/* $OpenBSD: md5.c,v 1.2 2004/04/28 16:52:08 millert Exp $ */ /* * This code implements the MD5 message-digest algorithm. * The algorithm is due to Ron Rivest. This code was * written by Colin Plumb in 1993, no copyright is claimed. * This code is in the public domain; do with it what you wish. * * Equivalent code is available from RSA Data Security, Inc. * This code has been tested against that, and is equivalent, * except that you don't need to include two pages of legalese * with every copy. * * To compute the message digest of a chunk of bytes, declare an * MD5Context structure, pass it to MD5Init, call MD5Update as * needed on buffers full of bytes, and then call MD5Final, which * will fill a supplied 16-byte array with the digest. */ #if defined(LIBC_SCCS) && !defined(lint) static const char rcsid[] = "$OpenBSD: md5.c,v 1.2 2004/04/28 16:52:08 millert Exp $"; #endif /* LIBC_SCCS and not lint */ #include #include #include #if BYTE_ORDER == LITTLE_ENDIAN #define htole32_4(buf) /* Nothing */ #define htole32_14(buf) /* Nothing */ #define htole32_16(buf) /* Nothing */ #else #define htole32_4(buf) do { \ (buf)[ 0] = htole32((buf)[ 0]); \ (buf)[ 1] = htole32((buf)[ 1]); \ (buf)[ 2] = htole32((buf)[ 2]); \ (buf)[ 3] = htole32((buf)[ 3]); \ } while (0) #define htole32_14(buf) do { \ (buf)[ 0] = htole32((buf)[ 0]); \ (buf)[ 1] = htole32((buf)[ 1]); \ (buf)[ 2] = htole32((buf)[ 2]); \ (buf)[ 3] = htole32((buf)[ 3]); \ (buf)[ 4] = htole32((buf)[ 4]); \ (buf)[ 5] = htole32((buf)[ 5]); \ (buf)[ 6] = htole32((buf)[ 6]); \ (buf)[ 7] = htole32((buf)[ 7]); \ (buf)[ 8] = htole32((buf)[ 8]); \ (buf)[ 9] = htole32((buf)[ 9]); \ (buf)[10] = htole32((buf)[10]); \ (buf)[11] = htole32((buf)[11]); \ (buf)[12] = htole32((buf)[12]); \ (buf)[13] = htole32((buf)[13]); \ } while (0) #define htole32_16(buf) do { \ (buf)[ 0] = htole32((buf)[ 0]); \ (buf)[ 1] = htole32((buf)[ 1]); \ (buf)[ 2] = htole32((buf)[ 2]); \ (buf)[ 3] = htole32((buf)[ 3]); \ (buf)[ 4] = htole32((buf)[ 4]); \ (buf)[ 5] = htole32((buf)[ 5]); \ (buf)[ 6] = htole32((buf)[ 6]); \ (buf)[ 7] = htole32((buf)[ 7]); \ (buf)[ 8] = htole32((buf)[ 8]); \ (buf)[ 9] = htole32((buf)[ 9]); \ (buf)[10] = htole32((buf)[10]); \ (buf)[11] = htole32((buf)[11]); \ (buf)[12] = htole32((buf)[12]); \ (buf)[13] = htole32((buf)[13]); \ (buf)[14] = htole32((buf)[14]); \ (buf)[15] = htole32((buf)[15]); \ } while (0) #endif /* * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious * initialization constants. */ void MD5Init(MD5_CTX *ctx) { ctx->count = 0; ctx->state[0] = 0x67452301; ctx->state[1] = 0xefcdab89; ctx->state[2] = 0x98badcfe; ctx->state[3] = 0x10325476; } /* * Update context to reflect the concatenation of another buffer full * of bytes. */ void MD5Update(MD5_CTX *ctx, const unsigned char *buf, size_t len) { u_int32_t count; /* Bytes already stored in ctx->buffer */ count = (u_int32_t)((ctx->count >> 3) & 0x3f); /* Update bitcount */ ctx->count += (u_int64_t)len << 3; /* Handle any leading odd-sized chunks */ if (count) { unsigned char *p = (unsigned char *)ctx->buffer + count; count = MD5_BLOCK_LENGTH - count; if (len < count) { memcpy(p, buf, len); return; } memcpy(p, buf, count); htole32_16((u_int32_t *)ctx->buffer); MD5Transform(ctx->state, ctx->buffer); buf += count; len -= count; } /* Process data in MD5_BLOCK_LENGTH-byte chunks */ while (len >= MD5_BLOCK_LENGTH) { memcpy(ctx->buffer, buf, MD5_BLOCK_LENGTH); htole32_16((u_int32_t *)ctx->buffer); MD5Transform(ctx->state, ctx->buffer); buf += MD5_BLOCK_LENGTH; len -= MD5_BLOCK_LENGTH; } /* Handle any remaining bytes of data. */ memcpy(ctx->buffer, buf, len); } /* * Final wrapup - pad to 64-byte boundary with the bit pattern * 1 0* (64-bit count of bits processed, MSB-first) */ void MD5Final(unsigned char digest[MD5_DIGEST_LENGTH], MD5_CTX *ctx) { u_int32_t count; unsigned char *p; /* number of bytes mod 64 */ count = (u_int32_t)(ctx->count >> 3) & 0x3f; /* * Set the first char of padding to 0x80. * This is safe since there is always at least one byte free. */ p = ctx->buffer + count; *p++ = 0x80; /* Bytes of padding needed to make 64 bytes */ count = 64 - 1 - count; /* Pad out to 56 mod 64 */ if (count < 8) { /* Two lots of padding: Pad the first block to 64 bytes */ memset(p, 0, count); htole32_16((u_int32_t *)ctx->buffer); MD5Transform(ctx->state, ctx->buffer); /* Now fill the next block with 56 bytes */ memset(ctx->buffer, 0, 56); } else { /* Pad block to 56 bytes */ memset(p, 0, count - 8); } htole32_14((u_int32_t *)ctx->buffer); /* Append bit count and transform */ ((u_int32_t *)ctx->buffer)[14] = ctx->count & 0xffffffff; ((u_int32_t *)ctx->buffer)[15] = (u_int32_t)(ctx->count >> 32); MD5Transform(ctx->state, ctx->buffer); htole32_4(ctx->state); memcpy(digest, ctx->state, MD5_DIGEST_LENGTH); memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */ } /* The four core functions - F1 is optimized somewhat */ /* #define F1(x, y, z) (x & y | ~x & z) */ #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) /* This is the central step in the MD5 algorithm. */ #define MD5STEP(f, w, x, y, z, data, s) \ ( w += f(x, y, z) + data, w = w<>(32-s), w += x ) /* * The core of the MD5 algorithm, this alters an existing MD5 hash to * reflect the addition of 16 longwords of new data. MD5Update blocks * the data and converts bytes into longwords for this routine. */ void MD5Transform(u_int32_t buf[4], const unsigned char inc[MD5_BLOCK_LENGTH]) { u_int32_t a, b, c, d; const u_int32_t *in = (const u_int32_t *)inc; a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3]; MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478, 7); MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12); MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17); MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22); MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf, 7); MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12); MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17); MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22); MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8, 7); MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12); MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562, 5); MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340, 9); MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20); MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d, 5); MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20); MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6, 5); MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14); MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20); MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8, 9); MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14); MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942, 4); MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11); MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44, 4); MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11); MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16); MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11); MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16); MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23); MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039, 4); MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); MD5STEP(F3, b, c, d, a, in[2 ] + 0xc4ac5665, 23); MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244, 6); MD5STEP(F4, d, a, b, c, in[7 ] + 0x432aff97, 10); MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); MD5STEP(F4, b, c, d, a, in[5 ] + 0xfc93a039, 21); MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); MD5STEP(F4, d, a, b, c, in[3 ] + 0x8f0ccc92, 10); MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); MD5STEP(F4, b, c, d, a, in[1 ] + 0x85845dd1, 21); MD5STEP(F4, a, b, c, d, in[8 ] + 0x6fa87e4f, 6); MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); MD5STEP(F4, c, d, a, b, in[6 ] + 0xa3014314, 15); MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); MD5STEP(F4, a, b, c, d, in[4 ] + 0xf7537e82, 6); MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); MD5STEP(F4, c, d, a, b, in[2 ] + 0x2ad7d2bb, 15); MD5STEP(F4, b, c, d, a, in[9 ] + 0xeb86d391, 21); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; }