#if defined(LIBC_SCCS) && !defined(lint) static char rcsid[] = "$OpenBSD: sha1.c,v 1.4 1996/09/30 23:27:05 millert Exp $"; #endif /* LIBC_SCCS and not lint */ /* * sha1.c * * signature function hook for SHA1. * * Gene Kim * Purdue University * August 10, 1993 */ /* --------------------------------- SHA1.C ------------------------------- */ /* NIST proposed Secure Hash Standard. Written 2 September 1992, Peter C. Gutmann. This implementation placed in the public domain. Comments to pgut1@cs.aukuni.ac.nz */ #include #include #include #include #include #ifdef TEST #include #endif /* Useful defines/typedefs */ typedef unsigned char BYTE; typedef u_int32_t LONG; /* The SHA1 f()-functions */ #define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) /* Rounds 0-19 */ #define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */ #define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) /* Rounds 40-59 */ #define f4(x,y,z) ( x ^ y ^ z ) /* Rounds 60-79 */ /* The SHA1 Mysterious Constants */ #define K1 0x5A827999L /* Rounds 0-19 */ #define K2 0x6ED9EBA1L /* Rounds 20-39 */ #define K3 0x8F1BBCDCL /* Rounds 40-59 */ #define K4 0xCA62C1D6L /* Rounds 60-79 */ /* SHA1 initial values */ #define h0init 0x67452301L #define h1init 0xEFCDAB89L #define h2init 0x98BADCFEL #define h3init 0x10325476L #define h4init 0xC3D2E1F0L /* 32-bit rotate - kludged with shifts */ #define S(n,X) ( ( X << n ) | ( X >> ( 32 - n ) ) ) /* The initial expanding function */ #ifdef NEW_SHA1 #define expand(count) temp = W[ count - 3 ] ^ W[ count - 8 ] ^ W[ count - 14 ] ^ W[ count - 16 ];W[ count ] = S(1, temp) #else #define expand(count) W[ count ] = W[ count - 3 ] ^ W[ count - 8 ] ^ W[ count - 14 ] ^ W[ count - 16 ] #endif /* The four SHA1 sub-rounds */ #define subRound1(count) \ { \ temp = S( 5, A ) + f1( B, C, D ) + E + W[ count ] + K1; \ E = D; \ D = C; \ C = S( 30, B ); \ B = A; \ A = temp; \ } #define subRound2(count) \ { \ temp = S( 5, A ) + f2( B, C, D ) + E + W[ count ] + K2; \ E = D; \ D = C; \ C = S( 30, B ); \ B = A; \ A = temp; \ } #define subRound3(count) \ { \ temp = S( 5, A ) + f3( B, C, D ) + E + W[ count ] + K3; \ E = D; \ D = C; \ C = S( 30, B ); \ B = A; \ A = temp; \ } #define subRound4(count) \ { \ temp = S( 5, A ) + f4( B, C, D ) + E + W[ count ] + K4; \ E = D; \ D = C; \ C = S( 30, B ); \ B = A; \ A = temp; \ } /* The two buffers of 5 32-bit words */ LONG h0, h1, h2, h3, h4; LONG A, B, C, D, E; /* Initialize the SHA1 values */ void sha1Init(sha1Info) SHA1_INFO *sha1Info; { /* Set the h-vars to their initial values */ sha1Info->digest[ 0 ] = h0init; sha1Info->digest[ 1 ] = h1init; sha1Info->digest[ 2 ] = h2init; sha1Info->digest[ 3 ] = h3init; sha1Info->digest[ 4 ] = h4init; /* Initialise bit count */ sha1Info->countLo = sha1Info->countHi = 0L; } /* Perform the SHA1 transformation. Note that this code, like MD5, seems to break some optimizing compilers - it may be necessary to split it into sections, eg based on the four subrounds */ void sha1Transform(sha1Info) SHA1_INFO *sha1Info; { LONG W[ 80 ], temp; int i; /* Step A. Copy the data buffer into the local work buffer */ for( i = 0; i < 16; i++ ) W[ i ] = sha1Info->data[ i ]; /* Step B. Expand the 16 words into 64 temporary data words */ expand( 16 ); expand( 17 ); expand( 18 ); expand( 19 ); expand( 20 ); expand( 21 ); expand( 22 ); expand( 23 ); expand( 24 ); expand( 25 ); expand( 26 ); expand( 27 ); expand( 28 ); expand( 29 ); expand( 30 ); expand( 31 ); expand( 32 ); expand( 33 ); expand( 34 ); expand( 35 ); expand( 36 ); expand( 37 ); expand( 38 ); expand( 39 ); expand( 40 ); expand( 41 ); expand( 42 ); expand( 43 ); expand( 44 ); expand( 45 ); expand( 46 ); expand( 47 ); expand( 48 ); expand( 49 ); expand( 50 ); expand( 51 ); expand( 52 ); expand( 53 ); expand( 54 ); expand( 55 ); expand( 56 ); expand( 57 ); expand( 58 ); expand( 59 ); expand( 60 ); expand( 61 ); expand( 62 ); expand( 63 ); expand( 64 ); expand( 65 ); expand( 66 ); expand( 67 ); expand( 68 ); expand( 69 ); expand( 70 ); expand( 71 ); expand( 72 ); expand( 73 ); expand( 74 ); expand( 75 ); expand( 76 ); expand( 77 ); expand( 78 ); expand( 79 ); /* Step C. Set up first buffer */ A = sha1Info->digest[ 0 ]; B = sha1Info->digest[ 1 ]; C = sha1Info->digest[ 2 ]; D = sha1Info->digest[ 3 ]; E = sha1Info->digest[ 4 ]; /* Step D. Serious mangling, divided into four sub-rounds */ subRound1( 0 ); subRound1( 1 ); subRound1( 2 ); subRound1( 3 ); subRound1( 4 ); subRound1( 5 ); subRound1( 6 ); subRound1( 7 ); subRound1( 8 ); subRound1( 9 ); subRound1( 10 ); subRound1( 11 ); subRound1( 12 ); subRound1( 13 ); subRound1( 14 ); subRound1( 15 ); subRound1( 16 ); subRound1( 17 ); subRound1( 18 ); subRound1( 19 ); subRound2( 20 ); subRound2( 21 ); subRound2( 22 ); subRound2( 23 ); subRound2( 24 ); subRound2( 25 ); subRound2( 26 ); subRound2( 27 ); subRound2( 28 ); subRound2( 29 ); subRound2( 30 ); subRound2( 31 ); subRound2( 32 ); subRound2( 33 ); subRound2( 34 ); subRound2( 35 ); subRound2( 36 ); subRound2( 37 ); subRound2( 38 ); subRound2( 39 ); subRound3( 40 ); subRound3( 41 ); subRound3( 42 ); subRound3( 43 ); subRound3( 44 ); subRound3( 45 ); subRound3( 46 ); subRound3( 47 ); subRound3( 48 ); subRound3( 49 ); subRound3( 50 ); subRound3( 51 ); subRound3( 52 ); subRound3( 53 ); subRound3( 54 ); subRound3( 55 ); subRound3( 56 ); subRound3( 57 ); subRound3( 58 ); subRound3( 59 ); subRound4( 60 ); subRound4( 61 ); subRound4( 62 ); subRound4( 63 ); subRound4( 64 ); subRound4( 65 ); subRound4( 66 ); subRound4( 67 ); subRound4( 68 ); subRound4( 69 ); subRound4( 70 ); subRound4( 71 ); subRound4( 72 ); subRound4( 73 ); subRound4( 74 ); subRound4( 75 ); subRound4( 76 ); subRound4( 77 ); subRound4( 78 ); subRound4( 79 ); /* Step E. Build message digest */ sha1Info->digest[ 0 ] += A; sha1Info->digest[ 1 ] += B; sha1Info->digest[ 2 ] += C; sha1Info->digest[ 3 ] += D; sha1Info->digest[ 4 ] += E; } #if BYTE_ORDER == LITTLE_ENDIAN /* When run on a little-endian CPU we need to perform byte reversal on an array of longwords. It is possible to make the code endianness- independant by fiddling around with data at the byte level, but this makes for very slow code, so we rely on the user to sort out endianness at compile time */ void sha1ByteReverse(buffer, byteCount) LONG *buffer; int byteCount; { LONG value; int count; byteCount /= sizeof( LONG ); for( count = 0; count < byteCount; count++ ) { value = ( buffer[ count ] << 16 ) | ( buffer[ count ] >> 16 ); buffer[ count ] = ( ( value & 0xFF00FF00L ) >> 8 ) | ( ( value & 0x00FF00FFL ) << 8 ); } } #endif /* LITTLE_ENDIAN */ /* Update SHA1 for a block of data. This code assumes that the buffer size is a multiple of SHA1_BLOCKSIZE bytes long, which makes the code a lot more efficient since it does away with the need to handle partial blocks between calls to sha1Update() */ void sha1Update(sha1Info, buffer, count) SHA1_INFO *sha1Info; BYTE *buffer; int count; { /* Update bitcount */ if( ( sha1Info->countLo + ( ( LONG ) count << 3 ) ) < sha1Info->countLo ) sha1Info->countHi++; /* Carry from low to high bitCount */ sha1Info->countLo += ( ( LONG ) count << 3 ); sha1Info->countHi += ( ( LONG ) count >> 29 ); /* Process data in SHA1_BLOCKSIZE chunks */ while( count >= SHA1_BLOCKSIZE ) { memcpy( (void *) sha1Info->data, (void *) buffer, SHA1_BLOCKSIZE ); #if BYTE_ORDER == LITTLE_ENDIAN sha1ByteReverse( sha1Info->data, SHA1_BLOCKSIZE ); #endif /* LITTLE_ENDIAN */ sha1Transform( sha1Info ); buffer += SHA1_BLOCKSIZE; count -= SHA1_BLOCKSIZE; } /* Handle any remaining bytes of data. This should only happen once on the final lot of data */ memcpy( (void *) sha1Info->data, (void *) buffer, count ); } void sha1Final(sha1Info) SHA1_INFO *sha1Info; { int count; LONG lowBitcount = sha1Info->countLo, highBitcount = sha1Info->countHi; /* Compute number of bytes mod 64 */ count = ( int ) ( ( sha1Info->countLo >> 3 ) & 0x3F ); /* Set the first char of padding to 0x80. This is safe since there is always at least one byte free */ ( ( BYTE * ) sha1Info->data )[ count++ ] = 0x80; /* Pad out to 56 mod 64 */ if( count > 56 ) { /* Two lots of padding: Pad the first block to 64 bytes */ memset( ( char * ) sha1Info->data + count, 0, 64 - count ); #if BYTE_ORDER == LITTLE_ENDIAN sha1ByteReverse( sha1Info->data, SHA1_BLOCKSIZE ); #endif /* LITTLE_ENDIAN */ sha1Transform( sha1Info ); /* Now fill the next block with 56 bytes */ memset( (void *) sha1Info->data, 0, 56 ); } else /* Pad block to 56 bytes */ memset( ( char * ) sha1Info->data + count, 0, 56 - count ); #if BYTE_ORDER == LITTLE_ENDIAN sha1ByteReverse( sha1Info->data, SHA1_BLOCKSIZE ); #endif /* LITTLE_ENDIAN */ /* Append length in bits and transform */ sha1Info->data[ 14 ] = highBitcount; sha1Info->data[ 15 ] = lowBitcount; sha1Transform( sha1Info ); #if BYTE_ORDER == LITTLE_ENDIAN sha1ByteReverse( sha1Info->data, SHA1_DIGESTSIZE ); #endif /* LITTLE_ENDIAN */ } #ifdef TEST /* ----------------------------- SHA1 Test code --------------------------- */ /* Size of buffer for SHA1 speed test data */ #define TEST_BLOCK_SIZE ( SHA1_DIGESTSIZE * 100 ) /* Number of bytes of test data to process */ #define TEST_BYTES 10000000L #define TEST_BLOCKS ( TEST_BYTES / TEST_BLOCK_SIZE ) void main() { SHA1_INFO sha1Info; time_t endTime, startTime; BYTE data[ TEST_BLOCK_SIZE ]; long i; /* Test output data (this is the only test data given in the SHA1 document, but chances are if it works for this it'll work for anything) */ sha1Init( &sha1Info ); sha1Update( &sha1Info, ( BYTE * ) "abc", 3 ); sha1Final( &sha1Info ); #ifdef NEW_SHA1 if( sha1Info.digest[ 0 ] != 0xA9993E36L || sha1Info.digest[ 1 ] != 0x4706816AL || sha1Info.digest[ 2 ] != 0xBA3E2571L || sha1Info.digest[ 3 ] != 0x7850C26CL || sha1Info.digest[ 4 ] != 0x9CD0D89DL ) #else if( sha1Info.digest[ 0 ] != 0x0164B8A9L || sha1Info.digest[ 1 ] != 0x14CD2A5EL || sha1Info.digest[ 2 ] != 0x74C4F7FFL || sha1Info.digest[ 3 ] != 0x082C4D97L || sha1Info.digest[ 4 ] != 0xF1EDF880L ) #endif { puts( "Error in SHA1 implementation" ); exit( -1 ); } /* Now perform time trial, generating MD for 10MB of data. First, initialize the test data */ memset( ( void * ) data, 0, TEST_BLOCK_SIZE ); /* Get start time */ printf( "SHA1 time trial. Processing %ld characters...\n", TEST_BYTES ); time( &startTime ); /* Calculate SHA1 message digest in TEST_BLOCK_SIZE byte blocks */ sha1Init( &sha1Info ); for( i = TEST_BLOCKS; i > 0; i-- ) sha1Update( &sha1Info, data, TEST_BLOCK_SIZE ); sha1Final( &sha1Info ); /* Get finish time and time difference */ time( &endTime ); printf( "Seconds to process test input: %ld\n", endTime - startTime ); printf( "Characters processed per second: %ld\n", TEST_BYTES / ( endTime - startTime ) ); } #endif