.\"
.\" ----------------------------------------------------------------------------
.\" "THE BEER-WARE LICENSE" (Revision 42):
.\" <phk@login.dkuug.dk> wrote this file.  As long as you retain this notice you
.\" can do whatever you want with this stuff. If we meet some day, and you think
.\" this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
.\" ----------------------------------------------------------------------------
.\"
.\" 	$OpenBSD: mdX.3,v 1.14 1999/10/08 10:55:27 espie Exp $
.\"
.Dd October 9, 1996
.Dt MDX 3
.Os
.Sh NAME
.Nm MDXInit ,
.Nm MDXUpdate ,
.Nm MDXFinal ,
.Nm MDXEnd ,
.Nm MDXFile ,
.Nm MDXData
.Nd calculate the RSA Data Security, Inc., ``MDX'' message digest
.Sh SYNOPSIS
.Fd #include <sys/types.h>
.Fd #include <mdX.h>
.Ft void
.Fn MDXInit "MDX_CTX *context"
.Ft void
.Fn MDXUpdate "MDX_CTX *context" "const unsigned char *data" "unsigned int len"
.Ft void
.Fn MDXFinal "unsigned char digest[16]" "MDX_CTX *context"
.Ft "char *"
.Fn MDXEnd "MDX_CTX *context" "char *buf"
.Ft "char *"
.Fn MDXFile "char *filename" "char *buf"
.Ft "char *"
.Fn MDXData "unsigned char *data" "unsigned int len" "char *buf"
.Sh DESCRIPTION
The MDX functions calculate a 128-bit cryptographic checksum (digest)
for any number of input bytes.  A cryptographic checksum is a one-way
hash-function, that is, you cannot find (except by exhaustive search)
the input corresponding to a particular output.  This net result is
a ``fingerprint'' of the input-data, which doesn't disclose the actual
input.
.Pp
MD2 is the slowest, MD4 is the fastest and MD5 is somewhere in the middle.
MD2 can only be used for Privacy-Enhanced Mail.
MD4 has been shown to have severe vulnerabilities; it should only be
used where necessary for backward compatibility.
MD5 has not yet (1999-02-11) been broken, but recent attacks have cast
some doubt on its security properties.  The attacks on both MD4 and MD5
are both in the nature of finding ``collisions'' \- that is, multiple
inputs which hash to the same value; it is still unlikely for an attacker
to be able to determine the exact original input given a hash value.
.Pp
The
.Fn MDXInit ,
.Fn MDXUpdate ,
and
.Fn MDXFinal
functions are the core functions.  Allocate an MDX_CTX, initialize it with
.Fn MDXInit ,
run over the data with
.Fn MDXUpdate ,
and finally extract the result using
.Fn MDXFinal .
When a null pointer is passed to
.Fn MDXFinal
as first argument only the final padding will be applied and the
current context can still be used with
.Fn MDXUpdate .
.Pp
.Fn MDXEnd
is a wrapper for
.Fn MDXFinal
which converts the return value to a 33-character
(including the terminating '\e0')
.Tn ASCII
string which represents the 128 bits in hexadecimal.
.Pp
.Fn MDXFile
calculates the digest of a file, and uses
.Fn MDXEnd
to return the result.
If the file cannot be opened, a null pointer is returned.
.Fn MDXData
calculates the digest of a chunk of data in memory, and uses
.Fn MDXEnd
to return the result.
.Pp
When using
.Fn MDXEnd ,
.Fn MDXFile ,
or
.Fn MDXData ,
the
.Ar buf
argument can be a null pointer, in which case the returned string
is allocated with
.Xr malloc 3
and subsequently must be explicitly deallocated using
.Xr free 3
after use.
If the
.Ar buf
argument is non-null it must point to at least 33 characters of buffer space.
.Sh SEE ALSO
.Xr mdY 3 ,
.Xr rmd160 3 ,
.Xr sha1 3
.Rs
.%A B. Kaliski
.%T The MD2 Message-Digest Algorithm
.%O RFC 1319
.Re
.Rs
.%A R. Rivest
.%T The MD4 Message-Digest Algorithm
.%O RFC 1186
.Re
.Rs
.%A R. Rivest
.%T The MD5 Message-Digest Algorithm
.%O RFC 1321
.Re
.Rs
.%A RSA Laboratories
.%T Frequently Asked Questions About today's Cryptography
.%O \&<http://www.rsa.com/rsalabs/faq/>
.Re
.Rs
.%A H. Dobbertin
.%T Alf Swindles Ann
.%J CryptoBytes
.%N 1(3):5
.%D 1995
.Re
.Rs
.%A MJ. B. Robshaw
.%T On Recent Results for MD2, MD4 and MD5
.%J RSA Laboratories Bulletin
.%N 4
.%D November 12, 1996
.Re
.Rs
.%A Hans Dobbertin
.%T Cryptanalysis of MD5 Compress
.Re
.Sh AUTHOR
The original MDX routines were developed by
.Tn RSA
Data Security, Inc., and published in the above references.
This code is derived directly from these implementations by Poul-Henning Kamp
.Aq Li phk@login.dkuug.dk
.Pp
Phk ristede runen.
.Sh HISTORY
These functions appeared in
.Ox 2.0 .
.Sh BUGS
Hans Dobbertin has shown collisions for the full version of MD4 and
found a collision in the compress function of MD5. The use of SHA or
RIPEMD-160 is recommended instead.
.Pp
MD2 has only been licensed for use in Privacy Enhanced Mail.
Use MD4 or MD5 if that isn't what you're doing.
.Sh COPYRIGHT