCOMMON; return true; } if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0) { *retval = SHN_MIPS_ACOMMON; return true; } return false; } /* When are writing out the .options or .MIPS.options section, remember the bytes we are writing out, so that we can install the GP value in the section_processing routine. */ boolean _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count) bfd *abfd; sec_ptr section; PTR location; file_ptr offset; bfd_size_type count; { if (strcmp (section->name, ".options") == 0 || strcmp (section->name, ".MIPS.options") == 0) { bfd_byte *c; if (elf_section_data (section) == NULL) { section->used_by_bfd = (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data)); if (elf_section_data (section) == NULL) return false; } c = (bfd_byte *) elf_section_data (section)->tdata; if (c == NULL) { bfd_size_type size; if (section->_cooked_size != 0) size = section->_cooked_size; else size = section->_raw_size; c = (PTR) bfd_zalloc (abfd, size); if (c == NULL) return false; elf_section_data (section)->tdata = (PTR) c; } memcpy (c + offset, location, count); } return _bfd_elf_set_section_contents (abfd, section, location, offset, count); } /* Work over a section just before writing it out. This routine is used by both the 32-bit and the 64-bit ABI. FIXME: We recognize sections that need the SHF_MIPS_GPREL flag by name; there has to be a better way. */ boolean _bfd_mips_elf_section_processing (abfd, hdr) bfd *abfd; Elf_Internal_Shdr *hdr; { if (hdr->bfd_section != NULL) { const char *name = bfd_get_section_name (abfd, hdr->bfd_section); if (strcmp (name, ".sdata") == 0) { hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; hdr->sh_type = SHT_PROGBITS; } else if (strcmp (name, ".sbss") == 0) { hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; hdr->sh_type = SHT_NOBITS; } else if (strcmp (name, ".lit8") == 0 || strcmp (name, ".lit4") == 0) { hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; hdr->sh_type = SHT_PROGBITS; } else if (strcmp (name, ".compact_rel") == 0) { hdr->sh_flags = 0; hdr->sh_type = SHT_PROGBITS; } else if (strcmp (name, ".rtproc") == 0) { if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) { unsigned int adjust; adjust = hdr->sh_size % hdr->sh_addralign; if (adjust != 0) hdr->sh_size += hdr->sh_addralign - adjust; } } } return true; } /* Work over a section just before writing it out. We update the GP value in the SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS sections based on the value we are using. */ static boolean mips_elf32_section_processing (abfd, hdr) bfd *abfd; Elf32_Internal_Shdr *hdr; { if (hdr->sh_type == SHT_MIPS_REGINFO) { bfd_byte buf[4]; BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo)); BFD_ASSERT (hdr->contents == NULL); if (bfd_seek (abfd, hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, SEEK_SET) == -1) return false; bfd_h_put_32 (abfd, (bfd_vma) elf_gp (abfd), buf); if (bfd_write (buf, (bfd_size_type) 1, (bfd_size_type) 4, abfd) != 4) return false; } if (hdr->sh_type == SHT_MIPS_OPTIONS && hdr->bfd_section != NULL && elf_section_data (hdr->bfd_section) != NULL && elf_section_data (hdr->bfd_section)->tdata != NULL) { bfd_byte *contents, *l, *lend; /* We stored the section contents in the elf_section_data tdata field in the set_section_contents routine. We save the section contents so that we don't have to read them again. At this point we know that elf_gp is set, so we can look through the section contents to see if there is an ODK_REGINFO structure. */ contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata; l = contents; lend = contents + hdr->sh_size; while (l + sizeof (Elf_External_Options) <= lend) { Elf_Internal_Options intopt; bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, &intopt); if (intopt.kind == ODK_REGINFO) { bfd_byte buf[4]; if (bfd_seek (abfd, (hdr->sh_offset + (l - contents) + sizeof (Elf_External_Options) + (sizeof (Elf32_External_RegInfo) - 4)), SEEK_SET) == -1) return false; bfd_h_put_32 (abfd, elf_gp (abfd), buf); if (bfd_write (buf, 1, 4, abfd) != 4) return false; } l += intopt.size; } } return _bfd_mips_elf_section_processing (abfd, hdr); } /* MIPS ELF uses two common sections. One is the usual one, and the other is for small objects. All the small objects are kept together, and then referenced via the gp pointer, which yields faster assembler code. This is what we use for the small common section. This approach is copied from ecoff.c. */ static asection mips_elf_scom_section; static asymbol mips_elf_scom_symbol; static asymbol *mips_elf_scom_symbol_ptr; /* MIPS ELF also uses an acommon section, which represents an allocated common symbol which may be overridden by a definition in a shared library. */ static asection mips_elf_acom_section; static asymbol mips_elf_acom_symbol; static asymbol *mips_elf_acom_symbol_ptr; /* The Irix 5 support uses two virtual sections, which represent text/data symbols defined in dynamic objects. */ static asection mips_elf_text_section; static asection *mips_elf_text_section_ptr; static asymbol mips_elf_text_symbol; static asymbol *mips_elf_text_symbol_ptr; static asection mips_elf_data_section; static asection *mips_elf_data_section_ptr; static asymbol mips_elf_data_symbol; static asymbol *mips_elf_data_symbol_ptr; /* Handle the special MIPS section numbers that a symbol may use. This is used for both the 32-bit and the 64-bit ABI. */ void _bfd_mips_elf_symbol_processing (abfd, asym) bfd *abfd; asymbol *asym; { elf_symbol_type *elfsym; elfsym = (elf_symbol_type *) asym; switch (elfsym->internal_elf_sym.st_shndx) { case SHN_MIPS_ACOMMON: /* This section is used in a dynamically linked executable file. It is an allocated common section. The dynamic linker can either resolve these symbols to something in a shared library, or it can just leave them here. For our purposes, we can consider these symbols to be in a new section. */ if (mips_elf_acom_section.name == NULL) { /* Initialize the acommon section. */ mips_elf_acom_section.name = ".acommon"; mips_elf_acom_section.flags = SEC_ALLOC; mips_elf_acom_section.output_section = &mips_elf_acom_section; mips_elf_acom_section.symbol = &mips_elf_acom_symbol; mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr; mips_elf_acom_symbol.name = ".acommon"; mips_elf_acom_symbol.flags = BSF_SECTION_SYM; mips_elf_acom_symbol.section = &mips_elf_acom_section; mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol; } asym->section = &mips_elf_acom_section; break; case SHN_COMMON: /* Common symbols less than the GP size are automatically treated as SHN_MIPS_SCOMMON symbols. */ if (asym->value > elf_gp_size (abfd)) break; /* Fall through. */ case SHN_MIPS_SCOMMON: if (mips_elf_scom_section.name == NULL) { /* Initialize the small common section. */ mips_elf_scom_section.name = ".scommon"; mips_elf_scom_section.flags = SEC_IS_COMMON; mips_elf_scom_section.output_section = &mips_elf_scom_section; mips_elf_scom_section.symbol = &mips_elf_scom_symbol; mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr; mips_elf_scom_symbol.name = ".scommon"; mips_elf_scom_symbol.flags = BSF_SECTION_SYM; mips_elf_scom_symbol.section = &mips_elf_scom_section; mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol; } asym->section = &mips_elf_scom_section; asym->value = elfsym->internal_elf_sym.st_size; break; case SHN_MIPS_SUNDEFINED: asym->section = bfd_und_section_ptr; break; #if 0 /* for SGI_COMPAT */ case SHN_MIPS_TEXT: asym->section = mips_elf_text_section_ptr; break; case SHN_MIPS_DATA: asym->section = mips_elf_data_section_ptr; break; #endif } } /* When creating an Irix 5 executable, we need REGINFO and RTPROC segments. */ static int mips_elf_additional_program_headers (abfd) bfd *abfd; { asection *s; int ret; ret = 0; if (! SGI_COMPAT (abfd)) return ret; s = bfd_get_section_by_name (abfd, ".reginfo"); if (s != NULL && (s->flags & SEC_LOAD) != 0) { /* We need a PT_MIPS_REGINFO segment. */ ++ret; } if (bfd_get_section_by_name (abfd, ".dynamic") != NULL && bfd_get_section_by_name (abfd, ".mdebug") != NULL) { /* We need a PT_MIPS_RTPROC segment. */ ++ret; } return ret; } /* Modify the segment map for an Irix 5 executable. */ static boolean mips_elf_modify_segment_map (abfd) bfd *abfd; { asection *s; struct elf_segment_map *m, **pm; if (! SGI_COMPAT (abfd)) return true; /* If there is a .reginfo section, we need a PT_MIPS_REGINFO segment. */ s = bfd_get_section_by_name (abfd, ".reginfo"); if (s != NULL && (s->flags & SEC_LOAD) != 0) { for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) if (m->p_type == PT_MIPS_REGINFO) break; if (m == NULL) { m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m); if (m == NULL) return false; m->p_type = PT_MIPS_REGINFO; m->count = 1; m->sections[0] = s; /* We want to put it after the PHDR and INTERP segments. */ pm = &elf_tdata (abfd)->segment_map; while (*pm != NULL && ((*pm)->p_type == PT_PHDR || (*pm)->p_type == PT_INTERP)) pm = &(*pm)->next; m->next = *pm; *pm = m; } } /* If there are .dynamic and .mdebug sections, we make a room for the RTPROC header. FIXME: Rewrite without section names. */ if (bfd_get_section_by_name (abfd, ".interp") == NULL && bfd_get_section_by_name (abfd, ".dynamic") != NULL && bfd_get_section_by_name (abfd, ".mdebug") != NULL) { for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) if (m->p_type == PT_MIPS_RTPROC) break; if (m == NULL) { m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m); if (m == NULL) return false; m->p_type = PT_MIPS_RTPROC; s = bfd_get_section_by_name (abfd, ".rtproc"); if (s == NULL) { m->count = 0; m->p_flags = 0; m->p_flags_valid = 1; } else { m->count = 1; m->sections[0] = s; } /* We want to put it after the DYNAMIC segment. */ pm = &elf_tdata (abfd)->segment_map; while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) pm = &(*pm)->next; if (*pm != NULL) pm = &(*pm)->next; m->next = *pm; *pm = m; } } /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic, .dynstr, .dynsym, and .hash sections, and everything in between. */ for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next) if ((*pm)->p_type == PT_DYNAMIC) break; m = *pm; if (m != NULL && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0) { static const char *sec_names[] = { ".dynamic", ".dynstr", ".dynsym", ".hash" }; bfd_vma low, high; unsigned int i, c; struct elf_segment_map *n; low = 0xffffffff; high = 0; for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) { s = bfd_get_section_by_name (abfd, sec_names[i]); if (s != NULL && (s->flags & SEC_LOAD) != 0) { bfd_size_type sz; if (low > s->vma) low = s->vma; sz = s->_cooked_size; if (sz == 0) sz = s->_raw_size; if (high < s->vma + sz) high = s->vma + sz; } } c = 0; for (s = abfd->sections; s != NULL; s = s->next) if ((s->flags & SEC_LOAD) != 0 && s->vma >= low && ((s->vma + (s->_cooked_size != 0 ? s->_cooked_size : s->_raw_size)) <= high)) ++c; n = ((struct elf_segment_map *) bfd_zalloc (abfd, sizeof *n + (c - 1) * sizeof (asection *))); if (n == NULL) return false; *n = *m; n->count = c; i = 0; for (s = abfd->sections; s != NULL; s = s->next) { if ((s->flags & SEC_LOAD) != 0 && s->vma >= low && ((s->vma + (s->_cooked_size != 0 ? s->_cooked_size : s->_raw_size)) <= high)) { n->sections[i] = s; ++i; } } *pm = n; } return true; } /* The structure of the runtime procedure descriptor created by the loader for use by the static exception system. */ typedef struct runtime_pdr { bfd_vma adr; /* memory address of start of procedure */ long regmask; /* save register mask */ long regoffset; /* save register offset */ long fregmask; /* save floating point register mask */ long fregoffset; /* save floating point register offset */ long frameoffset; /* frame size */ short framereg; /* frame pointer register */ short pcreg; /* offset or reg of return pc */ long irpss; /* index into the runtime string table */ long reserved; struct exception_info *exception_info;/* pointer to exception array */ } RPDR, *pRPDR; #define cbRPDR sizeof(RPDR) #define rpdNil ((pRPDR) 0) /* Swap RPDR (runtime procedure table entry) for output. */ static void ecoff_swap_rpdr_out PARAMS ((bfd *, const RPDR *, struct rpdr_ext *)); static void ecoff_swap_rpdr_out (abfd, in, ex) bfd *abfd; const RPDR *in; struct rpdr_ext *ex; { /* ecoff_put_off was defined in ecoffswap.h. */ ecoff_put_off (abfd, in->adr, (bfd_byte *) ex->p_adr); bfd_h_put_32 (abfd, in->regmask, (bfd_byte *) ex->p_regmask); bfd_h_put_32 (abfd, in->regoffset, (bfd_byte *) ex->p_regoffset); bfd_h_put_32 (abfd, in->fregmask, (bfd_byte *) ex->p_fregmask); bfd_h_put_32 (abfd, in->fregoffset, (bfd_byte *) ex->p_fregoffset); bfd_h_put_32 (abfd, in->frameoffset, (bfd_byte *) ex->p_frameoffset); bfd_h_put_16 (abfd, in->framereg, (bfd_byte *) ex->p_framereg); bfd_h_put_16 (abfd, in->pcreg, (bfd_byte *) ex->p_pcreg); bfd_h_put_32 (abfd, in->irpss, (bfd_byte *) ex->p_irpss); #if 0 /* FIXME */ ecoff_put_off (abfd, in->exception_info, (bfd_byte *) ex->p_exception_info); #endif } /* Read ECOFF debugging information from a .mdebug section into a ecoff_debug_info structure. */ boolean _bfd_mips_elf_read_ecoff_info (abfd, section, debug) bfd *abfd; asection *section; struct ecoff_debug_info *debug; { HDRR *symhdr; const struct ecoff_debug_swap *swap; char *ext_hdr = NULL; swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; ext_hdr = (char *) bfd_malloc ((size_t) swap->external_hdr_size); if (ext_hdr == NULL && swap->external_hdr_size != 0) goto error_return; if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0, swap->external_hdr_size) == false) goto error_return; symhdr = &debug->symbolic_header; (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); /* The symbolic header contains absolute file offsets and sizes to read. */ #define READ(ptr, offset, count, size, type) \ if (symhdr->count == 0) \ debug->ptr = NULL; \ else \ { \ debug->ptr = (type) bfd_malloc ((size_t) (size * symhdr->count)); \ if (debug->ptr == NULL) \ goto error_return; \ if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \ || (bfd_read (debug->ptr, size, symhdr->count, \ abfd) != size * symhdr->count)) \ goto error_return; \ } READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR); READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR); READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR); READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR); READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), union aux_ext *); READ (ss, cbSsOffset, issMax, sizeof (char), char *); READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR); READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR); READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR); #undef READ debug->fdr = NULL; debug->adjust = NULL; return true; error_return: if (ext_hdr != NULL) free (ext_hdr); if (debug->line != NULL) free (debug->line); if (debug->external_dnr != NULL) free (debug->external_dnr); if (debug->external_pdr != NULL) free (debug->external_pdr); if (debug->external_sym != NULL) free (debug->external_sym); if (debug->external_opt != NULL) free (debug->external_opt); if (debug->external_aux != NULL) free (debug->external_aux); if (debug->ss != NULL) free (debug->ss); if (debug->ssext != NULL) free (debug->ssext); if (debug->external_fdr != NULL) free (debug->external_fdr); if (debug->external_rfd != NULL) free (debug->external_rfd); if (debug->external_ext != NULL) free (debug->external_ext); return false; } /* MIPS ELF local labels start with '$', not 'L'. */ /*ARGSUSED*/ static boolean mips_elf_is_local_label (abfd, symbol) bfd *abfd; asymbol *symbol; { return symbol->name[0] == '$'; } /* MIPS ELF uses a special find_nearest_line routine in order the handle the ECOFF debugging information. */ struct mips_elf_find_line { struct ecoff_debug_info d; struct ecoff_find_line i; }; boolean _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr) bfd *abfd; asection *section; asymbol **symbols; bfd_vma offset; const char **filename_ptr; const char **functionname_ptr; unsigned int *line_ptr; { asection *msec; msec = bfd_get_section_by_name (abfd, ".mdebug"); if (msec != NULL) { flagword origflags; struct mips_elf_find_line *fi; const struct ecoff_debug_swap * const swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; /* If we are called during a link, mips_elf_final_link may have cleared the SEC_HAS_CONTENTS field. We force it back on here if appropriate (which it normally will be). */ origflags = msec->flags; if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) msec->flags |= SEC_HAS_CONTENTS; fi = elf_tdata (abfd)->find_line_info; if (fi == NULL) { bfd_size_type external_fdr_size; char *fraw_src; char *fraw_end; struct fdr *fdr_ptr; fi = ((struct mips_elf_find_line *) bfd_zalloc (abfd, sizeof (struct mips_elf_find_line))); if (fi == NULL) { msec->flags = origflags; return false; } if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) { msec->flags = origflags; return false; } /* Swap in the FDR information. */ fi->d.fdr = ((struct fdr *) bfd_alloc (abfd, (fi->d.symbolic_header.ifdMax * sizeof (struct fdr)))); if (fi->d.fdr == NULL) { msec->flags = origflags; return false; } external_fdr_size = swap->external_fdr_size; fdr_ptr = fi->d.fdr; fraw_src = (char *) fi->d.external_fdr; fraw_end = (fraw_src + fi->d.symbolic_header.ifdMax * external_fdr_size); for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr); elf_tdata (abfd)->find_line_info = fi; /* Note that we don't bother to ever free this information. find_nearest_line is either called all the time, as in objdump -l, so the information should be saved, or it is rarely called, as in ld error messages, so the memory wasted is unimportant. Still, it would probably be a good idea for free_cached_info to throw it away. */ } if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, &fi->i, filename_ptr, functionname_ptr, line_ptr)) { msec->flags = origflags; return true; } msec->flags = origflags; } /* Fall back on the generic ELF find_nearest_line routine. */ return _bfd_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr); } /* The MIPS ELF linker needs additional information for each symbol in the global hash table. */ struct mips_elf_link_hash_entry { struct elf_link_hash_entry root; /* External symbol information. */ EXTR esym; /* Number of MIPS_32 or MIPS_REL32 relocs against this symbol. */ unsigned int mips_32_relocs; }; /* MIPS ELF linker hash table. */ struct mips_elf_link_hash_table { struct elf_link_hash_table root; /* String section indices for the dynamic section symbols. */ bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES]; /* The number of .rtproc entries. */ bfd_size_type procedure_count; /* The size of the .compact_rel section (if SGI_COMPAT). */ bfd_size_type compact_rel_size; }; /* Look up an entry in a MIPS ELF linker hash table. */ #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ ((struct mips_elf_link_hash_entry *) \ elf_link_hash_lookup (&(table)->root, (string), (create), \ (copy), (follow))) /* Traverse a MIPS ELF linker hash table. */ #define mips_elf_link_hash_traverse(table, func, info) \ (elf_link_hash_traverse \ (&(table)->root, \ (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \ (info))) /* Get the MIPS ELF linker hash table from a link_info structure. */ #define mips_elf_hash_table(p) \ ((struct mips_elf_link_hash_table *) ((p)->hash)) static boolean mips_elf_output_extsym PARAMS ((struct mips_elf_link_hash_entry *, PTR)); /* Create an entry in a MIPS ELF linker hash table. */ static struct bfd_hash_entry * mips_elf_link_hash_newfunc (entry, table, string) struct bfd_hash_entry *entry; struct bfd_hash_table *table; const char *string; { struct mips_elf_link_hash_entry *ret = (struct mips_elf_link_hash_entry *) entry; /* Allocate the structure if it has not already been allocated by a subclass. */ if (ret == (struct mips_elf_link_hash_entry *) NULL) ret = ((struct mips_elf_link_hash_entry *) bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry))); if (ret == (struct mips_elf_link_hash_entry *) NULL) return (struct bfd_hash_entry *) ret; /* Call the allocation method of the superclass. */ ret = ((struct mips_elf_link_hash_entry *) _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, table, string)); if (ret != (struct mips_elf_link_hash_entry *) NULL) { /* Set local fields. */ memset (&ret->esym, 0, sizeof (EXTR)); /* We use -2 as a marker to indicate that the information has not been set. -1 means there is no associated ifd. */ ret->esym.ifd = -2; ret->mips_32_relocs = 0; } return (struct bfd_hash_entry *) ret; } /* Create a MIPS ELF linker hash table. */ static struct bfd_link_hash_table * mips_elf_link_hash_table_create (abfd) bfd *abfd; { struct mips_elf_link_hash_table *ret; unsigned int i; ret = ((struct mips_elf_link_hash_table *) bfd_alloc (abfd, sizeof (struct mips_elf_link_hash_table))); if (ret == (struct mips_elf_link_hash_table *) NULL) return NULL; if (! _bfd_elf_link_hash_table_init (&ret->root, abfd, mips_elf_link_hash_newfunc)) { bfd_release (abfd, ret); return NULL; } for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++) ret->dynsym_sec_strindex[i] = (bfd_size_type) -1; ret->procedure_count = 0; ret->compact_rel_size = 0; return &ret->root.root; } /* Hook called by the linker routine which adds symbols from an object file. We must handle the special MIPS section numbers here. */ /*ARGSUSED*/ static boolean mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp) bfd *abfd; struct bfd_link_info *info; const Elf_Internal_Sym *sym; const char **namep; flagword *flagsp; asection **secp; bfd_vma *valp; { if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0 && strcmp (*namep, "_rld_new_interface") == 0) { /* Skip Irix 5 rld entry name. */ *namep = NULL; return true; } switch (sym->st_shndx) { case SHN_COMMON: /* Common symbols less than the GP size are automatically treated as SHN_MIPS_SCOMMON symbols. */ if (sym->st_size > elf_gp_size (abfd)) break; /* Fall through. */ case SHN_MIPS_SCOMMON: *secp = bfd_make_section_old_way (abfd, ".scommon"); (*secp)->flags |= SEC_IS_COMMON; *valp = sym->st_size; break; case SHN_MIPS_TEXT: /* This section is used in a shared object. */ if (mips_elf_text_section_ptr == NULL) { /* Initialize the section. */ mips_elf_text_section.name = ".text"; mips_elf_text_section.flags = SEC_NO_FLAGS; mips_elf_text_section.output_section = NULL; mips_elf_text_section.owner = abfd; mips_elf_text_section.symbol = &mips_elf_text_symbol; mips_elf_text_section.symbol_ptr_ptr = &mips_elf_text_symbol_ptr; mips_elf_text_symbol.name = ".text"; mips_elf_text_symbol.flags = BSF_SECTION_SYM; mips_elf_text_symbol.section = &mips_elf_text_section; mips_elf_text_symbol_ptr = &mips_elf_text_symbol; mips_elf_text_section_ptr = &mips_elf_text_section; } if (info->shared) *secp = bfd_und_section_ptr; else *secp = mips_elf_text_section_ptr; break; case SHN_MIPS_ACOMMON: /* Fall through. XXX Can we treat this as allocated data? */ case SHN_MIPS_DATA: /* This section is used in a shared object. */ if (mips_elf_data_section_ptr == NULL) { /* Initialize the section. */ mips_elf_data_section.name = ".data"; mips_elf_data_section.flags = SEC_NO_FLAGS; mips_elf_data_section.output_section = NULL; mips_elf_data_section.owner = abfd; mips_elf_data_section.symbol = &mips_elf_data_symbol; mips_elf_data_section.symbol_ptr_ptr = &mips_elf_data_symbol_ptr; mips_elf_data_symbol.name = ".data"; mips_elf_data_symbol.flags = BSF_SECTION_SYM; mips_elf_data_symbol.section = &mips_elf_data_section; mips_elf_data_symbol_ptr = &mips_elf_data_symbol; mips_elf_data_section_ptr = &mips_elf_data_section; } if (info->shared) *secp = bfd_und_section_ptr; else *secp = mips_elf_data_section_ptr; break; case SHN_MIPS_SUNDEFINED: *secp = bfd_und_section_ptr; break; } return true; } /* Structure used to pass information to mips_elf_output_extsym. */ struct extsym_info { bfd *abfd; struct bfd_link_info *info; struct ecoff_debug_info *debug; const struct ecoff_debug_swap *swap; boolean failed; }; /* This routine is used to write out ECOFF debugging external symbol information. It is called via mips_elf_link_hash_traverse. The ECOFF external symbol information must match the ELF external symbol information. Unfortunately, at this point we don't know whether a symbol is required by reloc information, so the two tables may wind up being different. We must sort out the external symbol information before we can set the final size of the .mdebug section, and we must set the size of the .mdebug section before we can relocate any sections, and we can't know which symbols are required by relocation until we relocate the sections. Fortunately, it is relatively unlikely that any symbol will be stripped but required by a reloc. In particular, it can not happen when generating a final executable. */ static boolean mips_elf_output_extsym (h, data) struct mips_elf_link_hash_entry *h; PTR data; { struct extsym_info *einfo = (struct extsym_info *) data; boolean strip; asection *sec, *output_section; if (h->root.indx == -2) strip = false; else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0) && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) strip = true; else if (einfo->info->strip == strip_all || (einfo->info->strip == strip_some && bfd_hash_lookup (einfo->info->keep_hash, h->root.root.root.string, false, false) == NULL)) strip = true; else strip = false; if (strip) return true; if (h->esym.ifd == -2) { h->esym.jmptbl = 0; h->esym.cobol_main = 0; h->esym.weakext = 0; h->esym.reserved = 0; h->esym.ifd = ifdNil; h->esym.asym.value = 0; h->esym.asym.st = stGlobal; if (SGI_COMPAT (einfo->abfd) && (h->root.root.type == bfd_link_hash_undefined || h->root.root.type == bfd_link_hash_undefweak)) { const char *name; /* Use undefined class. Also, set class and type for some special symbols. */ name = h->root.root.root.string; if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) { h->esym.asym.sc = scData; h->esym.asym.st = stLabel; h->esym.asym.value = 0; } else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) { h->esym.asym.sc = scAbs; h->esym.asym.st = stLabel; h->esym.asym.value = mips_elf_hash_table (einfo->info)->procedure_count; } else if (strcmp (name, "_gp_disp") == 0) { h->esym.asym.sc = scAbs; h->esym.asym.st = stLabel; h->esym.asym.value = elf_gp (einfo->abfd); } else h->esym.asym.sc = scUndefined; } else if (h->root.root.type != bfd_link_hash_defined && h->root.root.type != bfd_link_hash_defweak) h->esym.asym.sc = scAbs; else { const char *name; sec = h->root.root.u.def.section; output_section = sec->output_section; /* When making a shared library and symbol h is the one from the another shared library, OUTPUT_SECTION may be null. */ if (output_section == NULL) h->esym.asym.sc = scUndefined; else { name = bfd_section_name (output_section->owner, output_section); if (strcmp (name, ".text") == 0) h->esym.asym.sc = scText; else if (strcmp (name, ".data") == 0) h->esym.asym.sc = scData; else if (strcmp (name, ".sdata") == 0) h->esym.asym.sc = scSData; else if (strcmp (name, ".rodata") == 0 || strcmp (name, ".rdata") == 0) h->esym.asym.sc = scRData; else if (strcmp (name, ".bss") == 0) h->esym.asym.sc = scBss; else if (strcmp (name, ".sbss") == 0) h->esym.asym.sc = scSBss; else if (strcmp (name, ".init") == 0) h->esym.asym.sc = scInit; else if (strcmp (name, ".fini") == 0) h->esym.asym.sc = scFini; else h->esym.asym.sc = scAbs; } } h->esym.asym.reserved = 0; h->esym.asym.index = indexNil; } if (h->root.root.type == bfd_link_hash_common) h->esym.asym.value = h->root.root.u.c.size; else if (h->root.root.type == bfd_link_hash_defined || h->root.root.type == bfd_link_hash_defweak) { if (h->esym.asym.sc == scCommon) h->esym.asym.sc = scBss; else if (h->esym.asym.sc == scSCommon) h->esym.asym.sc = scSBss; sec = h->root.root.u.def.section; output_section = sec->output_section; if (output_section != NULL) h->esym.asym.value = (h->root.root.u.def.value + sec->output_offset + output_section->vma); else h->esym.asym.value = 0; } else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0) { /* Set type and value for a symbol with a function stub. */ h->esym.asym.st = stProc; sec = h->root.root.u.def.section; if (sec == NULL) h->esym.asym.value = 0; else { output_section = sec->output_section; if (output_section != NULL) h->esym.asym.value = (h->root.plt_offset + sec->output_offset + output_section->vma); else h->esym.asym.value = 0; } #if 0 /* FIXME? */ h->esym.ifd = 0; #endif } if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, h->root.root.root.string, &h->esym)) { einfo->failed = true; return false; } return true; } /* Create a runtime procedure table from the .mdebug section. */ static boolean mips_elf_create_procedure_table (handle, abfd, info, s, debug) PTR handle; bfd *abfd; struct bfd_link_info *info; asection *s; struct ecoff_debug_info *debug; { const struct ecoff_debug_swap *swap; HDRR *hdr = &debug->symbolic_header; RPDR *rpdr, *rp; struct rpdr_ext *erp; PTR rtproc; struct pdr_ext *epdr; struct sym_ext *esym; char *ss, **sv; char *str; unsigned long size, count; unsigned long sindex; unsigned long i; PDR pdr; SYMR sym; const char *no_name_func = "static procedure (no name)"; epdr = NULL; rpdr = NULL; esym = NULL; ss = NULL; sv = NULL; swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; sindex = strlen (no_name_func) + 1; count = hdr->ipdMax; if (count > 0) { size = swap->external_pdr_size; epdr = (struct pdr_ext *) bfd_malloc (size * count); if (epdr == NULL) goto error_return; if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr)) goto error_return; size = sizeof (RPDR); rp = rpdr = (RPDR *) bfd_malloc (size * count); if (rpdr == NULL) goto error_return; sv = (char **) bfd_malloc (sizeof (char *) * count); if (sv == NULL) goto error_return; count = hdr->isymMax; size = swap->external_sym_size; esym = (struct sym_ext *) bfd_malloc (size * count); if (esym == NULL) goto error_return; if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym)) goto error_return; count = hdr->issMax; ss = (char *) bfd_malloc (count); if (ss == NULL) goto error_return; if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss)) goto error_return; count = hdr->ipdMax; for (i = 0; i < count; i++, rp++) { (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr); (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym); rp->adr = sym.value; rp->regmask = pdr.regmask; rp->regoffset = pdr.regoffset; rp->fregmask = pdr.fregmask; rp->fregoffset = pdr.fregoffset; rp->frameoffset = pdr.frameoffset; rp->framereg = pdr.framereg; rp->pcreg = pdr.pcreg; rp->irpss = sindex; sv[i] = ss + sym.iss; sindex += strlen (sv[i]) + 1; } } size = sizeof (struct rpdr_ext) * (count + 2) + sindex; size = BFD_ALIGN (size, 16); rtproc = (PTR) bfd_alloc (abfd, size); if (rtproc == NULL) { mips_elf_hash_table (info)->procedure_count = 0; goto error_return; } mips_elf_hash_table (info)->procedure_count = count + 2; erp = (struct rpdr_ext *) rtproc; memset (erp, 0, sizeof (struct rpdr_ext)); erp++; str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); strcpy (str, no_name_func); str += strlen (no_name_func) + 1; for (i = 0; i < count; i++) { ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); strcpy (str, sv[i]); str += strlen (sv[i]) + 1; } ecoff_put_off (abfd, (bfd_vma) -1, (bfd_byte *) (erp + count)->p_adr); /* Set the size and contents of .rtproc section. */ s->_raw_size = size; s->contents = rtproc; /* Skip this section later on (I don't think this currently matters, but someday it might). */ s->link_order_head = (struct bfd_link_order *) NULL; if (epdr != NULL) free (epdr); if (rpdr != NULL) free (rpdr); if (esym != NULL) free (esym); if (ss != NULL) free (ss); if (sv != NULL) free (sv); return true; error_return: if (epdr != NULL) free (epdr); if (rpdr != NULL) free (rpdr); if (esym != NULL) free (esym); if (ss != NULL) free (ss); if (sv != NULL) free (sv); return false; } /* A comparison routine used to sort .gptab entries. */ static int gptab_compare (p1, p2) const PTR p1; const PTR p2; { const Elf32_gptab *a1 = (const Elf32_gptab *) p1; const Elf32_gptab *a2 = (const Elf32_gptab *) p2; return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; } /* We need to use a special link routine to handle the .reginfo and the .mdebug sections. We need to merge all instances of these sections together, not write them all out sequentially. */ static boolean mips_elf_final_link (abfd, info) bfd *abfd; struct bfd_link_info *info; { asection **secpp; asection *o; struct bfd_link_order *p; asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; asection *rtproc_sec; Elf32_RegInfo reginfo; struct ecoff_debug_info debug; const struct ecoff_debug_swap *swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; HDRR *symhdr = &debug.symbolic_header; PTR mdebug_handle = NULL; /* Drop the .options section, since it has special semantics which I haven't bothered to figure out. */ for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next) { if (strcmp ((*secpp)->name, ".options") == 0) { for (p = (*secpp)->link_order_head; p != NULL; p = p->next) if (p->type == bfd_indirect_link_order) p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS; (*secpp)->link_order_head = NULL; *secpp = (*secpp)->next; --abfd->section_count; break; } } /* Get a value for the GP register. */ if (elf_gp (abfd) == 0) { struct bfd_link_hash_entry *h; h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true); if (h != (struct bfd_link_hash_entry *) NULL && h->type == bfd_link_hash_defined) elf_gp (abfd) = (h->u.def.value + h->u.def.section->output_section->vma + h->u.def.section->output_offset); else if (info->relocateable) { bfd_vma lo; /* Make up a value. */ lo = (bfd_vma) -1; for (o = abfd->sections; o != (asection *) NULL; o = o->next) { if (o->vma < lo && (strcmp (o->name, ".sbss") == 0 || strcmp (o->name, ".sdata") == 0 || strcmp (o->name, ".lit4") == 0 || strcmp (o->name, ".lit8") == 0)) lo = o->vma; } elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd); } else { /* If the relocate_section function needs to do a reloc involving the GP value, it should make a reloc_dangerous callback to warn that GP is not defined. */ } } /* Go through the sections and collect the .reginfo and .mdebug information. */ reginfo_sec = NULL; mdebug_sec = NULL; gptab_data_sec = NULL; gptab_bss_sec = NULL; for (o = abfd->sections; o != (asection *) NULL; o = o->next) { if (strcmp (o->name, ".reginfo") == 0) { memset (®info, 0, sizeof reginfo); /* We have found the .reginfo section in the output file. Look through all the link_orders comprising it and merge the information together. */ for (p = o->link_order_head; p != (struct bfd_link_order *) NULL; p = p->next) { asection *input_section; bfd *input_bfd; Elf32_External_RegInfo ext; Elf32_RegInfo sub; if (p->type != bfd_indirect_link_order) { if (p->type == bfd_fill_link_order) continue; abort (); } input_section = p->u.indirect.section; input_bfd = input_section->owner; /* The linker emulation code has probably clobbered the size to be zero bytes. */ if (input_section->_raw_size == 0) input_section->_raw_size = sizeof (Elf32_External_RegInfo); if (! bfd_get_section_contents (input_bfd, input_section, (PTR) &ext, (file_ptr) 0, sizeof ext)) return false; bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); reginfo.ri_gprmask |= sub.ri_gprmask; reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; /* ri_gp_value is set by the function mips_elf32_section_processing when the section is finally written out. */ /* Hack: reset the SEC_HAS_CONTENTS flag so that elf_link_input_bfd ignores this section. */ input_section->flags &=~ SEC_HAS_CONTENTS; } /* Force the section size to the value we want. */ o->_raw_size = sizeof (Elf32_External_RegInfo); /* Skip this section later on (I don't think this currently matters, but someday it might). */ o->link_order_head = (struct bfd_link_order *) NULL; reginfo_sec = o; } if (strcmp (o->name, ".mdebug") == 0) { struct extsym_info einfo; /* We have found the .mdebug section in the output file. Look through all the link_orders comprising it and merge the information together. */ symhdr->magic = swap->sym_magic; /* FIXME: What should the version stamp be? */ symhdr->vstamp = 0; symhdr->ilineMax = 0; symhdr->cbLine = 0; symhdr->idnMax = 0; symhdr->ipdMax = 0; symhdr->isymMax = 0; symhdr->ioptMax = 0; symhdr->iauxMax = 0; symhdr->issMax = 0; symhdr->issExtMax = 0; symhdr->ifdMax = 0; symhdr->crfd = 0; symhdr->iextMax = 0; /* We accumulate the debugging information itself in the debug_info structure. */ debug.line = NULL; debug.external_dnr = NULL; debug.external_pdr = NULL; debug.external_sym = NULL; debug.external_opt = NULL; debug.external_aux = NULL; debug.ss = NULL; debug.ssext = debug.ssext_end = NULL; debug.external_fdr = NULL; debug.external_rfd = NULL; debug.external_ext = debug.external_ext_end = NULL; mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); if (mdebug_handle == (PTR) NULL) return false; if (SGI_COMPAT (abfd)) { asection *s; EXTR esym; bfd_vma last; unsigned int i; static const char * const name[] = { ".text", ".init", ".fini", ".data", ".rodata", ".sdata", ".sbss", ".bss" }; static const int sc[] = { scText, scInit, scFini, scData, scRData, scSData, scSBss, scBss }; esym.jmptbl = 0; esym.cobol_main = 0; esym.weakext = 0; esym.reserved = 0; esym.ifd = ifdNil; esym.asym.iss = issNil; esym.asym.st = stLocal; esym.asym.reserved = 0; esym.asym.index = indexNil; for (i = 0; i < 8; i++) { esym.asym.sc = sc[i]; s = bfd_get_section_by_name (abfd, name[i]); if (s != NULL) { esym.asym.value = s->vma; last = s->vma + s->_raw_size; } else esym.asym.value = last; if (! bfd_ecoff_debug_one_external (abfd, &debug, swap, name[i], &esym)) return false; } } for (p = o->link_order_head; p != (struct bfd_link_order *) NULL; p = p->next) { asection *input_section; bfd *input_bfd; const struct ecoff_debug_swap *input_swap; struct ecoff_debug_info input_debug; char *eraw_src; char *eraw_end; if (p->type != bfd_indirect_link_order) { if (p->type == bfd_fill_link_order) continue; abort (); } input_section = p->u.indirect.section; input_bfd = input_section->owner; if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour || (get_elf_backend_data (input_bfd) ->elf_backend_ecoff_debug_swap) == NULL) { /* I don't know what a non MIPS ELF bfd would be doing with a .mdebug section, but I don't really want to deal with it. */ continue; } input_swap = (get_elf_backend_data (input_bfd) ->elf_backend_ecoff_debug_swap); BFD_ASSERT (p->size == input_section->_raw_size); /* The ECOFF linking code expects that we have already read in the debugging information and set up an ecoff_debug_info structure, so we do that now. */ if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, &input_debug)) return false; if (! (bfd_ecoff_debug_accumulate (mdebug_handle, abfd, &debug, swap, input_bfd, &input_debug, input_swap, info))) return false; /* Loop through the external symbols. For each one with interesting information, try to find the symbol in the linker global hash table and save the information for the output external symbols. */ eraw_src = input_debug.external_ext; eraw_end = (eraw_src + (input_debug.symbolic_header.iextMax * input_swap->external_ext_size)); for (; eraw_src < eraw_end; eraw_src += input_swap->external_ext_size) { EXTR ext; const char *name; struct mips_elf_link_hash_entry *h; (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext); if (ext.asym.sc == scNil || ext.asym.sc == scUndefined || ext.asym.sc == scSUndefined) continue; name = input_debug.ssext + ext.asym.iss; h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), name, false, false, true); if (h == NULL || h->esym.ifd != -2) continue; if (ext.ifd != -1) { BFD_ASSERT (ext.ifd < input_debug.symbolic_header.ifdMax); ext.ifd = input_debug.ifdmap[ext.ifd]; } h->esym = ext; } /* Free up the information we just read. */ free (input_debug.line); free (input_debug.external_dnr); free (input_debug.external_pdr); free (input_debug.external_sym); free (input_debug.external_opt); free (input_debug.external_aux); free (input_debug.ss); free (input_debug.ssext); free (input_debug.external_fdr); free (input_debug.external_rfd); free (input_debug.external_ext); /* Hack: reset the SEC_HAS_CONTENTS flag so that elf_link_input_bfd ignores this section. */ input_section->flags &=~ SEC_HAS_CONTENTS; } if (SGI_COMPAT (abfd) && info->shared) { /* Create .rtproc section. */ rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); if (rtproc_sec == NULL) { flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY); rtproc_sec = bfd_make_section (abfd, ".rtproc"); if (rtproc_sec == NULL || ! bfd_set_section_flags (abfd, rtproc_sec, flags) || ! bfd_set_section_alignment (abfd, rtproc_sec, 12)) return false; } if (! mips_elf_create_procedure_table (mdebug_handle, abfd, info, rtproc_sec, &debug)) return false; } /* Build the external symbol information. */ einfo.abfd = abfd; einfo.info = info; einfo.debug = &debug; einfo.swap = swap; einfo.failed = false; mips_elf_link_hash_traverse (mips_elf_hash_table (info), mips_elf_output_extsym, (PTR) &einfo); if (einfo.failed) return false; /* Set the size of the .mdebug section. */ o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap); /* Skip this section later on (I don't think this currently matters, but someday it might). */ o->link_order_head = (struct bfd_link_order *) NULL; mdebug_sec = o; } if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0) { const char *subname; unsigned int c; Elf32_gptab *tab; Elf32_External_gptab *ext_tab; unsigned int i; /* The .gptab.sdata and .gptab.sbss sections hold information describing how the small data area would change depending upon the -G switch. These sections not used in executables files. */ if (! info->relocateable) { asection **secpp; for (p = o->link_order_head; p != (struct bfd_link_order *) NULL; p = p->next) { asection *input_section; if (p->type != bfd_indirect_link_order) { if (p->type == bfd_fill_link_order) continue; abort (); } input_section = p->u.indirect.section; /* Hack: reset the SEC_HAS_CONTENTS flag so that elf_link_input_bfd ignores this section. */ input_section->flags &=~ SEC_HAS_CONTENTS; } /* Skip this section later on (I don't think this currently matters, but someday it might). */ o->link_order_head = (struct bfd_link_order *) NULL; /* Really remove the section. */ for (secpp = &abfd->sections; *secpp != o; secpp = &(*secpp)->next) ; *secpp = (*secpp)->next; --abfd->section_count; continue; } /* There is one gptab for initialized data, and one for uninitialized data. */ if (strcmp (o->name, ".gptab.sdata") == 0) gptab_data_sec = o; else if (strcmp (o->name, ".gptab.sbss") == 0) gptab_bss_sec = o; else { (*_bfd_error_handler) ("%s: illegal section name `%s'", bfd_get_filename (abfd), o->name); bfd_set_error (bfd_error_nonrepresentable_section); return false; } /* The linker script always combines .gptab.data and .gptab.sdata into .gptab.sdata, and likewise for .gptab.bss and .gptab.sbss. It is possible that there is no .sdata or .sbss section in the output file, in which case we must change the name of the output section. */ subname = o->name + sizeof ".gptab" - 1; if (bfd_get_section_by_name (abfd, subname) == NULL) { if (o == gptab_data_sec) o->name = ".gptab.data"; else o->name = ".gptab.bss"; subname = o->name + sizeof ".gptab" - 1; BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); } /* Set up the first entry. */ c = 1; tab = (Elf32_gptab *) bfd_malloc (c * sizeof (Elf32_gptab)); if (tab == NULL) return false; tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); tab[0].gt_header.gt_unused = 0; /* Combine the input sections. */ for (p = o->link_order_head; p != (struct bfd_link_order *) NULL; p = p->next) { asection *input_section; bfd *input_bfd; bfd_size_type size; unsigned long last; bfd_size_type gpentry; if (p->type != bfd_indirect_link_order) { if (p->type == bfd_fill_link_order) continue; abort (); } input_section = p->u.indirect.section; input_bfd = input_section->owner; /* Combine the gptab entries for this input section one by one. We know that the input gptab entries are sorted by ascending -G value. */ size = bfd_section_size (input_bfd, input_section); last = 0; for (gpentry = sizeof (Elf32_External_gptab); gpentry < size; gpentry += sizeof (Elf32_External_gptab)) { Elf32_External_gptab ext_gptab; Elf32_gptab int_gptab; unsigned long val; unsigned long add; boolean exact; unsigned int look; if (! (bfd_get_section_contents (input_bfd, input_section, (PTR) &ext_gptab, gpentry, sizeof (Elf32_External_gptab)))) { free (tab); return false; } bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, &int_gptab); val = int_gptab.gt_entry.gt_g_value; add = int_gptab.gt_entry.gt_bytes - last; exact = false; for (look = 1; look < c; look++) { if (tab[look].gt_entry.gt_g_value >= val) tab[look].gt_entry.gt_bytes += add; if (tab[look].gt_entry.gt_g_value == val) exact = true; } if (! exact) { Elf32_gptab *new_tab; unsigned int max; /* We need a new table entry. */ new_tab = ((Elf32_gptab *) bfd_realloc ((PTR) tab, (c + 1) * sizeof (Elf32_gptab))); if (new_tab == NULL) { free (tab); return false; } tab = new_tab; tab[c].gt_entry.gt_g_value = val; tab[c].gt_entry.gt_bytes = add; /* Merge in the size for the next smallest -G value, since that will be implied by this new value. */ max = 0; for (look = 1; look < c; look++) { if (tab[look].gt_entry.gt_g_value < val && (max == 0 || (tab[look].gt_entry.gt_g_value > tab[max].gt_entry.gt_g_value))) max = look; } if (max != 0) tab[c].gt_entry.gt_bytes += tab[max].gt_entry.gt_bytes; ++c; } last = int_gptab.gt_entry.gt_bytes; } /* Hack: reset the SEC_HAS_CONTENTS flag so that elf_link_input_bfd ignores this section. */ input_section->flags &=~ SEC_HAS_CONTENTS; } /* The table must be sorted by -G value. */ if (c > 2) qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); /* Swap out the table. */ ext_tab = ((Elf32_External_gptab *) bfd_alloc (abfd, c * sizeof (Elf32_External_gptab))); if (ext_tab == NULL) { free (tab); return false; } for (i = 0; i < c; i++) bfd_mips_elf32_swap_gptab_out (abfd, tab + i, ext_tab + i); free (tab); o->_raw_size = c * sizeof (Elf32_External_gptab); o->contents = (bfd_byte *) ext_tab; /* Skip this section later on (I don't think this currently matters, but someday it might). */ o->link_order_head = (struct bfd_link_order *) NULL; } } /* Invoke the regular ELF backend linker to do all the work. */ if (! bfd_elf32_bfd_final_link (abfd, info)) return false; /* Now write out the computed sections. */ if (reginfo_sec != (asection *) NULL) { Elf32_External_RegInfo ext; bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext, (file_ptr) 0, sizeof ext)) return false; } if (mdebug_sec != (asection *) NULL) { BFD_ASSERT (abfd->output_has_begun); if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, swap, info, mdebug_sec->filepos)) return false; bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); } if (gptab_data_sec != (asection *) NULL) { if (! bfd_set_section_contents (abfd, gptab_data_sec, gptab_data_sec->contents, (file_ptr) 0, gptab_data_sec->_raw_size)) return false; } if (gptab_bss_sec != (asection *) NULL) { if (! bfd_set_section_contents (abfd, gptab_bss_sec, gptab_bss_sec->contents, (file_ptr) 0, gptab_bss_sec->_raw_size)) return false; } if (SGI_COMPAT (abfd)) { rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); if (rtproc_sec != NULL) { if (! bfd_set_section_contents (abfd, rtproc_sec, rtproc_sec->contents, (file_ptr) 0, rtproc_sec->_raw_size)) return false; } } return true; } /* Handle a MIPS ELF HI16 reloc. */ static void mips_elf_relocate_hi16 (input_bfd, relhi, rello, contents, addend) bfd *input_bfd; Elf_Internal_Rela *relhi; Elf_Internal_Rela *rello; bfd_byte *contents; bfd_vma addend; { bfd_vma insn; bfd_vma addlo; insn = bfd_get_32 (input_bfd, contents + relhi->r_offset); addlo = bfd_get_32 (input_bfd, contents + rello->r_offset); addlo &= 0xffff; addend += ((insn & 0xffff) << 16) + addlo; if ((addlo & 0x8000) != 0) addend -= 0x10000; if ((addend & 0x8000) != 0) addend += 0x10000; bfd_put_32 (input_bfd, (insn & 0xffff0000) | ((addend >> 16) & 0xffff), contents + relhi->r_offset); } /* Handle a MIPS ELF local GOT16 reloc. */ static void mips_elf_relocate_got_local (output_bfd, input_bfd, sgot, relhi, rello, contents, addend) bfd *output_bfd; bfd *input_bfd; asection *sgot; Elf_Internal_Rela *relhi; Elf_Internal_Rela *rello; bfd_byte *contents; bfd_vma addend; { int local_gotno; int i; bfd_vma insn; bfd_vma addlo; bfd_vma address; bfd_vma hipage; bfd_byte *got_contents; struct mips_got_info *g; insn = bfd_get_32 (input_bfd, contents + relhi->r_offset); addlo = bfd_get_32 (input_bfd, contents + rello->r_offset); addlo &= 0xffff; addend += ((insn & 0xffff) << 16) + addlo; if ((addlo & 0x8000) != 0) addend -= 0x10000; if ((addend & 0x8000) != 0) addend += 0x10000; /* Get a got entry representing requested hipage. */ BFD_ASSERT (elf_section_data (sgot) != NULL); g = (struct mips_got_info *) elf_section_data (sgot)->tdata; BFD_ASSERT (g != NULL); local_gotno = g->local_gotno; got_contents = sgot->contents; hipage = addend & 0xffff0000; for (i = MIPS_RESERVED_GOTNO; i < local_gotno; i++) { address = bfd_get_32 (input_bfd, got_contents + i * 4); if (hipage == (address & 0xffff0000)) break; if (address == (bfd_vma) 0) { bfd_put_32 (input_bfd, hipage, got_contents + i * 4); break; } } BFD_ASSERT (i < local_gotno); #if 1 if (i == local_gotno) (*_bfd_error_handler) ("ELF MIPS linker: more got entries are needed for hipage: %x", hipage); #endif i = - ELF_MIPS_GP_OFFSET (output_bfd) + i * 4; bfd_put_32 (input_bfd, (insn & 0xffff0000) | (i & 0xffff), contents + relhi->r_offset); } /* Handle MIPS ELF CALL16 reloc and global GOT16 reloc. */ static void mips_elf_relocate_global_got (input_bfd, rel, contents, offset) bfd *input_bfd; Elf_Internal_Rela *rel; bfd_byte *contents; bfd_vma offset; { bfd_vma insn; insn = bfd_get_32 (input_bfd, contents + rel->r_offset); bfd_put_32 (input_bfd, (insn & 0xffff0000) | (offset & 0xffff), contents + rel->r_offset); } /* Relocate a MIPS ELF section. */ static boolean mips_elf_relocate_section (output_bfd, info, input_bfd, input_section, contents, relocs, local_syms, local_sections) bfd *output_bfd; struct bfd_link_info *info; bfd *input_bfd; asection *input_section; bfd_byte *contents; Elf_Internal_Rela *relocs; Elf_Internal_Sym *local_syms; asection **local_sections; { Elf_Internal_Shdr *symtab_hdr; size_t locsymcount; size_t extsymoff; asection *sgot, *sreloc, *scpt; bfd *dynobj; bfd_vma gp; Elf_Internal_Rela *rel; Elf_Internal_Rela *relend; struct mips_got_info *g; dynobj = elf_hash_table (info)->dynobj; symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; sgot = NULL; sreloc = NULL; if (dynobj == NULL || ! SGI_COMPAT (output_bfd)) scpt = NULL; else scpt = bfd_get_section_by_name (dynobj, ".compact_rel"); g = NULL; if (elf_bad_symtab (input_bfd)) { locsymcount = symtab_hdr->sh_size / sizeof (Elf32_External_Sym); extsymoff = 0; } else { locsymcount = symtab_hdr->sh_info; extsymoff = symtab_hdr->sh_info; } gp = _bfd_get_gp_value (output_bfd); rel = relocs; relend = relocs + input_section->reloc_count; for (; rel < relend; rel++) { int r_type; reloc_howto_type *howto; unsigned long r_symndx; bfd_vma addend; struct elf_link_hash_entry *h; asection *sec; Elf_Internal_Sym *sym; bfd_reloc_status_type r; r_type = ELF32_R_TYPE (rel->r_info); if (r_type < 0 || r_type >= (int) R_MIPS_max) { bfd_set_error (bfd_error_bad_value); return false; } howto = elf_mips_howto_table + r_type; if (dynobj != NULL && (r_type == R_MIPS_CALL16 || r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL_HI16 || r_type == R_MIPS_CALL_LO16 || r_type == R_MIPS_GOT_HI16 || r_type == R_MIPS_GOT_LO16)) { /* We need the .got section. */ if (sgot == NULL) { sgot = bfd_get_section_by_name (dynobj, ".got"); BFD_ASSERT (sgot != NULL); BFD_ASSERT (elf_section_data (sgot) != NULL); g = (struct mips_got_info *) elf_section_data (sgot)->tdata; BFD_ASSERT (g != NULL); } } r_symndx = ELF32_R_SYM (rel->r_info); /* Mix in the change in GP address for a GP relative reloc. */ if (r_type != R_MIPS_GPREL16 && r_type != R_MIPS_LITERAL && r_type != R_MIPS_GPREL32) addend = 0; else { if (gp == 0) { if (! ((*info->callbacks->reloc_dangerous) (info, "GP relative relocation when GP not defined", input_bfd, input_section, rel->r_offset))) return false; /* Only give the error once per link. */ gp = 4; _bfd_set_gp_value (output_bfd, gp); } if (r_symndx < extsymoff || (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)) { /* This is a relocation against a section. The current addend in the instruction is the difference between INPUT_SECTION->vma and the GP value of INPUT_BFD. We must change this to be the difference between the final definition (which will end up in RELOCATION) and the GP value of OUTPUT_BFD (which is in GP). */ addend = elf_gp (input_bfd) - gp; } else if (! info->relocateable) { /* We are doing a final link. The current addend in the instruction is simply the desired offset into the symbol (normally zero). We want the instruction to hold the difference between the final definition of the symbol (which will end up in RELOCATION) and the GP value of OUTPUT_BFD (which is in GP). */ addend = - gp; } else { /* We are generating relocateable output, and we aren't going to define this symbol, so we just leave the instruction alone. */ addend = 0; } } h = NULL; sym = NULL; sec = NULL; if (info->relocateable) { /* This is a relocateable link. We don't have to change anything, unless the reloc is against a section symbol, in which case we have to adjust according to where the section symbol winds up in the output section. */ if (r_symndx >= locsymcount || (elf_bad_symtab (input_bfd) && local_sections[r_symndx] == NULL)) r = bfd_reloc_ok; else { sym = local_syms + r_symndx; if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) r = bfd_reloc_ok; else { sec = local_sections[r_symndx]; /* It would be logical to add sym->st_value here, but Irix 5 sometimes generates a garbage symbol value. */ addend += sec->output_offset; /* If this is HI16 or GOT16 with an associated LO16, adjust the addend accordingly. Otherwise, just relocate. */ if (r_type != R_MIPS_HI16 && r_type != R_MIPS_GOT16) r = _bfd_relocate_contents (howto, input_bfd, addend, contents + rel->r_offset); else { Elf_Internal_Rela *lorel; /* As a GNU extension, permit an arbitrary number of R_MIPS_HI16 relocs before the R_MIPS_LO16 reloc. This permits gcc to emit the HI and LO relocs itself. */ if (r_type == R_MIPS_GOT16) lorel = rel + 1; else { for (lorel = rel + 1; (lorel < relend && (ELF32_R_TYPE (lorel->r_info) == R_MIPS_HI16)); lorel++) ; } if (lorel < relend && ELF32_R_TYPE (lorel->r_info) == R_MIPS_LO16) { mips_elf_relocate_hi16 (input_bfd, rel, lorel, contents, addend); r = bfd_reloc_ok; } else r = _bfd_relocate_contents (howto, input_bfd, addend, contents + rel->r_offset); } } } } else { bfd_vma relocation; boolean local; /* This is a final link. */ sym = NULL; if (r_symndx < extsymoff || (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)) { local = true; sym = local_syms + r_symndx; sec = local_sections[r_symndx]; relocation = (sec->output_section->vma + sec->output_offset); /* It would be logical to always add sym->st_value here, but Irix 5 sometimes generates a garbage symbol value. */ if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) relocation += sym->st_value; } else { long indx; local = false; indx = r_symndx - extsymoff; h = elf_sym_hashes (input_bfd)[indx]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; if (strcmp (h->root.root.string, "_gp_disp") == 0) { if (gp == 0) { if (! ((*info->callbacks->reloc_dangerous) (info, "_gp_disp used when GP not defined", input_bfd, input_section, rel->r_offset))) return false; /* Only give the error once per link. */ gp = 4; _bfd_set_gp_value (output_bfd, gp); relocation = 0; } else { sec = input_section; if (sec->output_section != NULL) relocation = (gp - (rel->r_offset + sec->output_section->vma + sec->output_offset)); else relocation = gp - rel->r_offset; if (r_type == R_MIPS_LO16) relocation += 4; } } else if (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) { sec = h->root.u.def.section; if (sec->output_section == NULL) relocation = 0; else relocation = (h->root.u.def.value + sec->output_section->vma + sec->output_offset); } else if (h->root.type == bfd_link_hash_undefweak) relocation = 0; else if (info->shared && ! info->symbolic) relocation = 0; else if (strcmp (h->root.root.string, "_DYNAMIC_LINK") == 0) { /* If this is a dynamic link, we should have created a _DYNAMIC_LINK symbol in mips_elf_create_dynamic_sections. Otherwise, we should define the symbol with a value of 0. FIXME: It should probably get into the symbol table somehow as well. */ BFD_ASSERT (! info->shared); BFD_ASSERT (bfd_get_section_by_name (output_bfd, ".dynamic") == NULL); relocation = 0; } else { if (! ((*info->callbacks->undefined_symbol) (info, h->root.root.string, input_bfd, input_section, rel->r_offset))) return false; relocation = 0; } } if (r_type == R_MIPS_HI16) { Elf_Internal_Rela *lorel; /* As a GNU extension, permit an arbitrary number of R_MIPS_HI16 relocs before the R_MIPS_LO16 reloc. This permits gcc to emit the HI and LO relocs itself. */ for (lorel = rel + 1; (lorel < relend && ELF32_R_TYPE (lorel->r_info) == R_MIPS_HI16); lorel++) ; if (lorel < relend && ELF32_R_TYPE (lorel->r_info) == R_MIPS_LO16) { mips_elf_relocate_hi16 (input_bfd, rel, lorel, contents, relocation + addend); r = bfd_reloc_ok; } else r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, addend); } else if (r_type == R_MIPS_GOT16 && local) { /* GOT16 must also have an associated LO16 in the local case. In this case, the addend is extracted and the section in which the referenced object is determined. Then the final address of the object is computed and the GOT entry for the hipage (an aligned 64kb chunk) is added to .got section if needed. The offset field of the GOT16-relocated instruction is replaced by the index of this GOT entry for the hipage. */ if ((rel + 1) < relend && ELF32_R_TYPE ((rel + 1)->r_info) == R_MIPS_LO16) { mips_elf_relocate_got_local (output_bfd, input_bfd, sgot, rel, rel + 1, contents, relocation + addend); r = bfd_reloc_ok; } else r = bfd_reloc_outofrange; } else if (r_type == R_MIPS_CALL16 || r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL_LO16 || r_type == R_MIPS_GOT_LO16) { bfd_vma offset; /* This symbol must be registered as a global symbol having the corresponding got entry. */ BFD_ASSERT (h->got_offset != (bfd_vma) -1); offset = (h->dynindx - g->global_gotsym + g->local_gotno) * 4; BFD_ASSERT (g->local_gotno <= offset && offset < sgot->_raw_size); bfd_put_32 (output_bfd, relocation + addend, sgot->contents + offset); offset = (sgot->output_section->vma + sgot->output_offset + offset - gp); mips_elf_relocate_global_got (input_bfd, rel, contents, offset); r = bfd_reloc_ok; } else if (r_type == R_MIPS_CALL_HI16 || r_type == R_MIPS_GOT_HI16) { bfd_vma offset; /* This must be a global symbol with a got entry. The next reloc must be the corresponding LO16 reloc. */ BFD_ASSERT (h != NULL && h->got_offset != (bfd_vma) -1); BFD_ASSERT ((rel + 1) < relend); BFD_ASSERT (ELF32_R_TYPE ((rel + 1)->r_info) == (r_type == R_MIPS_CALL_HI16 ? R_MIPS_CALL_LO16 : R_MIPS_GOT_LO16)); offset = (h->dynindx - g->global_gotsym + g->local_gotno) * 4; BFD_ASSERT (g->local_gotno <= offset && offset < sgot->_raw_size); bfd_put_32 (output_bfd, relocation + addend, sgot->contents + offset); offset = (sgot->output_section->vma + sgot->output_offset + offset - gp); mips_elf_relocate_hi16 (input_bfd, rel, rel + 1, contents, offset); r = bfd_reloc_ok; } else if (r_type == R_MIPS_REL32 || r_type == R_MIPS_32) { Elf_Internal_Rel outrel; Elf32_crinfo cptrel; bfd_byte *cr; if ((info->shared || (h != NULL && !info->static_link && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))) && (input_section->flags & SEC_ALLOC) != 0) { /* When generating a shared object, these relocations are copied into the output file to be resolved at run time. */ if (sreloc == NULL) { sreloc = bfd_get_section_by_name (dynobj, ".rel.dyn"); BFD_ASSERT (sreloc != NULL); } outrel.r_offset = (rel->r_offset + input_section->output_section->vma + input_section->output_offset); addend = bfd_get_32 (input_bfd, contents + rel->r_offset); if (h != NULL && (! info->symbolic || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)) { BFD_ASSERT (h->dynindx != -1); outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_REL32); sec = input_section; } else { long indx; if (h == NULL) sec = local_sections[r_symndx]; else { BFD_ASSERT (h->root.type == bfd_link_hash_defined || (h->root.type == bfd_link_hash_defweak)); sec = h->root.u.def.section; } if (sec != NULL && bfd_is_abs_section (sec)) indx = 0; else if (sec == NULL || sec->owner == NULL) { bfd_set_error (bfd_error_bad_value); return false; } else { asection *osec; osec = sec->output_section; indx = elf_section_data (osec)->dynindx; if (indx == 0) abort (); } outrel.r_info = ELF32_R_INFO (indx, R_MIPS_REL32); addend += relocation; } bfd_put_32 (output_bfd, addend, contents + rel->r_offset); bfd_elf32_swap_reloc_out (output_bfd, &outrel, (((Elf32_External_Rel *) sreloc->contents) + sreloc->reloc_count)); ++sreloc->reloc_count; if (SGI_COMPAT (output_bfd)) { if (scpt == NULL) continue; /* Make an entry of compact relocation info. */ mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); cptrel.vaddr = (rel->r_offset + input_section->output_section->vma + input_section->output_offset); if (r_type == R_MIPS_REL32) mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); else mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); mips_elf_set_cr_dist2to (cptrel, 0); cptrel.konst = addend; cr = (scpt->contents + sizeof (Elf32_External_compact_rel)); bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, ((Elf32_External_crinfo *) cr + scpt->reloc_count)); ++scpt->reloc_count; } /* This reloc will be computed at runtime, so there's no need to do anything now. */ continue; } else r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, addend); } else r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, addend); if (SGI_COMPAT (abfd) && scpt != NULL && (input_section->flags & SEC_ALLOC) != 0) { Elf32_crinfo cptrel; bfd_byte *cr; /* Make an entry of compact relocation info. */ mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); cptrel.vaddr = (rel->r_offset + input_section->output_section->vma + input_section->output_offset); switch (r_type) { case R_MIPS_26: mips_elf_set_cr_type (cptrel, CRT_MIPS_JMPAD); /* XXX How should we set dist2to in this case. */ mips_elf_set_cr_dist2to (cptrel, 8); cptrel.konst = addend + relocation; cr = scpt->contents + sizeof (Elf32_External_compact_rel); bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, ((Elf32_External_crinfo *) cr + scpt->reloc_count)); ++scpt->reloc_count; break; case R_MIPS_GPREL16: case R_MIPS_LITERAL: case R_MIPS_GPREL32: mips_elf_set_cr_type (cptrel, CRT_MIPS_GPHI_LO); cptrel.konst = gp - cptrel.vaddr; mips_elf_set_cr_dist2to (cptrel, 4); cr = scpt->contents + sizeof (Elf32_External_compact_rel); bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, ((Elf32_External_crinfo *) cr + scpt->reloc_count)); ++scpt->reloc_count; break; default: break; } } } if (r != bfd_reloc_ok) { switch (r) { default: case bfd_reloc_outofrange: abort (); case bfd_reloc_overflow: { const char *name; if (h != NULL) name = h->root.root.string; else { name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name); if (name == NULL) return false; if (*name == '\0') name = bfd_section_name (input_bfd, sec); } if (! ((*info->callbacks->reloc_overflow) (info, name, howto->name, (bfd_vma) 0, input_bfd, input_section, rel->r_offset))) return false; } break; } } } return true; } /* Functions for the dynamic linker. */ /* The name of the dynamic interpreter. This is put in the .interp section. */ #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1" /* Create dynamic sections when linking against a dynamic object. */ static boolean mips_elf_create_dynamic_sections (abfd, info) bfd *abfd; struct bfd_link_info *info; { struct elf_link_hash_entry *h; flagword flags; register asection *s; const char * const *namep; flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY); /* Mips ABI requests the .dynamic section to be read only. */ s = bfd_get_section_by_name (abfd, ".dynamic"); if (s != NULL) { if (! bfd_set_section_flags (abfd, s, flags)) return false; } /* We need to create .got section. */ if (! mips_elf_create_got_section (abfd, info)) return false; /* Create .stub section. */ if (bfd_get_section_by_name (abfd, ".stub") == NULL) { s = bfd_make_section (abfd, ".stub"); if (s == NULL || ! bfd_set_section_flags (abfd, s, flags) || ! bfd_set_section_alignment (abfd, s, 2)) return false; } if (SGI_COMPAT (abfd)) { for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) { h = NULL; if (! (_bfd_generic_link_add_one_symbol (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, (bfd_vma) 0, (const char *) NULL, false, get_elf_backend_data (abfd)->collect, (struct bfd_link_hash_entry **) &h))) return false; h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; h->type = STT_SECTION; if (! bfd_elf32_link_record_dynamic_symbol (info, h)) return false; } /* We need to create a .compact_rel section. */ if (! mips_elf_create_compact_rel_section (abfd, info)) return false; /* Change aligments of some sections. */ s = bfd_get_section_by_name (abfd, ".hash"); if (s != NULL) bfd_set_section_alignment (abfd, s, 4); s = bfd_get_section_by_name (abfd, ".dynsym"); if (s != NULL) bfd_set_section_alignment (abfd, s, 4); s = bfd_get_section_by_name (abfd, ".dynstr"); if (s != NULL) bfd_set_section_alignment (abfd, s, 4); s = bfd_get_section_by_name (abfd, ".reginfo"); if (s != NULL) bfd_set_section_alignment (abfd, s, 4); s = bfd_get_section_by_name (abfd, ".dynamic"); if (s != NULL) bfd_set_section_alignment (abfd, s, 4); } if (!info->shared) { h = NULL; if (! (_bfd_generic_link_add_one_symbol (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr, (bfd_vma) 0, (const char *) NULL, false, get_elf_backend_data (abfd)->collect, (struct bfd_link_hash_entry **) &h))) return false; h->elf_link_hash_flags ^=~ ELF_LINK_NON_ELF; h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; h->type = STT_SECTION; if (! bfd_elf32_link_record_dynamic_symbol (info, h)) return false; } return true; } /* Create the .compact_rel section. */ static boolean mips_elf_create_compact_rel_section (abfd, info) bfd *abfd; struct bfd_link_info *info; { flagword flags; register asection *s; if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL) { flags = SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY; s = bfd_make_section (abfd, ".compact_rel"); if (s == NULL || ! bfd_set_section_flags (abfd, s, flags) || ! bfd_set_section_alignment (abfd, s, 2)) return false; s->_raw_size = sizeof (Elf32_External_compact_rel); } return true; } /* Create the .got section to hold the global offset table. */ static boolean mips_elf_create_got_section (abfd, info) bfd *abfd; struct bfd_link_info *info; { flagword flags; register asection *s; struct elf_link_hash_entry *h; struct mips_got_info *g; /* This function may be called more than once. */ if (bfd_get_section_by_name (abfd, ".got") != NULL) return true; flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY; s = bfd_make_section (abfd, ".got"); if (s == NULL || ! bfd_set_section_flags (abfd, s, flags) || ! bfd_set_section_alignment (abfd, s, 4)) return false; /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the linker script because we don't want to define the symbol if we are not creating a global offset table. */ h = NULL; if (! (_bfd_generic_link_add_one_symbol (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, (bfd_vma) 0, (const char *) NULL, false, get_elf_backend_data (abfd)->collect, (struct bfd_link_hash_entry **) &h))) return false; h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; h->type = STT_OBJECT; if (info->shared && ! bfd_elf32_link_record_dynamic_symbol (info, h)) return false; /* The first several global offset table entries are reserved. */ s->_raw_size = MIPS_RESERVED_GOTNO * 4; g = (struct mips_got_info *) bfd_alloc (abfd, sizeof (struct mips_got_info)); if (g == NULL) return false; g->global_gotsym = 0; g->local_gotno = MIPS_RESERVED_GOTNO; if (elf_section_data (s) == NULL) { s->used_by_bfd = (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data)); if (elf_section_data (s) == NULL) return false; } elf_section_data (s)->tdata = (PTR) g; return true; } /* Look through the relocs for a section during the first phase, and allocate space in the global offset table. */ static boolean mips_elf_check_relocs (abfd, info, sec, relocs) bfd *abfd; struct bfd_link_info *info; asection *sec; const Elf_Internal_Rela *relocs; { bfd *dynobj; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; struct mips_got_info *g; size_t extsymoff; const Elf_Internal_Rela *rel; const Elf_Internal_Rela *rel_end; asection *sgot; asection *sreloc; if (info->relocateable) return true; dynobj = elf_hash_table (info)->dynobj; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; sgot = NULL; sreloc = NULL; rel_end = relocs + sec->reloc_count; for (rel = relocs; rel < rel_end; rel++) { unsigned long r_symndx; struct elf_link_hash_entry *h; r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx < extsymoff) h = NULL; else h = sym_hashes[r_symndx - extsymoff]; /* Some relocs require a global offset table. */ if (dynobj == NULL) { switch (ELF32_R_TYPE (rel->r_info)) { case R_MIPS_GOT16: case R_MIPS_CALL16: case R_MIPS_CALL_HI16: case R_MIPS_CALL_LO16: case R_MIPS_GOT_HI16: case R_MIPS_GOT_LO16: elf_hash_table (info)->dynobj = dynobj = abfd; if (! mips_elf_create_got_section (dynobj, info)) return false; break; default: break; } } switch (ELF32_R_TYPE (rel->r_info)) { case R_MIPS_CALL16: case R_MIPS_CALL_HI16: case R_MIPS_CALL_LO16: /* This symbol requires a global offset table entry. */ if (sgot == NULL) { sgot = bfd_get_section_by_name (dynobj, ".got"); BFD_ASSERT (sgot != NULL); BFD_ASSERT (elf_section_data (sgot) != NULL); g = (struct mips_got_info *) elf_section_data (sgot)->tdata; BFD_ASSERT (g != NULL); } BFD_ASSERT (h != NULL); /* Make sure this symbol is output as a dynamic symbol. */ if (h->dynindx == -1) { if (! bfd_elf32_link_record_dynamic_symbol (info, h)) return false; } if (h->got_offset != (bfd_vma) -1) { /* We have already allocated space in the .got. */ break; } /* Note the index of the first global got symbol in .dynsym. */ if (g->global_gotsym == 0 || g->global_gotsym > (unsigned long) h->dynindx) g->global_gotsym = h->dynindx; /* Make this symbol to have the corresponding got entry. */ h->got_offset = 0; /* We need a stub, not a plt entry for the undefined function. But we record it as if it needs plt. See elf_adjust_dynamic_symbol in elflink.h. */ h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; h->type = STT_FUNC; break; case R_MIPS_GOT16: case R_MIPS_GOT_HI16: case R_MIPS_GOT_LO16: /* This symbol requires a global offset table entry. */ if (sgot == NULL) { sgot = bfd_get_section_by_name (dynobj, ".got"); BFD_ASSERT (sgot != NULL); BFD_ASSERT (elf_section_data (sgot) != NULL); g = (struct mips_got_info *) elf_section_data (sgot)->tdata; BFD_ASSERT (g != NULL); } if (h != NULL) { /* Make sure this symbol is output as a dynamic symbol. */ if (h->dynindx == -1) { if (! bfd_elf32_link_record_dynamic_symbol (info, h)) return false; } if (h->got_offset != (bfd_vma) -1) { /* We have already allocated space in the .got. */ break; } /* Note the index of the first global got symbol in .dynsym. */ if (g->global_gotsym == 0 || g->global_gotsym > (unsigned long) h->dynindx) g->global_gotsym = h->dynindx; /* Make this symbol to be the global got symbol. */ h->got_offset = 0; } break; case R_MIPS_32: case R_MIPS_REL32: if ((info->shared || h != NULL) && (sec->flags & SEC_ALLOC) != 0) { /* When creating a shared object, we must copy these reloc types into the output file as R_MIPS_REL32 relocs. We create the .rel.dyn reloc section in dynobj and make room for this reloc. */ if (sreloc == NULL) { const char *name = ".rel.dyn"; sreloc = bfd_get_section_by_name (dynobj, name); if (sreloc == NULL) { sreloc = bfd_make_section (dynobj, name); if (sreloc == NULL || ! bfd_set_section_flags (dynobj, sreloc, (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY)) || ! bfd_set_section_alignment (dynobj, sreloc, 4)) return false; /* Add a null element. */ sreloc->_raw_size += sizeof (Elf32_External_Rel); ++sreloc->reloc_count; } } if (info->shared) sreloc->_raw_size += sizeof (Elf32_External_Rel); else { struct mips_elf_link_hash_entry *hmips; /* We only need to copy this reloc if the symbol is defined in a dynamic object. */ hmips = (struct mips_elf_link_hash_entry *) h; ++hmips->mips_32_relocs; } } if (SGI_COMPAT (abfd)) mips_elf_hash_table (info)->compact_rel_size += sizeof (Elf32_External_crinfo); break; case R_MIPS_26: case R_MIPS_GPREL16: case R_MIPS_LITERAL: case R_MIPS_GPREL32: if (SGI_COMPAT (abfd)) mips_elf_hash_table (info)->compact_rel_size += sizeof (Elf32_External_crinfo); break; default: break; } } return true; } /* Adjust a symbol defined by a dynamic object and referenced by a regular object. The current definition is in some section of the dynamic object, but we're not including those sections. We have to change the definition to something the rest of the link can understand. */ static boolean mips_elf_adjust_dynamic_symbol (info, h) struct bfd_link_info *info; struct elf_link_hash_entry *h; { bfd *dynobj; struct mips_elf_link_hash_entry *hmips; asection *s; dynobj = elf_hash_table (info)->dynobj; /* Make sure we know what is going on here. */ BFD_ASSERT (dynobj != NULL && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) || h->weakdef != NULL || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))); /* If this symbol is defined in a dynamic object, we need to copy any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output file. */ hmips = (struct mips_elf_link_hash_entry *) h; if (! info->relocateable && hmips->mips_32_relocs != 0 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) { s = bfd_get_section_by_name (dynobj, ".rel.dyn"); BFD_ASSERT (s != NULL); s->_raw_size += hmips->mips_32_relocs * sizeof (Elf32_External_Rel); } /* For a function, create a stub, if needed. */ if (h->type == STT_FUNC || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0) { if (! elf_hash_table (info)->dynamic_sections_created) return true; /* If this symbol is not defined in a regular file, then set the symbol to the stub location. This is required to make function pointers compare as equal between the normal executable and the shared library. */ if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) { /* We need .stub section. */ s = bfd_get_section_by_name (dynobj, ".stub"); BFD_ASSERT (s != NULL); h->root.u.def.section = s; h->root.u.def.value = s->_raw_size; /* XXX Write this stub address somewhere. */ h->plt_offset = s->_raw_size; /* Make room for this stub code. */ s->_raw_size += MIPS_FUNCTION_STUB_SIZE; /* The last half word of the stub will be filled with the index of this symbol in .dynsym section. */ return true; } } /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (h->weakdef != NULL) { BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined || h->weakdef->root.type == bfd_link_hash_defweak); h->root.u.def.section = h->weakdef->root.u.def.section; h->root.u.def.value = h->weakdef->root.u.def.value; return true; } /* This is a reference to a symbol defined by a dynamic object which is not a function. */ return true; } /* Set the sizes of the dynamic sections. */ static boolean mips_elf_size_dynamic_sections (output_bfd, info) bfd *output_bfd; struct bfd_link_info *info; { bfd *dynobj; asection *s; boolean reltext; asection *sgot; struct mips_got_info *g; dynobj = elf_hash_table (info)->dynobj; BFD_ASSERT (dynobj != NULL); if (elf_hash_table (info)->dynamic_sections_created) { /* Set the contents of the .interp section to the interpreter. */ if (! info->shared) { s = bfd_get_section_by_name (dynobj, ".interp"); BFD_ASSERT (s != NULL); s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER; s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; } } /* Recompute the size of .got for local entires (reserved and hipages) if needed. To estimate it, get the upper bound of total size of loadable sections. */ sgot = bfd_get_section_by_name (dynobj, ".got"); if (sgot != NULL) { bfd_size_type loadable_size = 0; bfd_size_type local_gotno; struct _bfd *sub; BFD_ASSERT (elf_section_data (sgot) != NULL); g = (struct mips_got_info *) elf_section_data (sgot)->tdata; BFD_ASSERT (g != NULL); for (sub = info->input_bfds; sub; sub = sub->link_next) for (s = sub->sections; s != NULL; s = s->next) { if ((s->flags & SEC_ALLOC) == 0) continue; loadable_size += (s->_raw_size + 0xf) & ~0xf; } loadable_size += MIPS_FUNCTION_STUB_SIZE; /* Assume there are two loadable segments consisting of contiguous sections. Is 5 enough? */ local_gotno = (loadable_size >> 16) + 5 + MIPS_RESERVED_GOTNO; g->local_gotno = local_gotno; sgot->_raw_size += local_gotno * 4; } /* The check_relocs and adjust_dynamic_symbol entry points have determined the sizes of the various dynamic sections. Allocate memory for them. */ reltext = false; for (s = dynobj->sections; s != NULL; s = s->next) { const char *name; boolean strip; /* It's OK to base decisions on the section name, because none of the dynobj section names depend upon the input files. */ name = bfd_get_section_name (dynobj, s); if ((s->flags & SEC_IN_MEMORY) == 0) continue; strip = false; if (strncmp (name, ".rel", 4) == 0) { if (s->_raw_size == 0) strip = true; else { asection *target; /* If this relocation section applies to a read only section, then we probably need a DT_TEXTREL entry. If the relocation section is .rel.dyn, we always assert a DT_TEXTREL entry rather than testing whether there exists a relocation to a read only section or not. */ target = bfd_get_section_by_name (output_bfd, name + 4); if ((target != NULL && (target->flags & SEC_READONLY) != 0) || strcmp (name, ".rel.dyn") == 0) reltext = true; /* We use the reloc_count field as a counter if we need to copy relocs into the output file. */ if (strcmp (name, ".rel.dyn") != 0) s->reloc_count = 0; } } else if (strncmp (name, ".got", 4) == 0) { int i; BFD_ASSERT (elf_section_data (s) != NULL); g = (struct mips_got_info *) elf_section_data (s)->tdata; BFD_ASSERT (g != NULL); /* Fix the size of .got section for the correspondence of global symbols and got entries. This adds some useless got entries. Is this required by ABI really? */ i = elf_hash_table (info)->dynsymcount - g->global_gotsym; s->_raw_size += i * 4; } else if (strncmp (name, ".stub", 5) == 0) { /* Irix rld assumes that the function stub isn't at the end of .text section. So put a dummy. XXX */ s->_raw_size += MIPS_FUNCTION_STUB_SIZE; } else if (SGI_COMPAT (output_bfd) && strncmp (name, ".compact_rel", 12) == 0) s->_raw_size += mips_elf_hash_table (info)->compact_rel_size; else if (strncmp (name, ".init", 5) != 0) { /* It's not one of our sections, so don't allocate space. */ continue; } if (strip) { asection **spp; for (spp = &s->output_section->owner->sections; *spp != s->output_section; spp = &(*spp)->next) ; *spp = s->output_section->next; --s->output_section->owner->section_count; continue; } /* Allocate memory for the section contents. */ s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size); if (s->contents == NULL && s->_raw_size != 0) { bfd_set_error (bfd_error_no_memory); return false; } memset (s->contents, 0, s->_raw_size); } if (elf_hash_table (info)->dynamic_sections_created) { /* Add some entries to the .dynamic section. We fill in the values later, in elf_mips_finish_dynamic_sections, but we must add the entries now so that we get the correct size for the .dynamic section. The DT_DEBUG entry is filled in by the dynamic linker and used by the debugger. */ if (! info->shared) { if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0)) return false; } if (reltext) { if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0)) return false; } if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)) return false; if (bfd_get_section_by_name (dynobj, ".rel.dyn")) { if (! bfd_elf32_add_dynamic_entry (info, DT_REL, 0)) return false; if (! bfd_elf32_add_dynamic_entry (info, DT_RELSZ, 0)) return false; if (! bfd_elf32_add_dynamic_entry (info, DT_RELENT, 0)) return false; } if (! bfd_elf32_add_dynamic_entry (info, DT_MIPS_CONFLICTNO, 0)) return false; if (! bfd_elf32_add_dynamic_entry (info, DT_MIPS_LIBLISTNO, 0)) return false; if (bfd_get_section_by_name (dynobj, ".conflict") != NULL) { if (! bfd_elf32_add_dynamic_entry (info, DT_MIPS_CONFLICT, 0)) return false; s = bfd_get_section_by_name (dynobj, ".liblist"); BFD_ASSERT (s != NULL); if (! bfd_elf32_add_dynamic_entry (info, DT_MIPS_LIBLIST, 0)) return false; } if (! bfd_elf32_add_dynamic_entry (info, DT_MIPS_RLD_VERSION, 0)) return false; if (! bfd_elf32_add_dynamic_entry (info, DT_MIPS_FLAGS, 0)) return false; #if 0 /* Time stamps in executable files are a bad idea. */ if (! bfd_elf32_add_dynamic_entry (info, DT_MIPS_TIME_STAMP, 0)) return false; #endif #if 0 /* FIXME */ if (! bfd_elf32_add_dynamic_entry (info, DT_MIPS_ICHECKSUM, 0)) return false; #endif #if 0 /* FIXME */ if (! bfd_elf32_add_dynamic_entry (info, DT_MIPS_IVERSION, 0)) return false; #endif if (! bfd_elf32_add_dynamic_entry (info, DT_MIPS_BASE_ADDRESS, 0)) return false; if (! bfd_elf32_add_dynamic_entry (info, DT_MIPS_LOCAL_GOTNO, 0)) return false; if (! bfd_elf32_add_dynamic_entry (info, DT_MIPS_SYMTABNO, 0)) return false; if (! bfd_elf32_add_dynamic_entry (info, DT_MIPS_UNREFEXTNO, 0)) return false; if (! bfd_elf32_add_dynamic_entry (info, DT_MIPS_GOTSYM, 0)) return false; if (! bfd_elf32_add_dynamic_entry (info, DT_MIPS_HIPAGENO, 0)) return false; #if 0 /* (SGI_COMPAT) */ if (! bfd_get_section_by_name (dynobj, ".init")) if (! bfd_elf32_add_dynamic_entry (info, DT_INIT, 0)) return false; if (! bfd_get_section_by_name (dynobj, ".fini")) if (! bfd_elf32_add_dynamic_entry (info, DT_FINI, 0)) return false; #endif } /* If we use dynamic linking, we generate a section symbol for each output section. These are local symbols, which means that they must come first in the dynamic symbol table. That means we must increment the dynamic symbol index of every other dynamic symbol. */ { const char * const *namep; unsigned int c, i; bfd_size_type strindex; struct bfd_strtab_hash *dynstr; struct mips_got_info *g; c = 0; if (elf_hash_table (info)->dynamic_sections_created) { if (SGI_COMPAT (output_bfd)) { c = SIZEOF_MIPS_DYNSYM_SECNAMES - 1; elf_link_hash_traverse (elf_hash_table (info), mips_elf_adjust_dynindx, (PTR) &c); elf_hash_table (info)->dynsymcount += c; dynstr = elf_hash_table (info)->dynstr; BFD_ASSERT (dynstr != NULL); for (i = 1, namep = mips_elf_dynsym_sec_names; *namep != NULL; i++, namep++) { s = bfd_get_section_by_name (output_bfd, *namep); if (s != NULL) elf_section_data (s)->dynindx = i; strindex = _bfd_stringtab_add (dynstr, *namep, true, false); if (strindex == (bfd_size_type) -1) return false; mips_elf_hash_table (info)->dynsym_sec_strindex[i] = strindex; } } else { c = bfd_count_sections (output_bfd); elf_link_hash_traverse (elf_hash_table (info), mips_elf_adjust_dynindx, (PTR) &c); elf_hash_table (info)->dynsymcount += c; for (i = 1, s = output_bfd->sections; s != NULL; s = s->next, i++) { elf_section_data (s)->dynindx = i; /* These symbols will have no names, so we don't need to fiddle with dynstr_index. */ } } } s = bfd_get_section_by_name (dynobj, ".got"); BFD_ASSERT (s != NULL); BFD_ASSERT (elf_section_data (s) != NULL); g = (struct mips_got_info *) elf_section_data (s)->tdata; BFD_ASSERT (g != NULL); /* If there are no global got symbols, fake the last symbol so for safety. */ if (g->global_gotsym) g->global_gotsym += c; else g->global_gotsym = elf_hash_table (info)->dynsymcount - 1; } return true; } /* Increment the index of a dynamic symbol by a given amount. Called via elf_link_hash_traverse. */ static boolean mips_elf_adjust_dynindx (h, cparg) struct elf_link_hash_entry *h; PTR cparg; { unsigned int *cp = (unsigned int *) cparg; if (h->dynindx != -1) h->dynindx += *cp; return true; } /* Finish up dynamic symbol handling. We set the contents of various dynamic sections here. */ static boolean mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym) bfd *output_bfd; struct bfd_link_info *info; struct elf_link_hash_entry *h; Elf_Internal_Sym *sym; { bfd *dynobj; bfd_vma gval; asection *sgot; struct mips_got_info *g; const char *name; dynobj = elf_hash_table (info)->dynobj; gval = sym->st_value; if (h->plt_offset != (bfd_vma) -1) { asection *s; bfd_byte *p; bfd_byte stub[MIPS_FUNCTION_STUB_SIZE]; /* This symbol has a stub. Set it up. */ BFD_ASSERT (h->dynindx != -1); s = bfd_get_section_by_name (dynobj, ".stub"); BFD_ASSERT (s != NULL); /* Fill the stub. */ p = stub; bfd_put_32 (output_bfd, STUB_LW(output_bfd), p); p += 4; bfd_put_32 (output_bfd, STUB_MOVE, p); p += 4; /* FIXME: Can h->dynindex be more than 64K? */ if (h->dynindx & 0xffff0000) return false; bfd_put_32 (output_bfd, STUB_JALR, p); p += 4; bfd_put_32 (output_bfd, STUB_LI16 + h->dynindx, p); BFD_ASSERT (h->plt_offset <= s->_raw_size); memcpy (s->contents + h->plt_offset, stub, MIPS_FUNCTION_STUB_SIZE); /* Mark the symbol as undefined. plt_offset != -1 occurs only for the referenced symbol. */ sym->st_shndx = SHN_UNDEF; /* The run-time linker uses the st_value field of the symbol to reset the global offset table entry for this external to its stub address when unlinking a shared object. */ gval = s->output_section->vma + s->output_offset + h->plt_offset; sym->st_value = gval; } BFD_ASSERT (h->dynindx != -1); sgot = bfd_get_section_by_name (dynobj, ".got"); BFD_ASSERT (sgot != NULL); BFD_ASSERT (elf_section_data (sgot) != NULL); g = (struct mips_got_info *) elf_section_data (sgot)->tdata; BFD_ASSERT (g != NULL); if ((unsigned long) h->dynindx >= g->global_gotsym) { bfd_size_type offset; /* This symbol has an entry in the global offset table. Set its value to the corresponding got entry, if needed. */ if (h->got_offset == (bfd_vma) -1) { offset = (h->dynindx - g->global_gotsym + g->local_gotno) * 4; BFD_ASSERT (g->local_gotno * 4 <= offset && offset < sgot->_raw_size); bfd_put_32 (output_bfd, gval, sgot->contents + offset); } } /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ name = h->root.root.string; if (strcmp (name, "_DYNAMIC") == 0 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0) sym->st_shndx = SHN_ABS; else if (strcmp (name, "_DYNAMIC_LINK") == 0) { sym->st_shndx = SHN_ABS; sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); sym->st_value = 1; } else if (SGI_COMPAT (output_bfd)) { if (strcmp (name, "_gp_disp") == 0) { sym->st_shndx = SHN_ABS; sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); sym->st_value = elf_gp (output_bfd); } else if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) { sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); sym->st_other = STO_PROTECTED; sym->st_value = 0; sym->st_shndx = SHN_MIPS_DATA; } else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) { sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); sym->st_other = STO_PROTECTED; sym->st_value = mips_elf_hash_table (info)->procedure_count; sym->st_shndx = SHN_ABS; } else if (sym->st_shndx != SHN_UNDEF) { if (h->type == STT_FUNC) sym->st_shndx = SHN_MIPS_TEXT; else if (h->type == STT_OBJECT) sym->st_shndx = SHN_MIPS_DATA; } } return true; } /* Finish up the dynamic sections. */ static boolean mips_elf_finish_dynamic_sections (output_bfd, info) bfd *output_bfd; struct bfd_link_info *info; { bfd *dynobj; asection *sdyn; asection *sgot; struct mips_got_info *g; dynobj = elf_hash_table (info)->dynobj; sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); sgot = bfd_get_section_by_name (dynobj, ".got"); BFD_ASSERT (sgot != NULL); BFD_ASSERT (elf_section_data (sgot) != NULL); g = (struct mips_got_info *) elf_section_data (sgot)->tdata; BFD_ASSERT (g != NULL); if (elf_hash_table (info)->dynamic_sections_created) { Elf32_External_Dyn *dyncon, *dynconend; BFD_ASSERT (sdyn != NULL); dyncon = (Elf32_External_Dyn *) sdyn->contents; dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size); for (; dyncon < dynconend; dyncon++) { Elf_Internal_Dyn dyn; const char *name; size_t elemsize; asection *s; bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); switch (dyn.d_tag) { default: break; case DT_RELENT: s = bfd_get_section_by_name (dynobj, ".rel.dyn"); BFD_ASSERT (s != NULL); dyn.d_un.d_val = sizeof (Elf32_External_Rel); bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_STRSZ: /* Rewrite DT_STRSZ. */ dyn.d_un.d_val = _bfd_stringtab_size (elf_hash_table (info)->dynstr); bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_PLTGOT: name = ".got"; goto get_vma; case DT_MIPS_CONFLICT: name = ".conflict"; goto get_vma; case DT_MIPS_LIBLIST: name = ".liblist"; get_vma: s = bfd_get_section_by_name (output_bfd, name); BFD_ASSERT (s != NULL); dyn.d_un.d_ptr = s->vma; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_MIPS_RLD_VERSION: dyn.d_un.d_val = 1; /* XXX */ bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_MIPS_FLAGS: dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_MIPS_CONFLICTNO: name = ".conflict"; elemsize = sizeof (Elf32_Conflict); goto set_elemno; case DT_MIPS_LIBLISTNO: name = ".liblist"; elemsize = sizeof (Elf32_Lib); set_elemno: s = bfd_get_section_by_name (output_bfd, name); if (s != NULL) { if (s->_cooked_size != 0) dyn.d_un.d_val = s->_cooked_size / elemsize; else dyn.d_un.d_val = s->_raw_size / elemsize; } else dyn.d_un.d_val = 0; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_MIPS_TIME_STAMP: time ((time_t *) &dyn.d_un.d_val); bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_MIPS_ICHECKSUM: /* XXX FIXME: */ break; case DT_MIPS_IVERSION: /* XXX FIXME: */ break; case DT_MIPS_BASE_ADDRESS: s = output_bfd->sections; BFD_ASSERT (s != NULL); dyn.d_un.d_ptr = s->vma & ~(0xffff); bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_MIPS_LOCAL_GOTNO: dyn.d_un.d_val = g->local_gotno; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_MIPS_SYMTABNO: name = ".dynsym"; elemsize = sizeof (Elf32_External_Sym); s = bfd_get_section_by_name (output_bfd, name); BFD_ASSERT (s != NULL); if (s->_cooked_size != 0) dyn.d_un.d_val = s->_cooked_size / elemsize; else dyn.d_un.d_val = s->_raw_size / elemsize; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_MIPS_UNREFEXTNO: /* XXX FIXME: */ dyn.d_un.d_val = SIZEOF_MIPS_DYNSYM_SECNAMES; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_MIPS_GOTSYM: dyn.d_un.d_val = g->global_gotsym; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_MIPS_HIPAGENO: dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; } } } /* The first entry of the global offset table will be filled at runtime. The second entry will be used by some runtime loaders. This isn't the case of Irix rld. */ if (sgot->_raw_size > 0) { bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents); bfd_put_32 (output_bfd, (bfd_vma) 0x80000000, sgot->contents + 4); } elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4; { asection *sdynsym; asection *s; unsigned int i; bfd_vma last; Elf_Internal_Sym sym; long dindx; const char *name; const char * const * namep = mips_elf_dynsym_sec_names; Elf32_compact_rel cpt; /* Set up the section symbols for the output sections. SGI sets the STT_NOTYPE attribute for these symbols. Should we do so? */ sdynsym = bfd_get_section_by_name (dynobj, ".dynsym"); if (sdynsym != NULL) { if (SGI_COMPAT (output_bfd)) { sym.st_size = 0; sym.st_name = 0; sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE); sym.st_other = 0; i = 0; while ((name = *namep++) != NULL) { s = bfd_get_section_by_name (output_bfd, name); if (s != NULL) { sym.st_value = s->vma; dindx = elf_section_data (s)->dynindx; last = s->vma + s->_raw_size; } else { sym.st_value = last; dindx++; } sym.st_shndx = (i < MIPS_TEXT_DYNSYM_SECNO ? SHN_MIPS_TEXT : SHN_MIPS_DATA); ++i; sym.st_name = mips_elf_hash_table (info)->dynsym_sec_strindex[dindx]; bfd_elf32_swap_symbol_out (output_bfd, &sym, (((Elf32_External_Sym *) sdynsym->contents) + dindx)); } /* Set the sh_info field of the output .dynsym section to the index of the first global symbol. */ elf_section_data (sdynsym->output_section)->this_hdr.sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; } else { sym.st_size = 0; sym.st_name = 0; sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); sym.st_other = 0; for (s = output_bfd->sections; s != NULL; s = s->next) { int indx; sym.st_value = s->vma; indx = elf_section_data (s)->this_idx; BFD_ASSERT (indx > 0); sym.st_shndx = indx; bfd_elf32_swap_symbol_out (output_bfd, &sym, (((Elf32_External_Sym *) sdynsym->contents) + elf_section_data (s)->dynindx)); } /* Set the sh_info field of the output .dynsym section to the index of the first global symbol. */ elf_section_data (sdynsym->output_section)->this_hdr.sh_info = bfd_count_sections (output_bfd) + 1; } } if (SGI_COMPAT (output_bfd)) { /* Write .compact_rel section out. */ s = bfd_get_section_by_name (dynobj, ".compact_rel"); if (s != NULL) { cpt.id1 = 1; cpt.num = s->reloc_count; cpt.id2 = 2; cpt.offset = (s->output_section->filepos + sizeof (Elf32_External_compact_rel)); cpt.reserved0 = 0; cpt.reserved1 = 0; bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, ((Elf32_External_compact_rel *) s->contents)); /* Clean up a dummy stub function entry in .text. */ s = bfd_get_section_by_name (dynobj, ".stub"); if (s != NULL) { file_ptr dummy_offset; BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE); dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE; memset (s->contents + dummy_offset, 0, MIPS_FUNCTION_STUB_SIZE); } } } /* Clean up a first relocation in .rel.dyn. */ s = bfd_get_section_by_name (dynobj, ".rel.dyn"); if (s != NULL) memset (s->contents, 0, sizeof (Elf32_External_Rel)); } return true; } /* This is almost identical to bfd_generic_get_... except that some MIPS relocations need to be handled specially. Sigh. */ static bfd_byte * elf32_mips_get_relocated_section_contents (abfd, link_info, link_order, data, relocateable, symbols) bfd *abfd; struct bfd_link_info *link_info; struct bfd_link_order *link_order; bfd_byte *data; boolean relocateable; asymbol **symbols; { /* Get enough memory to hold the stuff */ bfd *input_bfd = link_order->u.indirect.section->owner; asection *input_section = link_order->u.indirect.section; long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); arelent **reloc_vector = NULL; long reloc_count; if (reloc_size < 0) goto error_return; reloc_vector = (arelent **) bfd_malloc (reloc_size); if (reloc_vector == NULL && reloc_size != 0) goto error_return; /* read in the section */ if (!bfd_get_section_contents (input_bfd, input_section, (PTR) data, 0, input_section->_raw_size)) goto error_return; /* We're not relaxing the section, so just copy the size info */ input_section->_cooked_size = input_section->_raw_size; input_section->reloc_done = true; reloc_count = bfd_canonicalize_reloc (input_bfd, input_section, reloc_vector, symbols); if (reloc_count < 0) goto error_return; if (reloc_count > 0) { arelent **parent; /* for mips */ int gp_found; bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ { struct bfd_hash_entry *h; struct bfd_link_hash_entry *lh; /* Skip all this stuff if we aren't mixing formats. */ if (abfd && input_bfd && abfd->xvec == input_bfd->xvec) lh = 0; else { h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false); lh = (struct bfd_link_hash_entry *) h; } lookup: if (lh) { switch (lh->type) { case bfd_link_hash_undefined: case bfd_link_hash_undefweak: case bfd_link_hash_common: gp_found = 0; break; case bfd_link_hash_defined: case bfd_link_hash_defweak: gp_found = 1; gp = lh->u.def.value; break; case bfd_link_hash_indirect: case bfd_link_hash_warning: lh = lh->u.i.link; /* @@FIXME ignoring warning for now */ goto lookup; case bfd_link_hash_new: default: abort (); } } else gp_found = 0; } /* end mips */ for (parent = reloc_vector; *parent != (arelent *) NULL; parent++) { char *error_message = (char *) NULL; bfd_reloc_status_type r; /* Specific to MIPS: Deal with relocation types that require knowing the gp of the output bfd. */ asymbol *sym = *(*parent)->sym_ptr_ptr; if (bfd_is_abs_section (sym->section) && abfd) { /* The special_function wouldn't get called anyways. */ } else if (!gp_found) { /* The gp isn't there; let the special function code fall over on its own. */ } else if ((*parent)->howto->special_function == _bfd_mips_elf_gprel16_reloc) { /* bypass special_function call */ r = gprel16_with_gp (input_bfd, sym, *parent, input_section, relocateable, (PTR) data, gp); goto skip_bfd_perform_relocation; } /* end mips specific stuff */ r = bfd_perform_relocation (input_bfd, *parent, (PTR) data, input_section, relocateable ? abfd : (bfd *) NULL, &error_message); skip_bfd_perform_relocation: if (relocateable) { asection *os = input_section->output_section; /* A partial link, so keep the relocs */ os->orelocation[os->reloc_count] = *parent; os->reloc_count++; } if (r != bfd_reloc_ok) { switch (r) { case bfd_reloc_undefined: if (!((*link_info->callbacks->undefined_symbol) (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), input_bfd, input_section, (*parent)->address))) goto error_return; break; case bfd_reloc_dangerous: BFD_ASSERT (error_message != (char *) NULL); if (!((*link_info->callbacks->reloc_dangerous) (link_info, error_message, input_bfd, input_section, (*parent)->address))) goto error_return; break; case bfd_reloc_overflow: if (!((*link_info->callbacks->reloc_overflow) (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), (*parent)->howto->name, (*parent)->addend, input_bfd, input_section, (*parent)->address))) goto error_return; break; case bfd_reloc_outofrange: default: abort (); break; } } } } if (reloc_vector != NULL) free (reloc_vector); return data; error_return: if (reloc_vector != NULL) free (reloc_vector); return NULL; } #define bfd_elf32_bfd_get_relocated_section_contents \ elf32_mips_get_relocated_section_contents /* ECOFF swapping routines. These are used when dealing with the .mdebug section, which is in the ECOFF debugging format. */ static const struct ecoff_debug_swap mips_elf32_ecoff_debug_swap = { /* Symbol table magic number. */ magicSym, /* Alignment of debugging information. E.g., 4. */ 4, /* Sizes of external symbolic information. */ sizeof (struct hdr_ext), sizeof (struct dnr_ext), sizeof (struct pdr_ext), sizeof (struct sym_ext), sizeof (struct opt_ext), sizeof (struct fdr_ext), sizeof (struct rfd_ext), sizeof (struct ext_ext), /* Functions to swap in external symbolic data. */ ecoff_swap_hdr_in, ecoff_swap_dnr_in, ecoff_swap_pdr_in, ecoff_swap_sym_in, ecoff_swap_opt_in, ecoff_swap_fdr_in, ecoff_swap_rfd_in, ecoff_swap_ext_in, _bfd_ecoff_swap_tir_in, _bfd_ecoff_swap_rndx_in, /* Functions to swap out external symbolic data. */ ecoff_swap_hdr_out, ecoff_swap_dnr_out, ecoff_swap_pdr_out, ecoff_swap_sym_out, ecoff_swap_opt_out, ecoff_swap_fdr_out, ecoff_swap_rfd_out, ecoff_swap_ext_out, _bfd_ecoff_swap_tir_out, _bfd_ecoff_swap_rndx_out, /* Function to read in symbolic data. */ _bfd_mips_elf_read_ecoff_info }; #define TARGET_LITTLE_SYM bfd_elf32_littlemips_vec #define TARGET_LITTLE_NAME "elf32-littlemips" #define TARGET_BIG_SYM bfd_elf32_bigmips_vec #define TARGET_BIG_NAME "elf32-bigmips" #define ELF_ARCH bfd_arch_mips #define ELF_MACHINE_CODE EM_MIPS #define ELF_MAXPAGESIZE 0x10000 #define elf_backend_collect true #define elf_backend_type_change_ok true #define elf_info_to_howto 0 #define elf_info_to_howto_rel mips_info_to_howto_rel #define elf_backend_sym_is_global mips_elf_sym_is_global #define elf_backend_object_p mips_elf32_object_p #define elf_backend_section_from_shdr mips_elf32_section_from_shdr #define elf_backend_fake_sections _bfd_mips_elf_fake_sections #define elf_backend_section_from_bfd_section \ _bfd_mips_elf_section_from_bfd_section #define elf_backend_section_processing mips_elf32_section_processing #define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing #define elf_backend_additional_program_headers \ mips_elf_additional_program_headers #define elf_backend_modify_segment_map mips_elf_modify_segment_map #define elf_backend_final_write_processing \ _bfd_mips_elf_final_write_processing #define elf_backend_ecoff_debug_swap &mips_elf32_ecoff_debug_swap #define bfd_elf32_bfd_is_local_label mips_elf_is_local_label #define bfd_elf32_find_nearest_line _bfd_mips_elf_find_nearest_line #define bfd_elf32_set_section_contents _bfd_mips_elf_set_section_contents #define bfd_elf32_bfd_link_hash_table_create \ mips_elf_link_hash_table_create #define bfd_elf32_bfd_final_link mips_elf_final_link #define bfd_elf32_bfd_copy_private_bfd_data \ _bfd_mips_elf_copy_private_bfd_data #define bfd_elf32_bfd_merge_private_bfd_data \ _bfd_mips_elf_merge_private_bfd_data #define bfd_elf32_bfd_set_private_flags _bfd_mips_elf_set_private_flags #define elf_backend_add_symbol_hook mips_elf_add_symbol_hook #define elf_backend_create_dynamic_sections \ mips_elf_create_dynamic_sections #define elf_backend_check_relocs mips_elf_check_relocs #define elf_backend_adjust_dynamic_symbol \ mips_elf_adjust_dynamic_symbol #define elf_backend_size_dynamic_sections \ mips_elf_size_dynamic_sections #define elf_backend_relocate_section mips_elf_relocate_section #define elf_backend_finish_dynamic_symbol \ mips_elf_finish_dynamic_symbol #define elf_backend_finish_dynamic_sections \ mips_elf_finish_dynamic_sections #include "elf32-target.h"