/* equiv.c -- Implementation File (module.c template V1.0) Copyright (C) 1995 Free Software Foundation, Inc. Contributed by James Craig Burley (burley@gnu.ai.mit.edu). This file is part of GNU Fortran. GNU Fortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU Fortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Fortran; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. Related Modules: None Description: Handles the EQUIVALENCE relationships in a program unit. Modifications: */ #define FFEEQUIV_DEBUG 0 /* Include files. */ #include "proj.h" #include "equiv.h" #include "bad.h" #include "bld.h" #include "com.h" #include "data.h" #include "global.h" #include "lex.h" #include "malloc.h" #include "symbol.h" /* Externals defined here. */ /* Simple definitions and enumerations. */ /* Internal typedefs. */ /* Private include files. */ /* Internal structure definitions. */ struct _ffeequiv_list_ { ffeequiv first; ffeequiv last; }; /* Static objects accessed by functions in this module. */ static struct _ffeequiv_list_ ffeequiv_list_; /* Static functions (internal). */ static void ffeequiv_layout_local_ (ffeequiv eq); static bool ffeequiv_offset_ (ffetargetOffset *offset, ffesymbol s, ffebld expr, bool subtract, ffetargetOffset adjust, bool no_precede); /* Internal macros. */ /* ffeequiv_layout_local_ -- Lay out storage for local equivalenced vars ffeequiv eq; ffeequiv_layout_local_(eq); Makes a single master ffestorag object that contains all the vars in the equivalence, and makes subordinate ffestorag objects for the vars with the correct offsets. The resulting var offsets are relative not necessarily to 0 -- the are relative to the offset of the master area, which might be 0 or negative, but should never be positive. */ static void ffeequiv_layout_local_ (ffeequiv eq) { ffestorag st; /* Equivalence storage area. */ ffebld list; /* List of list of equivalences. */ ffebld item; /* List of equivalences. */ ffebld root_exp; /* Expression for root sym. */ ffestorag root_st; /* Storage for root. */ ffesymbol root_sym; /* Root itself. */ ffebld rooted_exp; /* Expression for rooted sym in an eqlist. */ ffestorag rooted_st; /* Storage for rooted. */ ffesymbol rooted_sym; /* Rooted symbol itself. */ ffetargetOffset eqlist_offset;/* Offset for eqlist from rooted sym. */ ffetargetAlign alignment; ffetargetAlign modulo; ffetargetAlign pad; ffetargetOffset size; ffetargetOffset num_elements; bool new_storage; /* Established new storage info. */ bool need_storage; /* Have need for more storage info. */ bool init; assert (eq != NULL); if (ffeequiv_common (eq) != NULL) { /* Put in common due to programmer error. */ ffeequiv_kill (eq); return; } /* Find the symbol for the first valid item in the list of lists, use that as the root symbol. Doesn't matter if it won't end up at the beginning of the list, though. */ #if FFEEQUIV_DEBUG fprintf (stderr, "Equiv1:\n"); #endif root_sym = NULL; root_exp = NULL; for (list = ffeequiv_list (eq); list != NULL; list = ffebld_trail (list)) { /* For every equivalence list in the list of equivs */ for (item = ffebld_head (list); item != NULL; item = ffebld_trail (item)) { /* For every equivalence item in the list */ ffetargetOffset ign; /* Ignored. */ root_exp = ffebld_head (item); root_sym = ffeequiv_symbol (root_exp); if (root_sym == NULL) continue; /* Ignore me. */ assert (ffesymbol_storage (root_sym) == NULL); /* No storage yet. */ if (!ffeequiv_offset_ (&ign, root_sym, root_exp, FALSE, 0, FALSE)) { ffesymbol_set_equiv (root_sym, NULL); /* Equiv area slated for death. */ root_sym = NULL; continue; /* Something's wrong with eqv expr, try another. */ } break; /* Use first valid eqv expr for root exp/sym. */ } if (root_sym != NULL) break; } if (root_sym == NULL) { ffeequiv_kill (eq); return; } #if FFEEQUIV_DEBUG fprintf (stderr, " Root: `%s'\n", ffesymbol_text (root_sym)); #endif /* We've got work to do, so make the LOCAL storage object that'll hold all the equivalenced vars inside it. */ st = ffestorag_new (ffestorag_list_master ()); ffestorag_set_parent (st, NULL); /* Initializations happen here. */ ffestorag_set_init (st, NULL); ffestorag_set_accretion (st, NULL); ffestorag_set_offset (st, 0); /* Assume equiv will be at root offset 0 for now. */ ffestorag_set_alignment (st, 1); ffestorag_set_modulo (st, 0); ffestorag_set_type (st, FFESTORAG_typeLOCAL); ffestorag_set_basictype (st, ffesymbol_basictype (root_sym)); ffestorag_set_kindtype (st, ffesymbol_kindtype (root_sym)); ffestorag_set_typesymbol (st, root_sym); ffestorag_set_is_save (st, ffeequiv_is_save (eq)); if (ffesymbol_is_save (root_sym)) ffestorag_update_save (st); ffestorag_set_is_init (st, ffeequiv_is_init (eq)); if (ffesymbol_is_init (root_sym)) ffestorag_update_init (st); ffestorag_set_symbol (st, root_sym); /* Assume this will be the root until we know better (used only to generate the internal name for the aggregate area, e.g. for debugging). */ /* Make the EQUIV storage object for the root symbol. */ if (ffesymbol_rank (root_sym) == 0) num_elements = 1; else num_elements = ffebld_constant_integerdefault (ffebld_conter (ffesymbol_arraysize (root_sym))); ffetarget_layout (ffesymbol_text (root_sym), &alignment, &modulo, &size, ffesymbol_basictype (root_sym), ffesymbol_kindtype (root_sym), ffesymbol_size (root_sym), num_elements); ffestorag_set_size (st, size); /* Set initial size of aggregate area. */ pad = ffetarget_align (ffestorag_ptr_to_alignment (st), ffestorag_ptr_to_modulo (st), 0, alignment, modulo); assert (pad == 0); root_st = ffestorag_new (ffestorag_list_equivs (st)); ffestorag_set_parent (root_st, st); /* Initializations happen there. */ ffestorag_set_init (root_st, NULL); ffestorag_set_accretion (root_st, NULL); ffestorag_set_symbol (root_st, root_sym); ffestorag_set_size (root_st, size); ffestorag_set_offset (root_st, 0); /* Will not change; always 0 relative to itself! */ ffestorag_set_alignment (root_st, alignment); ffestorag_set_modulo (root_st, modulo); ffestorag_set_type (root_st, FFESTORAG_typeEQUIV); ffestorag_set_basictype (root_st, ffesymbol_basictype (root_sym)); ffestorag_set_kindtype (root_st, ffesymbol_kindtype (root_sym)); ffestorag_set_typesymbol (root_st, root_sym); ffestorag_set_is_save (root_st, FALSE); /* Assume FALSE, then... */ if (ffestorag_is_save (st)) /* ...update to TRUE if needed. */ ffestorag_update_save (root_st); ffestorag_set_is_init (root_st, FALSE); /* Assume FALSE, then... */ if (ffestorag_is_init (st)) /* ...update to TRUE if needed. */ ffestorag_update_init (root_st); ffesymbol_set_storage (root_sym, root_st); ffesymbol_signal_unreported (root_sym); init = ffesymbol_is_init (root_sym); /* Now that we know the root (offset=0) symbol, revisit all the lists and do the actual storage allocation. Keep doing this until we've gone through them all without making any new storage objects. */ do { new_storage = FALSE; need_storage = FALSE; for (list = ffeequiv_list (eq); list != NULL; list = ffebld_trail (list)) { /* For every equivalence list in the list of equivs */ /* Now find a "rooted" symbol in this list. That is, find the first item we can that is valid and whose symbol already has a storage area, because that means we know where it belongs in the equivalence area and can then allocate the rest of the items in the list accordingly. */ rooted_sym = NULL; rooted_exp = NULL; eqlist_offset = 0; for (item = ffebld_head (list); item != NULL; item = ffebld_trail (item)) { /* For every equivalence item in the list */ rooted_exp = ffebld_head (item); rooted_sym = ffeequiv_symbol (rooted_exp); if ((rooted_sym == NULL) || (ffesymbol_equiv (rooted_sym) == NULL)) { rooted_sym = NULL; continue; /* Ignore me. */ } need_storage = TRUE; /* Somebody is likely to need storage. */ if ((rooted_st = ffesymbol_storage (rooted_sym)) == NULL) { rooted_sym = NULL; continue; /* No storage for this guy, try another. */ } #if FFEEQUIV_DEBUG fprintf (stderr, " Rooted: `%s' at %" ffetargetOffset_f "d\n", ffesymbol_text (rooted_sym), ffestorag_offset (rooted_st)); #endif /* The offset of this symbol from the equiv's root symbol is already known, and the size of this symbol is already incorporated in the size of the equiv's aggregate area. What we now determine is the offset of this equivalence _list_ from the equiv's root symbol. For example, if we know that A is at offset 16 from the root symbol, given EQUIVALENCE (B(24),A(2)), we're looking at A(2), meaning that the offset for this equivalence list is 20 (4 bytes beyond the beginning of A, assuming typical array types, dimensions, and type info). */ if (!ffeequiv_offset_ (&eqlist_offset, rooted_sym, rooted_exp, FALSE, ffestorag_offset (rooted_st), FALSE)) { /* Can't use this one. */ ffesymbol_set_equiv (rooted_sym, NULL);/* Equiv area slated for death. */ rooted_sym = NULL; continue; /* Something's wrong with eqv expr, try another. */ } #if FFEEQUIV_DEBUG fprintf (stderr, " Eqlist offset: %" ffetargetOffset_f "d\n", eqlist_offset); #endif break; } /* If no rooted symbol, it means this list has no roots -- yet. So, forget this list this time around, but we'll get back to it after the outer loop iterates at least one more time, and, ultimately, it will have a root. */ if (rooted_sym == NULL) { #if FFEEQUIV_DEBUG fprintf (stderr, "No roots.\n"); #endif continue; } /* We now have a rooted symbol/expr and the offset of this equivalence list from the root symbol. The other expressions in this list all identify an initial storage unit that must have the same offset. */ for (item = ffebld_head (list); item != NULL; item = ffebld_trail (item)) { /* For every equivalence item in the list */ ffebld item_exp; /* Expression for equivalence. */ ffestorag item_st; /* Storage for var. */ ffesymbol item_sym; /* Var itself. */ ffetargetOffset item_offset; /* Offset for var from root. */ item_exp = ffebld_head (item); item_sym = ffeequiv_symbol (item_exp); if ((item_sym == NULL) || (ffesymbol_equiv (item_sym) == NULL)) continue; /* Ignore me. */ if (item_sym == rooted_sym) continue; /* Rooted sym already set up. */ if (!ffeequiv_offset_ (&item_offset, item_sym, item_exp, TRUE, eqlist_offset, FALSE)) { ffesymbol_set_equiv (item_sym, NULL); /* Don't bother with me anymore. */ continue; } #if FFEEQUIV_DEBUG fprintf (stderr, " Item `%s' at %" ffetargetOffset_f "d", ffesymbol_text (item_sym), item_offset); #endif if (ffesymbol_rank (item_sym) == 0) num_elements = 1; else num_elements = ffebld_constant_integerdefault (ffebld_conter (ffesymbol_arraysize (item_sym))); ffetarget_layout (ffesymbol_text (item_sym), &alignment, &modulo, &size, ffesymbol_basictype (item_sym), ffesymbol_kindtype (item_sym), ffesymbol_size (item_sym), num_elements); pad = ffetarget_align (ffestorag_ptr_to_alignment (st), ffestorag_ptr_to_modulo (st), item_offset, alignment, modulo); if (pad != 0) { ffebad_start (FFEBAD_EQUIV_ALIGN); ffebad_string (ffesymbol_text (item_sym)); ffebad_finish (); continue; } /* If the variable's offset is less than the offset for the aggregate storage area, it means it has to expand backwards -- i.e. the new known starting point of the area precedes the old one. This can't happen with COMMON areas (the standard, and common sense, disallow it), but it is normal for local EQUIVALENCE areas. Also handle choosing the "documented" rooted symbol for this area here. It's the symbol at the bottom (lowest offset) of the aggregate area, with ties going to the name that would sort to the top of the list of ties. */ if (item_offset == ffestorag_offset (st)) { if ((item_sym != ffestorag_symbol (st)) && (strcmp (ffesymbol_text (item_sym), ffesymbol_text (ffestorag_symbol (st))) < 0)) ffestorag_set_symbol (st, item_sym); } else if (item_offset < ffestorag_offset (st)) { ffetargetOffset new_size; /* Increase size of equiv area to start for lower offset relative to root symbol. */ if (!ffetarget_offset_add (&new_size, ffestorag_offset (st) - item_offset, ffestorag_size (st))) ffetarget_offset_overflow (ffesymbol_text (s)); else ffestorag_set_size (st, new_size); ffestorag_set_symbol (st, item_sym); ffestorag_set_offset (st, item_offset); #if FFEEQUIV_DEBUG fprintf (stderr, " [eq offset=%" ffetargetOffset_f "d, size=%" ffetargetOffset_f "d]", item_offset, new_size); #endif } if ((item_st = ffesymbol_storage (item_sym)) == NULL) { /* Create new ffestorag object, extend equiv area. */ #if FFEEQUIV_DEBUG fprintf (stderr, ".\n"); #endif new_storage = TRUE; item_st = ffestorag_new (ffestorag_list_equivs (st)); ffestorag_set_parent (item_st, st); /* Initializations happen there. */ ffestorag_set_init (item_st, NULL); ffestorag_set_accretion (item_st, NULL); ffestorag_set_symbol (item_st, item_sym); ffestorag_set_size (item_st, size); ffestorag_set_offset (item_st, item_offset); ffestorag_set_alignment (item_st, alignment); ffestorag_set_modulo (item_st, modulo); ffestorag_set_type (item_st, FFESTORAG_typeEQUIV); ffestorag_set_basictype (item_st, ffesymbol_basictype (item_sym)); ffestorag_set_kindtype (item_st, ffesymbol_kindtype (item_sym)); ffestorag_set_typesymbol (item_st, item_sym); ffestorag_set_is_save (item_st, FALSE); /* Assume FALSE... */ if (ffestorag_is_save (st)) /* ...update TRUE */ ffestorag_update_save (item_st); /* if needed. */ ffestorag_set_is_init (item_st, FALSE); /* Assume FALSE... */ if (ffestorag_is_init (st)) /* ...update TRUE */ ffestorag_update_init (item_st); /* if needed. */ ffesymbol_set_storage (item_sym, item_st); ffesymbol_signal_unreported (item_sym); if (ffesymbol_is_init (item_sym)) init = TRUE; /* Determine new size of equiv area, complain if overflow. */ if (!ffetarget_offset_add (&size, item_offset, size) || !ffetarget_offset_add (&size, -ffestorag_offset (st), size)) ffetarget_offset_overflow (ffesymbol_text (s)); else if (size > ffestorag_size (st)) ffestorag_set_size (st, size); ffestorag_update (st, item_sym, ffesymbol_basictype (item_sym), ffesymbol_kindtype (item_sym)); } else { #if FFEEQUIV_DEBUG fprintf (stderr, " (was %" ffetargetOffset_f "d).\n", ffestorag_offset (item_st)); #endif /* Make sure offset agrees with known offset. */ if (item_offset != ffestorag_offset (item_st)) { char io1[40]; char io2[40]; sprintf (&io1[0], "%" ffetargetOffset_f "d", item_offset); sprintf (&io2[0], "%" ffetargetOffset_f "d", ffestorag_offset (item_st)); ffebad_start (FFEBAD_EQUIV_MISMATCH); ffebad_string (ffesymbol_text (item_sym)); ffebad_string (ffesymbol_text (root_sym)); ffebad_string (io1); ffebad_string (io2); ffebad_finish (); } } } /* (For every equivalence item in the list) */ ffebld_set_head (list, NULL); /* Don't do this list again. */ } /* (For every equivalence list in the list of equivs) */ } while (new_storage && need_storage); ffeequiv_kill (eq); /* Fully processed, no longer needed. */ if (init) ffedata_gather (st); /* Gather subordinate inits into one init. */ } /* ffeequiv_offset_ -- Determine offset from start of symbol ffetargetOffset offset; ffesymbol s; // Symbol for error reporting. ffebld expr; // opSUBSTR, opARRAYREF, opSYMTER, opANY. bool subtract; // FALSE means add to adjust, TRUE means subtract from it. ffetargetOffset adjust; // Helps keep answer in pos range (unsigned). if (!ffeequiv_offset_(&offset,s,expr,subtract,adjust)) // error doing the calculation, message already printed Returns the offset represented by the SUBSTR, ARRAYREF, or SUBSTR/ARRAYREF combination added-to/subtracted-from the adjustment specified. If there is an error of some kind, returns FALSE, else returns TRUE. Note that only the first storage unit specified is considered; A(1:1) and A(1:2000) have the same first storage unit and so return the same offset. */ static bool ffeequiv_offset_ (ffetargetOffset *offset, ffesymbol s UNUSED, ffebld expr, bool subtract, ffetargetOffset adjust, bool no_precede) { ffetargetIntegerDefault value = 0; ffetargetOffset cval; /* Converted value. */ ffesymbol sym; if (expr == NULL) return FALSE; again: /* :::::::::::::::::::: */ switch (ffebld_op (expr)) { case FFEBLD_opANY: return FALSE; case FFEBLD_opSYMTER: { ffetargetOffset size; /* Size of a single unit. */ ffetargetAlign a; /* Ignored. */ ffetargetAlign m; /* Ignored. */ sym = ffebld_symter (expr); if (ffesymbol_basictype (sym) == FFEINFO_basictypeANY) return FALSE; ffetarget_layout (ffesymbol_text (sym), &a, &m, &size, ffesymbol_basictype (sym), ffesymbol_kindtype (sym), 1, 1); if (value < 0) { /* Really invalid, as in A(-2:5), but in case it's wanted.... */ if (!ffetarget_offset (&cval, -value)) return FALSE; if (!ffetarget_offset_multiply (&cval, cval, size)) return FALSE; if (subtract) return ffetarget_offset_add (offset, cval, adjust); if (no_precede && (cval > adjust)) { neg: /* :::::::::::::::::::: */ ffebad_start (FFEBAD_COMMON_NEG); ffebad_string (ffesymbol_text (sym)); ffebad_finish (); return FALSE; } return ffetarget_offset_add (offset, -cval, adjust); } if (!ffetarget_offset (&cval, value)) return FALSE; if (!ffetarget_offset_multiply (&cval, cval, size)) return FALSE; if (!subtract) return ffetarget_offset_add (offset, cval, adjust); if (no_precede && (cval > adjust)) goto neg; /* :::::::::::::::::::: */ return ffetarget_offset_add (offset, -cval, adjust); } case FFEBLD_opARRAYREF: { ffebld symexp = ffebld_left (expr); ffebld subscripts = ffebld_right (expr); ffebld dims; ffetargetIntegerDefault width; ffetargetIntegerDefault arrayval; ffetargetIntegerDefault lowbound; ffetargetIntegerDefault highbound; ffebld subscript; ffebld dim; ffebld low; ffebld high; int rank = 0; if (ffebld_op (symexp) != FFEBLD_opSYMTER) return FALSE; sym = ffebld_symter (symexp); if (ffesymbol_basictype (sym) == FFEINFO_basictypeANY) return FALSE; if (ffesymbol_size (sym) == FFETARGET_charactersizeNONE) width = 1; else width = ffesymbol_size (sym); dims = ffesymbol_dims (sym); while (subscripts != NULL) { ++rank; if (dims == NULL) { ffebad_start (FFEBAD_EQUIV_MANY); ffebad_string (ffesymbol_text (sym)); ffebad_finish (); return FALSE; } subscript = ffebld_head (subscripts); dim = ffebld_head (dims); assert (ffebld_op (subscript) == FFEBLD_opCONTER); assert (ffeinfo_basictype (ffebld_info (subscript)) == FFEINFO_basictypeINTEGER); assert (ffeinfo_kindtype (ffebld_info (subscript)) == FFEINFO_kindtypeINTEGERDEFAULT); arrayval = ffebld_constant_integerdefault (ffebld_conter (subscript)); assert (ffebld_op (dim) == FFEBLD_opBOUNDS); low = ffebld_left (dim); high = ffebld_right (dim); if (low == NULL) lowbound = 1; else { assert (ffeinfo_basictype (ffebld_info (low)) == FFEINFO_basictypeINTEGER); assert (ffeinfo_kindtype (ffebld_info (low)) == FFEINFO_kindtypeINTEGERDEFAULT); lowbound = ffebld_constant_integerdefault (ffebld_conter (low)); } assert (ffebld_op (high) == FFEBLD_opCONTER); assert (ffeinfo_basictype (ffebld_info (high)) == FFEINFO_basictypeINTEGER); assert (ffeinfo_kindtype (ffebld_info (high)) == FFEINFO_kindtypeINTEGER1); highbound = ffebld_constant_integerdefault (ffebld_conter (high)); if ((arrayval < lowbound) || (arrayval > highbound)) { char rankstr[10]; sprintf (rankstr, "%d", rank); ffebad_start (FFEBAD_EQUIV_SUBSCRIPT); ffebad_string (ffesymbol_text (sym)); ffebad_string (rankstr); ffebad_finish (); } subscripts = ffebld_trail (subscripts); dims = ffebld_trail (dims); value += width * (arrayval - lowbound); if (subscripts != NULL) width *= highbound - lowbound + 1; } if (dims != NULL) { ffebad_start (FFEBAD_EQUIV_FEW); ffebad_string (ffesymbol_text (sym)); ffebad_finish (); return FALSE; } expr = symexp; } goto again; /* :::::::::::::::::::: */ case FFEBLD_opSUBSTR: { ffebld begin = ffebld_head (ffebld_right (expr)); expr = ffebld_left (expr); if (ffebld_op (expr) == FFEBLD_opARRAYREF) sym = ffebld_symter (ffebld_left (expr)); else if (ffebld_op (expr) == FFEBLD_opSYMTER) sym = ffebld_symter (expr); else sym = NULL; if ((sym != NULL) && (ffesymbol_basictype (sym) == FFEINFO_basictypeANY)) return FALSE; if (begin == NULL) value = 0; else { assert (ffebld_op (begin) == FFEBLD_opCONTER); assert (ffeinfo_basictype (ffebld_info (begin)) == FFEINFO_basictypeINTEGER); assert (ffeinfo_kindtype (ffebld_info (begin)) == FFEINFO_kindtypeINTEGERDEFAULT); value = ffebld_constant_integerdefault (ffebld_conter (begin)); if ((value < 1) || ((sym != NULL) && (value > ffesymbol_size (sym)))) { ffebad_start (FFEBAD_EQUIV_RANGE); ffebad_string (ffesymbol_text (sym)); ffebad_finish (); } --value; } if ((sym != NULL) && (ffesymbol_basictype (sym) != FFEINFO_basictypeCHARACTER)) { ffebad_start (FFEBAD_EQUIV_SUBSTR); ffebad_string (ffesymbol_text (sym)); ffebad_finish (); value = 0; } } goto again; /* :::::::::::::::::::: */ default: assert ("bad op" == NULL); return FALSE; } } /* ffeequiv_add -- Add list of equivalences to list of lists for eq object ffeequiv eq; ffebld list; ffelexToken t; // points to first item in equivalence list ffeequiv_add(eq,list,t); Check the list to make sure only one common symbol is involved (even if multiple times) and agrees with the common symbol for the equivalence object (or it has no common symbol until now). Prepend (aka append, it doesn't matter) the list to the list of lists for the equivalence object. Otherwise report an error and return. */ void ffeequiv_add (ffeequiv eq, ffebld list, ffelexToken t) { ffebld item; ffesymbol symbol; for (item = list; item != NULL; item = ffebld_trail (item)) { symbol = ffeequiv_symbol (ffebld_head (item)); if (ffesymbol_equiv (symbol) == NULL) ffesymbol_set_equiv (symbol, eq); else assert (ffesymbol_equiv (symbol) == eq); if (ffesymbol_common (symbol) == NULL) /* Is symbol in a COMMON area? */ { /* No (at least not yet). */ if (ffesymbol_is_save (symbol)) ffeequiv_update_save (eq); /* EQUIVALENCE has >=1 SAVEd entity. */ if (ffesymbol_is_init (symbol)) ffeequiv_update_init (eq); /* EQUIVALENCE has >=1 init'd entity. */ continue; /* Nothing more to do here. */ } #if FFEGLOBAL_ENABLED if (ffesymbol_is_init (symbol)) ffeglobal_init_common (ffesymbol_common (symbol), t); #endif if (ffesymbol_is_save (ffesymbol_common (symbol))) ffeequiv_update_save (eq); /* EQUIVALENCE is in a SAVEd COMMON block. */ if (ffesymbol_is_init (ffesymbol_common (symbol))) ffeequiv_update_init (eq); /* EQUIVALENCE is in a init'd COMMON block. */ if (ffeequiv_common (eq) == NULL) /* Is COMMON involved already? */ /* No, but there is now. */ ffeequiv_set_common (eq, ffesymbol_common (symbol)); else if (ffeequiv_common (eq) != ffesymbol_common (symbol)) { /* Yes, and it isn't the same as our new COMMON area. */ ffebad_start (FFEBAD_EQUIV_COMMON); ffebad_here (0, ffelex_token_where_line (t), ffelex_token_where_column (t)); ffebad_string (ffesymbol_text (ffeequiv_common (eq))); ffebad_string (ffesymbol_text (ffesymbol_common (symbol))); ffebad_finish (); return; } } ffeequiv_set_list (eq, ffebld_new_item (list, ffeequiv_list (eq))); } /* ffeequiv_dump -- Dump info on equivalence object ffeequiv eq; ffeequiv_dump(eq); */ void ffeequiv_dump (ffeequiv eq) { if (ffeequiv_common (eq) != NULL) fprintf (dmpout, "(common %s) ", ffesymbol_text (ffeequiv_common (eq))); ffebld_dump (ffeequiv_list (eq)); } /* ffeequiv_exec_transition -- Do the hard work on all the equivalence objects ffeequiv_exec_transition(); */ void ffeequiv_exec_transition () { while (ffeequiv_list_.first != (ffeequiv) &ffeequiv_list_.first) ffeequiv_layout_local_ (ffeequiv_list_.first); } /* ffeequiv_init_2 -- Initialize for new program unit ffeequiv_init_2(); Initializes the list of equivalences. */ void ffeequiv_init_2 () { ffeequiv_list_.first = (ffeequiv) &ffeequiv_list_.first; ffeequiv_list_.last = (ffeequiv) &ffeequiv_list_.first; } /* ffeequiv_kill -- Kill equivalence object after removing from list ffeequiv eq; ffeequiv_kill(eq); Removes equivalence object from master list, then kills it. */ void ffeequiv_kill (ffeequiv victim) { victim->next->previous = victim->previous; victim->previous->next = victim->next; malloc_kill_ks (ffe_pool_program_unit (), victim, sizeof (*victim)); } /* ffeequiv_layout_cblock -- Lay out storage for common area ffestorag st; if (ffeequiv_layout_cblock(st)) // at least one equiv'd symbol has init/accretion expr. Now that the explicitly COMMONed variables in the common area (whose ffestorag object is passed) have been laid out, lay out the storage for all variables equivalenced into the area by making subordinate ffestorag objects for them. */ bool ffeequiv_layout_cblock (ffestorag st) { ffesymbol s = ffestorag_symbol (st); /* CBLOCK symbol. */ ffebld list; /* List of explicit common vars, in order, in s. */ ffebld item; /* List of list of equivalences in a given explicit common var. */ ffebld root; /* Expression for (1st) explicit common var in list of eqs. */ ffestorag rst; /* Storage for root. */ ffetargetOffset root_offset; /* Offset for root into common area. */ ffesymbol sr; /* Root itself. */ ffeequiv seq; /* Its equivalence object, if any. */ ffebld var; /* Expression for equivalence. */ ffestorag vst; /* Storage for var. */ ffetargetOffset var_offset; /* Offset for var into common area. */ ffesymbol sv; /* Var itself. */ ffebld altroot; /* Alternate root. */ ffesymbol altrootsym; /* Alternate root symbol. */ ffetargetAlign alignment; ffetargetAlign modulo; ffetargetAlign pad; ffetargetOffset size; ffetargetOffset num_elements; bool new_storage; /* Established new storage info. */ bool need_storage; /* Have need for more storage info. */ bool ok; bool init = FALSE; assert (st != NULL); assert (ffestorag_type (st) == FFESTORAG_typeCBLOCK); assert (ffesymbol_kind (ffestorag_symbol (st)) == FFEINFO_kindCOMMON); for (list = ffesymbol_commonlist (ffestorag_symbol (st)); list != NULL; list = ffebld_trail (list)) { /* For every variable in the common area */ assert (ffebld_op (ffebld_head (list)) == FFEBLD_opSYMTER); sr = ffebld_symter (ffebld_head (list)); if ((seq = ffesymbol_equiv (sr)) == NULL) continue; /* No equivalences to process. */ rst = ffesymbol_storage (sr); if (rst == NULL) { assert (ffesymbol_kind (sr) == FFEINFO_kindANY); continue; } ffesymbol_set_equiv (sr, NULL); /* Cancel ref to equiv obj. */ do { new_storage = FALSE; need_storage = FALSE; for (item = ffeequiv_list (seq); /* Get list of equivs. */ item != NULL; item = ffebld_trail (item)) { /* For every eqv list in the list of equivs for the variable */ altroot = NULL; altrootsym = NULL; for (root = ffebld_head (item); root != NULL; root = ffebld_trail (root)) { /* For every equivalence item in the list */ sv = ffeequiv_symbol (ffebld_head (root)); if (sv == sr) break; /* Found first mention of "rooted" symbol. */ if (ffesymbol_storage (sv) != NULL) { altroot = root; /* If no mention, use this guy instead. */ altrootsym = sv; } } if (root != NULL) { root = ffebld_head (root); /* Lose its opITEM. */ ok = ffeequiv_offset_ (&root_offset, sr, root, FALSE, ffestorag_offset (rst), TRUE); /* Equiv point prior to start of common area? */ } else if (altroot != NULL) { /* Equiv point prior to start of common area? */ root = ffebld_head (altroot); ok = ffeequiv_offset_ (&root_offset, altrootsym, root, FALSE, ffestorag_offset (ffesymbol_storage (altrootsym)), TRUE); ffesymbol_set_equiv (altrootsym, NULL); } else /* No rooted symbol in list of equivalences! */ { /* Assume this was due to opANY and ignore this list for now. */ need_storage = TRUE; continue; } /* We now know the root symbol and the operating offset of that root into the common area. The other expressions in the list all identify an initial storage unit that must have the same offset. */ for (var = ffebld_head (item); var != NULL; var = ffebld_trail (var)) { /* For every equivalence item in the list */ if (ffebld_head (var) == root) continue; /* Except root, of course. */ sv = ffeequiv_symbol (ffebld_head (var)); if (sv == NULL) continue; /* Except erroneous stuff (opANY). */ ffesymbol_set_equiv (sv, NULL); /* Don't need this ref anymore. */ if (!ok || !ffeequiv_offset_ (&var_offset, sv, ffebld_head (var), TRUE, root_offset, TRUE)) continue; /* Can't do negative offset wrt COMMON. */ if (ffesymbol_rank (sv) == 0) num_elements = 1; else num_elements = ffebld_constant_integerdefault (ffebld_conter (ffesymbol_arraysize (sv))); ffetarget_layout (ffesymbol_text (sv), &alignment, &modulo, &size, ffesymbol_basictype (sv), ffesymbol_kindtype (sv), ffesymbol_size (sv), num_elements); pad = ffetarget_align (ffestorag_ptr_to_alignment (st), ffestorag_ptr_to_modulo (st), var_offset, alignment, modulo); if (pad != 0) { ffebad_start (FFEBAD_EQUIV_ALIGN); ffebad_string (ffesymbol_text (sv)); ffebad_finish (); continue; } if ((vst = ffesymbol_storage (sv)) == NULL) { /* Create new ffestorag object, extend cblock. */ new_storage = TRUE; vst = ffestorag_new (ffestorag_list_equivs (st)); ffestorag_set_parent (vst, st); /* Initializations happen there. */ ffestorag_set_init (vst, NULL); ffestorag_set_accretion (vst, NULL); ffestorag_set_symbol (vst, sv); ffestorag_set_size (vst, size); ffestorag_set_offset (vst, var_offset); ffestorag_set_alignment (vst, alignment); ffestorag_set_modulo (vst, modulo); ffestorag_set_type (vst, FFESTORAG_typeEQUIV); ffestorag_set_basictype (vst, ffesymbol_basictype (sv)); ffestorag_set_kindtype (vst, ffesymbol_kindtype (sv)); ffestorag_set_typesymbol (vst, sv); ffestorag_set_is_save (vst, FALSE); /* Assume FALSE... */ if (ffestorag_is_save (st)) /* ...update TRUE */ ffestorag_update_save (vst); /* if needed. */ ffestorag_set_is_init (vst, FALSE); /* Assume FALSE... */ if (ffestorag_is_init (st)) /* ...update TRUE */ ffestorag_update_init (vst); /* if needed. */ if (!ffetarget_offset_add (&size, var_offset, size)) /* Find one size of common block, complain if overflow. */ ffetarget_offset_overflow (ffesymbol_text (s)); else if (size > ffestorag_size (st)) /* Extend common. */ ffestorag_set_size (st, size); ffesymbol_set_storage (sv, vst); ffesymbol_set_common (sv, s); ffesymbol_signal_unreported (sv); ffestorag_update (st, sv, ffesymbol_basictype (sv), ffesymbol_kindtype (sv)); if (ffesymbol_is_init (sv)) init = TRUE; } else { /* Make sure offset agrees with known offset. */ if (var_offset != ffestorag_offset (vst)) { char io1[40]; char io2[40]; sprintf (&io1[0], "%" ffetargetOffset_f "d", var_offset); sprintf (&io2[0], "%" ffetargetOffset_f "d", ffestorag_offset (vst)); ffebad_start (FFEBAD_EQUIV_MISMATCH); ffebad_string (ffesymbol_text (sv)); ffebad_string (ffesymbol_text (s)); ffebad_string (io1); ffebad_string (io2); ffebad_finish (); } } } /* (For every equivalence item in the list) */ } /* (For every eqv list in the list of equivs for the variable) */ } while (new_storage && need_storage); ffeequiv_kill (seq); /* Kill equiv obj. */ } /* (For every variable in the common area) */ return init; } /* ffeequiv_merge -- Merge two equivalence objects, return the merged result ffeequiv eq1; ffeequiv eq2; ffelexToken t; // points to current equivalence item forcing the merge. eq1 = ffeequiv_merge(eq1,eq2,t); If the two equivalence objects can be merged, they are, all the ffesymbols in their lists of lists are adjusted to point to the merged equivalence object, and the merged object is returned. Otherwise, the two equivalence objects have different non-NULL common symbols, so the merge cannot take place. An error message is issued and NULL is returned. */ ffeequiv ffeequiv_merge (ffeequiv eq1, ffeequiv eq2, ffelexToken t) { ffebld list; ffebld eqs; ffesymbol symbol; ffebld last = NULL; /* If both equivalence objects point to different common-based symbols, complain. Of course, one or both might have NULL common symbols now, and get COMMONed later, but the COMMON statement handler checks for this. */ if ((ffeequiv_common (eq1) != NULL) && (ffeequiv_common (eq2) != NULL) && (ffeequiv_common (eq1) != ffeequiv_common (eq2))) { ffebad_start (FFEBAD_EQUIV_COMMON); ffebad_here (0, ffelex_token_where_line (t), ffelex_token_where_column (t)); ffebad_string (ffesymbol_text (ffeequiv_common (eq1))); ffebad_string (ffesymbol_text (ffeequiv_common (eq2))); ffebad_finish (); return NULL; } /* Make eq1 the new, merged object (arbitrarily). */ if (ffeequiv_common (eq1) == NULL) ffeequiv_set_common (eq1, ffeequiv_common (eq2)); /* If the victim object has any init'ed entities, so does the new object. */ if (eq2->is_init) eq1->is_init = TRUE; #if FFEGLOBAL_ENABLED if (eq1->is_init && (ffeequiv_common (eq1) != NULL)) ffeglobal_init_common (ffeequiv_common (eq1), t); #endif /* If the victim object has any SAVEd entities, then the new object has some. */ if (ffeequiv_is_save (eq2)) ffeequiv_update_save (eq1); /* If the victim object has any init'd entities, then the new object has some. */ if (ffeequiv_is_init (eq2)) ffeequiv_update_init (eq1); /* Adjust all the symbols in the list of lists of equivalences for the victim equivalence object so they point to the new merged object instead. */ for (list = ffeequiv_list (eq2); list != NULL; list = ffebld_trail (list)) { for (eqs = ffebld_head (list); eqs != NULL; eqs = ffebld_trail (eqs)) { symbol = ffeequiv_symbol (ffebld_head (eqs)); if (ffesymbol_equiv (symbol) == eq2) ffesymbol_set_equiv (symbol, eq1); else assert (ffesymbol_equiv (symbol) == eq1); /* Can see a sym > once. */ } /* For convenience, remember where the last ITEM in the outer list is. */ if (ffebld_trail (list) == NULL) { last = list; break; } } /* Append the list of lists in the new, merged object to the list of lists in the victim object, then use the new combined list in the new merged object. */ ffebld_set_trail (last, ffeequiv_list (eq1)); ffeequiv_set_list (eq1, ffeequiv_list (eq2)); /* Unlink and kill the victim object. */ ffeequiv_kill (eq2); return eq1; /* Return the new merged object. */ } /* ffeequiv_new -- Create new equivalence object, put in list ffeequiv eq; eq = ffeequiv_new(); Creates a new equivalence object and adds it to the list of equivalence objects. */ ffeequiv ffeequiv_new () { ffeequiv eq; eq = malloc_new_ks (ffe_pool_program_unit (), "ffeequiv", sizeof (*eq)); eq->next = (ffeequiv) &ffeequiv_list_.first; eq->previous = ffeequiv_list_.last; ffeequiv_set_common (eq, NULL); /* No COMMON area yet. */ ffeequiv_set_list (eq, NULL); /* No list of lists of equivalences yet. */ ffeequiv_set_is_save (eq, FALSE); ffeequiv_set_is_init (eq, FALSE); eq->next->previous = eq; eq->previous->next = eq; return eq; } /* ffeequiv_symbol -- Return symbol for equivalence expression ffesymbol symbol; ffebld expr; symbol = ffeequiv_symbol(expr); Finds the terminal SYMTER in an equivalence expression and returns the ffesymbol for it. */ ffesymbol ffeequiv_symbol (ffebld expr) { assert (expr != NULL); again: /* :::::::::::::::::::: */ switch (ffebld_op (expr)) { case FFEBLD_opARRAYREF: case FFEBLD_opSUBSTR: expr = ffebld_left (expr); goto again; /* :::::::::::::::::::: */ case FFEBLD_opSYMTER: return ffebld_symter (expr); case FFEBLD_opANY: return NULL; default: assert ("bad eq expr" == NULL); return NULL; } } /* ffeequiv_update_init -- Update the INIT flag for the area to TRUE ffeequiv eq; ffeequiv_update_init(eq); If the INIT flag for the object is already set, return. Else, set it TRUE and call ffe*_update_init for all objects contained in this one. */ void ffeequiv_update_init (ffeequiv eq) { ffebld list; /* Current list in list of lists. */ ffebld item; /* Current item in current list. */ ffebld expr; /* Expression in head of current item. */ if (eq->is_init) return; eq->is_init = TRUE; if ((eq->common != NULL) && !ffesymbol_is_init (eq->common)) ffesymbol_update_init (eq->common); /* Shouldn't be needed. */ for (list = eq->list; list != NULL; list = ffebld_trail (list)) { for (item = ffebld_head (list); item != NULL; item = ffebld_trail (item)) { expr = ffebld_head (item); again: /* :::::::::::::::::::: */ switch (ffebld_op (expr)) { case FFEBLD_opANY: break; case FFEBLD_opSYMTER: if (!ffesymbol_is_init (ffebld_symter (expr))) ffesymbol_update_init (ffebld_symter (expr)); break; case FFEBLD_opARRAYREF: expr = ffebld_left (expr); goto again; /* :::::::::::::::::::: */ case FFEBLD_opSUBSTR: expr = ffebld_left (expr); goto again; /* :::::::::::::::::::: */ default: assert ("bad op for ffeequiv_update_init" == NULL); break; } } } } /* ffeequiv_update_save -- Update the SAVE flag for the area to TRUE ffeequiv eq; ffeequiv_update_save(eq); If the SAVE flag for the object is already set, return. Else, set it TRUE and call ffe*_update_save for all objects contained in this one. */ void ffeequiv_update_save (ffeequiv eq) { ffebld list; /* Current list in list of lists. */ ffebld item; /* Current item in current list. */ ffebld expr; /* Expression in head of current item. */ if (eq->is_save) return; eq->is_save = TRUE; if ((eq->common != NULL) && !ffesymbol_is_save (eq->common)) ffesymbol_update_save (eq->common); /* Shouldn't be needed. */ for (list = eq->list; list != NULL; list = ffebld_trail (list)) { for (item = ffebld_head (list); item != NULL; item = ffebld_trail (item)) { expr = ffebld_head (item); again: /* :::::::::::::::::::: */ switch (ffebld_op (expr)) { case FFEBLD_opANY: break; case FFEBLD_opSYMTER: if (!ffesymbol_is_save (ffebld_symter (expr))) ffesymbol_update_save (ffebld_symter (expr)); break; case FFEBLD_opARRAYREF: expr = ffebld_left (expr); goto again; /* :::::::::::::::::::: */ case FFEBLD_opSUBSTR: expr = ffebld_left (expr); goto again; /* :::::::::::::::::::: */ default: assert ("bad op for ffeequiv_update_save" == NULL); break; } } } }