/* $OpenBSD: arc4random.c,v 1.20 2008/10/03 18:46:04 otto Exp $ */ /* * Copyright (c) 1996, David Mazieres * Copyright (c) 2008, Damien Miller * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Arc4 random number generator for OpenBSD. * * This code is derived from section 17.1 of Applied Cryptography, * second edition, which describes a stream cipher allegedly * compatible with RSA Labs "RC4" cipher (the actual description of * which is a trade secret). The same algorithm is used as a stream * cipher called "arcfour" in Tatu Ylonen's ssh package. * * Here the stream cipher has been modified always to include the time * when initializing the state. That makes it impossible to * regenerate the same random sequence twice, so this can't be used * for encryption, but will generate good random numbers. * * RC4 is a registered trademark of RSA Laboratories. */ #include #include #include #include #include #include #include #include #include "thread_private.h" #ifdef __GNUC__ #define inline __inline #else /* !__GNUC__ */ #define inline #endif /* !__GNUC__ */ struct arc4_stream { u_int8_t i; u_int8_t j; u_int8_t s[256]; }; static int rs_initialized; static struct arc4_stream rs; static pid_t arc4_stir_pid; static int arc4_count; static inline u_int8_t arc4_getbyte(void); static inline void arc4_init(void) { int n; for (n = 0; n < 256; n++) rs.s[n] = n; rs.i = 0; rs.j = 0; } static inline void arc4_addrandom(u_char *dat, int datlen) { int n; u_int8_t si; rs.i--; for (n = 0; n < 256; n++) { rs.i = (rs.i + 1); si = rs.s[rs.i]; rs.j = (rs.j + si + dat[n % datlen]); rs.s[rs.i] = rs.s[rs.j]; rs.s[rs.j] = si; } rs.j = rs.i; } static void arc4_stir(void) { int i, mib[2]; size_t len; u_char rnd[128]; if (!rs_initialized) { arc4_init(); rs_initialized = 1; } mib[0] = CTL_KERN; mib[1] = KERN_ARND; len = sizeof(rnd); sysctl(mib, 2, rnd, &len, NULL, 0); arc4_stir_pid = getpid(); arc4_addrandom(rnd, sizeof(rnd)); /* * Discard early keystream, as per recommendations in: * http://www.wisdom.weizmann.ac.il/~itsik/RC4/Papers/Rc4_ksa.ps */ for (i = 0; i < 256; i++) (void)arc4_getbyte(); arc4_count = 1600000; } static inline u_int8_t arc4_getbyte(void) { u_int8_t si, sj; rs.i = (rs.i + 1); si = rs.s[rs.i]; rs.j = (rs.j + si); sj = rs.s[rs.j]; rs.s[rs.i] = sj; rs.s[rs.j] = si; return (rs.s[(si + sj) & 0xff]); } static inline u_int32_t arc4_getword(void) { u_int32_t val; val = arc4_getbyte() << 24; val |= arc4_getbyte() << 16; val |= arc4_getbyte() << 8; val |= arc4_getbyte(); return val; } void arc4random_stir(void) { _ARC4_LOCK(); arc4_stir(); _ARC4_UNLOCK(); } void arc4random_addrandom(u_char *dat, int datlen) { _ARC4_LOCK(); if (!rs_initialized) arc4_stir(); arc4_addrandom(dat, datlen); _ARC4_UNLOCK(); } u_int32_t arc4random(void) { u_int32_t val; _ARC4_LOCK(); arc4_count -= 4; if (arc4_count <= 0 || !rs_initialized || arc4_stir_pid != getpid()) arc4_stir(); val = arc4_getword(); _ARC4_UNLOCK(); return val; } void arc4random_buf(void *_buf, size_t n) { u_char *buf = (u_char *)_buf; _ARC4_LOCK(); if (!rs_initialized || arc4_stir_pid != getpid()) arc4_stir(); while (n--) { if (--arc4_count <= 0) arc4_stir(); buf[n] = arc4_getbyte(); } _ARC4_UNLOCK(); } /* * Calculate a uniformly distributed random number less than upper_bound * avoiding "modulo bias". * * Uniformity is achieved by generating new random numbers until the one * returned is outside the range [0, 2**32 % upper_bound). This * guarantees the selected random number will be inside * [2**32 % upper_bound, 2**32) which maps back to [0, upper_bound) * after reduction modulo upper_bound. */ u_int32_t arc4random_uniform(u_int32_t upper_bound) { u_int32_t r, min; if (upper_bound < 2) return 0; #if (ULONG_MAX > 0xffffffffUL) min = 0x100000000UL % upper_bound; #else /* Calculate (2**32 % upper_bound) avoiding 64-bit math */ if (upper_bound > 0x80000000) min = 1 + ~upper_bound; /* 2**32 - upper_bound */ else { /* (2**32 - (x * 2)) % x == 2**32 % x when x <= 2**31 */ min = ((0xffffffff - (upper_bound * 2)) + 1) % upper_bound; } #endif /* * This could theoretically loop forever but each retry has * p > 0.5 (worst case, usually far better) of selecting a * number inside the range we need, so it should rarely need * to re-roll. */ for (;;) { r = arc4random(); if (r >= min) break; } return r % upper_bound; } #if 0 /*-------- Test code for i386 --------*/ #include #include int main(int argc, char **argv) { const int iter = 1000000; int i; pctrval v; v = rdtsc(); for (i = 0; i < iter; i++) arc4random(); v = rdtsc() - v; v /= iter; printf("%qd cycles\n", v); } #endif