/*- * Copyright (c) 1983, 1992, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #if !defined(lint) && defined(LIBC_SCCS) static char rcsid[] = "$OpenBSD: gmon.c,v 1.11 1998/07/15 18:59:04 millert Exp $"; #endif #include #include #include #include #include #include #include #include #include #include extern char *minbrk __asm ("minbrk"); struct gmonparam _gmonparam = { GMON_PROF_OFF }; static int s_scale; /* see profil(2) where this is describe (incorrectly) */ #define SCALE_1_TO_1 0x10000L #define ERR(s) write(STDERR_FILENO, s, sizeof(s)) void moncontrol __P((int)); static int hertz __P((void)); void monstartup(lowpc, highpc) u_long lowpc; u_long highpc; { register int o; char *cp; struct gmonparam *p = &_gmonparam; /* * round lowpc and highpc to multiples of the density we're using * so the rest of the scaling (here and in gprof) stays in ints. */ p->lowpc = ROUNDDOWN(lowpc, HISTFRACTION * sizeof(HISTCOUNTER)); p->highpc = ROUNDUP(highpc, HISTFRACTION * sizeof(HISTCOUNTER)); p->textsize = p->highpc - p->lowpc; p->kcountsize = p->textsize / HISTFRACTION; p->hashfraction = HASHFRACTION; p->fromssize = p->textsize / p->hashfraction; p->tolimit = p->textsize * ARCDENSITY / 100; if (p->tolimit < MINARCS) p->tolimit = MINARCS; else if (p->tolimit > MAXARCS) p->tolimit = MAXARCS; p->tossize = p->tolimit * sizeof(struct tostruct); cp = sbrk(p->kcountsize + p->fromssize + p->tossize); if (cp == (char *)-1) { ERR("monstartup: out of memory\n"); return; } #ifdef notdef bzero(cp, p->kcountsize + p->fromssize + p->tossize); #endif p->tos = (struct tostruct *)cp; cp += p->tossize; p->kcount = (u_short *)cp; cp += p->kcountsize; p->froms = (u_short *)cp; minbrk = sbrk(0); p->tos[0].link = 0; o = p->highpc - p->lowpc; if (p->kcountsize < o) { #ifndef notdef s_scale = ((float)p->kcountsize / o ) * SCALE_1_TO_1; #else /* avoid floating point */ int quot = o / p->kcountsize; if (quot >= 0x10000) s_scale = 1; else if (quot >= 0x100) s_scale = 0x10000 / quot; else if (o >= 0x800000) s_scale = 0x1000000 / (o / (p->kcountsize >> 8)); else s_scale = 0x1000000 / ((o << 8) / p->kcountsize); #endif } else s_scale = SCALE_1_TO_1; moncontrol(1); } void _mcleanup() { int fd; int fromindex; int endfrom; u_long frompc; int toindex; struct rawarc rawarc; struct gmonparam *p = &_gmonparam; struct gmonhdr gmonhdr, *hdr; struct clockinfo clockinfo; int mib[2]; size_t size; char *profdir; char *proffile; char buf[PATH_MAX]; #ifdef DEBUG int log, len; char dbuf[200]; #endif if (p->state == GMON_PROF_ERROR) ERR("_mcleanup: tos overflow\n"); size = sizeof(clockinfo); mib[0] = CTL_KERN; mib[1] = KERN_CLOCKRATE; if (sysctl(mib, 2, &clockinfo, &size, NULL, 0) < 0) { /* * Best guess */ clockinfo.profhz = hertz(); } else if (clockinfo.profhz == 0) { if (clockinfo.hz != 0) clockinfo.profhz = clockinfo.hz; else clockinfo.profhz = hertz(); } moncontrol(0); if (issetugid() == 0 && (profdir = getenv("PROFDIR")) != NULL) { extern char *__progname; char *s, *t, *limit; pid_t pid; long divisor; /* If PROFDIR contains a null value, no profiling output is produced */ if (*profdir == '\0') { return; } limit = buf + sizeof buf - 1 - 10 - 1 - strlen(__progname) - 1; t = buf; s = profdir; while((*t = *s) != '\0' && t < limit) { t++; s++; } *t++ = '/'; /* * Copy and convert pid from a pid_t to a string. For * best performance, divisor should be initialized to * the largest power of 10 less than PID_MAX. */ pid = getpid(); divisor=10000; while (divisor > pid) divisor /= 10; /* skip leading zeros */ do { *t++ = (pid/divisor) + '0'; pid %= divisor; } while (divisor /= 10); *t++ = '.'; s = __progname; while ((*t++ = *s++) != '\0') ; proffile = buf; } else { proffile = "gmon.out"; } fd = open(proffile , O_CREAT|O_TRUNC|O_WRONLY, 0664); if (fd < 0) { perror( proffile ); return; } #ifdef DEBUG log = open("gmon.log", O_CREAT|O_TRUNC|O_WRONLY, 0664); if (log < 0) { perror("mcount: gmon.log"); return; } len = sprintf(dbuf, "[mcleanup1] kcount 0x%x ssiz %d\n", p->kcount, p->kcountsize); write(log, dbuf, len); #endif hdr = (struct gmonhdr *)&gmonhdr; hdr->lpc = p->lowpc; hdr->hpc = p->highpc; hdr->ncnt = p->kcountsize + sizeof(gmonhdr); hdr->version = GMONVERSION; hdr->profrate = clockinfo.profhz; write(fd, (char *)hdr, sizeof *hdr); write(fd, p->kcount, p->kcountsize); endfrom = p->fromssize / sizeof(*p->froms); for (fromindex = 0; fromindex < endfrom; fromindex++) { if (p->froms[fromindex] == 0) continue; frompc = p->lowpc; frompc += fromindex * p->hashfraction * sizeof(*p->froms); for (toindex = p->froms[fromindex]; toindex != 0; toindex = p->tos[toindex].link) { #ifdef DEBUG len = sprintf(dbuf, "[mcleanup2] frompc 0x%x selfpc 0x%x count %d\n" , frompc, p->tos[toindex].selfpc, p->tos[toindex].count); write(log, dbuf, len); #endif rawarc.raw_frompc = frompc; rawarc.raw_selfpc = p->tos[toindex].selfpc; rawarc.raw_count = p->tos[toindex].count; write(fd, &rawarc, sizeof rawarc); } } close(fd); } /* * Control profiling * profiling is what mcount checks to see if * all the data structures are ready. */ void moncontrol(mode) int mode; { struct gmonparam *p = &_gmonparam; if (mode) { /* start */ profil((char *)p->kcount, p->kcountsize, p->lowpc, s_scale); p->state = GMON_PROF_ON; } else { /* stop */ profil((char *)0, 0, 0, 0); p->state = GMON_PROF_OFF; } } /* * discover the tick frequency of the machine * if something goes wrong, we return 0, an impossible hertz. */ static int hertz() { struct itimerval tim; tim.it_interval.tv_sec = 0; tim.it_interval.tv_usec = 1; tim.it_value.tv_sec = 0; tim.it_value.tv_usec = 0; setitimer(ITIMER_REAL, &tim, 0); setitimer(ITIMER_REAL, 0, &tim); if (tim.it_interval.tv_usec < 2) return(0); return (1000000 / tim.it_interval.tv_usec); }