/* $OpenBSD: fpu_implode.c,v 1.5 2015/11/15 22:41:43 guenther Exp $ */ /* * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93 * $NetBSD: fpu_implode.c,v 1.8 2001/08/26 05:44:46 eeh Exp $ */ #if 0 __FBSDID("$FreeBSD: src/lib/libc/sparc64/fpu/fpu_implode.c,v 1.5 2002/04/27 21:56:28 jake Exp $"); #endif /* * FPU subroutines: `implode' internal format numbers into the machine's * `packed binary' format. */ #include #include #include #include #include #include "fpu_arith.h" #include "fpu_emu.h" #include "fpu_extern.h" static int fpround(struct fpemu *, struct fpn *); static int toinf(struct fpemu *, int); #define FSR_GET_RD(fsr) (((fsr) >> FSR_RD_SHIFT) & FSR_RD_MASK) /* * Round a number (algorithm from Motorola MC68882 manual, modified for * our internal format). Set inexact exception if rounding is required. * Return true iff we rounded up. * * After rounding, we discard the guard and round bits by shifting right * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky). * This saves effort later. * * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's * responsibility to fix this if necessary. */ static int fpround(struct fpemu *fe, struct fpn *fp) { u_int m0, m1, m2, m3; int gr, s; m0 = fp->fp_mant[0]; m1 = fp->fp_mant[1]; m2 = fp->fp_mant[2]; m3 = fp->fp_mant[3]; gr = m3 & 3; s = fp->fp_sticky; /* mant >>= FP_NG */ m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG)); m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG)); m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG)); m0 >>= FP_NG; if ((gr | s) == 0) /* result is exact: no rounding needed */ goto rounddown; fe->fe_cx |= FSR_NX; /* inexact */ /* Go to rounddown to round down; break to round up. */ switch (FSR_GET_RD(fe->fe_fsr)) { case FSR_RD_RN: default: /* * Round only if guard is set (gr & 2). If guard is set, * but round & sticky both clear, then we want to round * but have a tie, so round to even, i.e., add 1 iff odd. */ if ((gr & 2) == 0) goto rounddown; if ((gr & 1) || fp->fp_sticky || (m3 & 1)) break; goto rounddown; case FSR_RD_RZ: /* Round towards zero, i.e., down. */ goto rounddown; case FSR_RD_RM: /* Round towards -Inf: up if negative, down if positive. */ if (fp->fp_sign) break; goto rounddown; case FSR_RD_RP: /* Round towards +Inf: up if positive, down otherwise. */ if (!fp->fp_sign) break; goto rounddown; } /* Bump low bit of mantissa, with carry. */ FPU_ADDS(m3, m3, 1); FPU_ADDCS(m2, m2, 0); FPU_ADDCS(m1, m1, 0); FPU_ADDC(m0, m0, 0); fp->fp_mant[0] = m0; fp->fp_mant[1] = m1; fp->fp_mant[2] = m2; fp->fp_mant[3] = m3; return (1); rounddown: fp->fp_mant[0] = m0; fp->fp_mant[1] = m1; fp->fp_mant[2] = m2; fp->fp_mant[3] = m3; return (0); } /* * For overflow: return true if overflow is to go to +/-Inf, according * to the sign of the overflowing result. If false, overflow is to go * to the largest magnitude value instead. */ static int toinf(struct fpemu *fe, int sign) { int inf; /* look at rounding direction */ switch (FSR_GET_RD(fe->fe_fsr)) { default: case FSR_RD_RN: /* the nearest value is always Inf */ inf = 1; break; case FSR_RD_RZ: /* toward 0 => never towards Inf */ inf = 0; break; case FSR_RD_RP: /* toward +Inf iff positive */ inf = sign == 0; break; case FSR_RD_RM: /* toward -Inf iff negative */ inf = sign; break; } return (inf); } /* * fpn -> int (int value returned as return value). * * N.B.: this conversion always rounds towards zero (this is a peculiarity * of the SPARC instruction set). */ u_int __fpu_ftoi(fe, fp) struct fpemu *fe; struct fpn *fp; { u_int i; int sign, exp; sign = fp->fp_sign; switch (fp->fp_class) { case FPC_ZERO: return (0); case FPC_NUM: /* * If exp >= 2^32, overflow. Otherwise shift value right * into last mantissa word (this will not exceed 0xffffffff), * shifting any guard and round bits out into the sticky * bit. Then ``round'' towards zero, i.e., just set an * inexact exception if sticky is set (see fpround()). * If the result is > 0x80000000, or is positive and equals * 0x80000000, overflow; otherwise the last fraction word * is the result. */ if ((exp = fp->fp_exp) >= 32) break; /* NB: the following includes exp < 0 cases */ if (__fpu_shr(fp, FP_NMANT - 1 - exp) != 0) fe->fe_cx |= FSR_NX; i = fp->fp_mant[3]; if (i >= ((u_int)0x80000000 + sign)) break; return (sign ? -i : i); default: /* Inf, qNaN, sNaN */ break; } /* overflow: replace any inexact exception with invalid */ fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV; return (0x7fffffff + sign); } /* * fpn -> extended int (high bits of int value returned as return value). * * N.B.: this conversion always rounds towards zero (this is a peculiarity * of the SPARC instruction set). */ u_int __fpu_ftox(fe, fp, res) struct fpemu *fe; struct fpn *fp; u_int *res; { u_int64_t i; int sign, exp; sign = fp->fp_sign; switch (fp->fp_class) { case FPC_ZERO: res[1] = 0; return (0); case FPC_NUM: /* * If exp >= 2^64, overflow. Otherwise shift value right * into last mantissa word (this will not exceed * 0xffffffffffffffff), shifting any guard and round bits out * into the sticky bit. Then ``round'' towards zero, i.e., * just set an inexact exception if sticky is set (see * fpround()). If the result is > 0x8000000000000000, or is * positive and equals 0x8000000000000000, overflow; * otherwise the last fraction word is the result. */ if ((exp = fp->fp_exp) >= 64) break; /* NB: the following includes exp < 0 cases */ if (__fpu_shr(fp, FP_NMANT - 1 - exp) != 0) fe->fe_cx |= FSR_NX; i = ((u_int64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3]; if (i >= ((u_int64_t)0x8000000000000000LL + sign)) break; if (sign) i = -i; res[1] = (int)i; return (i >> 32); default: /* Inf, qNaN, sNaN */ break; } /* overflow: replace any inexact exception with invalid */ fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV; return (0x7fffffffffffffffLL + sign); } /* * fpn -> single (32 bit single returned as return value). * We assume <= 29 bits in a single-precision fraction (1.f part). */ u_int __fpu_ftos(fe, fp) struct fpemu *fe; struct fpn *fp; { u_int sign = fp->fp_sign << 31; int exp; #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */ #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */ /* Take care of non-numbers first. */ if (ISNAN(fp)) { /* * Preserve upper bits of NaN, per SPARC V8 appendix N. * Note that fp->fp_mant[0] has the quiet bit set, * even if it is classified as a signalling NaN. */ (void) __fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS); exp = SNG_EXP_INFNAN; goto done; } if (ISINF(fp)) return (sign | SNG_EXP(SNG_EXP_INFNAN)); if (ISZERO(fp)) return (sign); /* * Normals (including subnormals). Drop all the fraction bits * (including the explicit ``implied'' 1 bit) down into the * single-precision range. If the number is subnormal, move * the ``implied'' 1 into the explicit range as well, and shift * right to introduce leading zeroes. Rounding then acts * differently for normals and subnormals: the largest subnormal * may round to the smallest normal (1.0 x 2^minexp), or may * remain subnormal. In the latter case, signal an underflow * if the result was inexact or if underflow traps are enabled. * * Rounding a normal, on the other hand, always produces another * normal (although either way the result might be too big for * single precision, and cause an overflow). If rounding a * normal produces 2.0 in the fraction, we need not adjust that * fraction at all, since both 1.0 and 2.0 are zero under the * fraction mask. * * Note that the guard and round bits vanish from the number after * rounding. */ if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */ /* -NG for g,r; -SNG_FRACBITS-exp for fraction */ (void) __fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp); if (fpround(fe, fp) && fp->fp_mant[3] == SNG_EXP(1)) return (sign | SNG_EXP(1) | 0); if ((fe->fe_cx & FSR_NX) || (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT))) fe->fe_cx |= FSR_UF; return (sign | SNG_EXP(0) | fp->fp_mant[3]); } /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */ (void) __fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS); #ifdef DIAGNOSTIC if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0) __utrap_panic("fpu_ftos"); #endif if (fpround(fe, fp) && fp->fp_mant[3] == SNG_EXP(2)) exp++; if (exp >= SNG_EXP_INFNAN) { /* overflow to inf or to max single */ fe->fe_cx |= FSR_OF | FSR_NX; if (toinf(fe, sign)) return (sign | SNG_EXP(SNG_EXP_INFNAN)); return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK); } done: /* phew, made it */ return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK)); } /* * fpn -> double (32 bit high-order result returned; 32-bit low order result * left in res[1]). Assumes <= 61 bits in double precision fraction. * * This code mimics fpu_ftos; see it for comments. */ u_int __fpu_ftod(fe, fp, res) struct fpemu *fe; struct fpn *fp; u_int *res; { u_int sign = fp->fp_sign << 31; int exp; #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31)) #define DBL_MASK (DBL_EXP(1) - 1) if (ISNAN(fp)) { (void) __fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS); exp = DBL_EXP_INFNAN; goto done; } if (ISINF(fp)) { sign |= DBL_EXP(DBL_EXP_INFNAN); goto zero; } if (ISZERO(fp)) { zero: res[1] = 0; return (sign); } if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) { (void) __fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp); if (fpround(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) { res[1] = 0; return (sign | DBL_EXP(1) | 0); } if ((fe->fe_cx & FSR_NX) || (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT))) fe->fe_cx |= FSR_UF; exp = 0; goto done; } (void) __fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS); if (fpround(fe, fp) && fp->fp_mant[2] == DBL_EXP(2)) exp++; if (exp >= DBL_EXP_INFNAN) { fe->fe_cx |= FSR_OF | FSR_NX; if (toinf(fe, sign)) { res[1] = 0; return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0); } res[1] = ~0; return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK); } done: res[1] = fp->fp_mant[3]; return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK)); } /* * fpn -> extended (32 bit high-order result returned; low-order fraction * words left in res[1]..res[3]). Like ftod, which is like ftos ... but * our internal format *is* extended precision, plus 2 bits for guard/round, * so we can avoid a small bit of work. */ u_int __fpu_ftoq(fe, fp, res) struct fpemu *fe; struct fpn *fp; u_int *res; { u_int sign = fp->fp_sign << 31; int exp; #define EXT_EXP(e) ((e) << (EXT_FRACBITS & 31)) #define EXT_MASK (EXT_EXP(1) - 1) if (ISNAN(fp)) { (void) __fpu_shr(fp, 2); /* since we are not rounding */ exp = EXT_EXP_INFNAN; goto done; } if (ISINF(fp)) { sign |= EXT_EXP(EXT_EXP_INFNAN); goto zero; } if (ISZERO(fp)) { zero: res[1] = res[2] = res[3] = 0; return (sign); } if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) { (void) __fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp); if (fpround(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) { res[1] = res[2] = res[3] = 0; return (sign | EXT_EXP(1) | 0); } if ((fe->fe_cx & FSR_NX) || (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT))) fe->fe_cx |= FSR_UF; exp = 0; goto done; } /* Since internal == extended, no need to shift here. */ if (fpround(fe, fp) && fp->fp_mant[0] == EXT_EXP(2)) exp++; if (exp >= EXT_EXP_INFNAN) { fe->fe_cx |= FSR_OF | FSR_NX; if (toinf(fe, sign)) { res[1] = res[2] = res[3] = 0; return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0); } res[1] = res[2] = res[3] = ~0; return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK); } done: res[1] = fp->fp_mant[1]; res[2] = fp->fp_mant[2]; res[3] = fp->fp_mant[3]; return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK)); } /* * Implode an fpn, writing the result into the given space. */ void __fpu_implode(fe, fp, type, space) struct fpemu *fe; struct fpn *fp; int type; u_int *space; { switch (type) { case FTYPE_LNG: space[0] = __fpu_ftox(fe, fp, space); break; case FTYPE_INT: space[0] = __fpu_ftoi(fe, fp); break; case FTYPE_SNG: space[0] = __fpu_ftos(fe, fp); break; case FTYPE_DBL: space[0] = __fpu_ftod(fe, fp, space); break; case FTYPE_EXT: /* funky rounding precision options ?? */ space[0] = __fpu_ftoq(fe, fp, space); break; #ifdef DIAGNOSTIC default: __utrap_panic("fpu_implode"); #endif } DPRINTF(FPE_REG, ("fpu_implode: %x %x %x %x\n", space[0], space[1], space[2], space[3])); }