/* * Sun RPC is a product of Sun Microsystems, Inc. and is provided for * unrestricted use provided that this legend is included on all tape * media and as a part of the software program in whole or part. Users * may copy or modify Sun RPC without charge, but are not authorized * to license or distribute it to anyone else except as part of a product or * program developed by the user. * * SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE * WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. * * Sun RPC is provided with no support and without any obligation on the * part of Sun Microsystems, Inc. to assist in its use, correction, * modification or enhancement. * * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC * OR ANY PART THEREOF. * * In no event will Sun Microsystems, Inc. be liable for any lost revenue * or profits or other special, indirect and consequential damages, even if * Sun has been advised of the possibility of such damages. * * Sun Microsystems, Inc. * 2550 Garcia Avenue * Mountain View, California 94043 */ #if defined(LIBC_SCCS) && !defined(lint) static char *rcsid = "$OpenBSD: xdr.c,v 1.4 1996/12/14 06:49:42 tholo Exp $"; #endif /* LIBC_SCCS and not lint */ /* * xdr.c, Generic XDR routines implementation. * * Copyright (C) 1986, Sun Microsystems, Inc. * * These are the "generic" xdr routines used to serialize and de-serialize * most common data items. See xdr.h for more info on the interface to * xdr. */ #include #include #include #include #include /* * constants specific to the xdr "protocol" */ #define XDR_FALSE ((long) 0) #define XDR_TRUE ((long) 1) #define LASTUNSIGNED ((u_int) 0-1) /* * for unit alignment */ static char xdr_zero[BYTES_PER_XDR_UNIT] = { 0, 0, 0, 0 }; /* * Free a data structure using XDR * Not a filter, but a convenient utility nonetheless */ void xdr_free(proc, objp) xdrproc_t proc; char *objp; { XDR x; x.x_op = XDR_FREE; (*proc)(&x, objp); } /* * XDR nothing */ bool_t xdr_void(/* xdrs, addr */) /* XDR *xdrs; */ /* caddr_t addr; */ { return (TRUE); } /* * XDR integers */ bool_t xdr_int(xdrs, ip) XDR *xdrs; int *ip; { long l; switch (xdrs->x_op) { case XDR_ENCODE: l = (long) *ip; return (XDR_PUTLONG(xdrs, &l)); case XDR_DECODE: if (!XDR_GETLONG(xdrs, &l)) { return (FALSE); } *ip = (int) l; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR unsigned integers */ bool_t xdr_u_int(xdrs, up) XDR *xdrs; u_int *up; { u_long l; switch (xdrs->x_op) { case XDR_ENCODE: l = (u_long) *up; return (XDR_PUTLONG(xdrs, (long *)&l)); case XDR_DECODE: if (!XDR_GETLONG(xdrs, (long *)&l)) { return (FALSE); } *up = (u_int) l; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR long integers * same as xdr_u_long - open coded to save a proc call! */ bool_t xdr_long(xdrs, lp) register XDR *xdrs; long *lp; { switch (xdrs->x_op) { case XDR_ENCODE: return (XDR_PUTLONG(xdrs, lp)); case XDR_DECODE: return (XDR_GETLONG(xdrs, lp)); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR unsigned long integers * same as xdr_long - open coded to save a proc call! */ bool_t xdr_u_long(xdrs, ulp) register XDR *xdrs; u_long *ulp; { switch (xdrs->x_op) { case XDR_ENCODE: return (XDR_PUTLONG(xdrs, (long *)ulp)); case XDR_DECODE: return (XDR_GETLONG(xdrs, (long *)ulp)); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR 32-bit integers * same as xdr_u_int32_t - open coded to save a proc call! */ bool_t xdr_int32_t(xdrs, int32_p) register XDR *xdrs; int32_t *int32_p; { long l; switch (xdrs->x_op) { case XDR_ENCODE: l = (long) *int32_p; return (XDR_PUTLONG(xdrs, &l)); case XDR_DECODE: if (!XDR_GETLONG(xdrs, &l)) { return (FALSE); } *int32_p = (int32_t) l; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR unsigned 32-bit integers * same as xdr_int32_t - open coded to save a proc call! */ bool_t xdr_u_int32_t(xdrs, u_int32_p) register XDR *xdrs; u_int32_t *u_int32_p; { u_long l; switch (xdrs->x_op) { case XDR_ENCODE: l = (u_long) *u_int32_p; return (XDR_PUTLONG(xdrs, (long *)&l)); case XDR_DECODE: if (!XDR_GETLONG(xdrs, (long *)&l)) { return (FALSE); } *u_int32_p = (u_int32_t) l; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR short integers */ bool_t xdr_short(xdrs, sp) register XDR *xdrs; short *sp; { long l; switch (xdrs->x_op) { case XDR_ENCODE: l = (long) *sp; return (XDR_PUTLONG(xdrs, &l)); case XDR_DECODE: if (!XDR_GETLONG(xdrs, &l)) { return (FALSE); } *sp = (short) l; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR unsigned short integers */ bool_t xdr_u_short(xdrs, usp) register XDR *xdrs; u_short *usp; { u_long l; switch (xdrs->x_op) { case XDR_ENCODE: l = (u_long) *usp; return (XDR_PUTLONG(xdrs, (long *)&l)); case XDR_DECODE: if (!XDR_GETLONG(xdrs, (long *)&l)) { return (FALSE); } *usp = (u_short) l; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR 16-bit integers */ bool_t xdr_int16_t(xdrs, int16_p) register XDR *xdrs; int16_t *int16_p; { long l; switch (xdrs->x_op) { case XDR_ENCODE: l = (long) *int16_p; return (XDR_PUTLONG(xdrs, &l)); case XDR_DECODE: if (!XDR_GETLONG(xdrs, &l)) { return (FALSE); } *int16_p = (int16_t) l; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR unsigned 16-bit integers */ bool_t xdr_u_int16_t(xdrs, u_int16_p) register XDR *xdrs; u_int16_t *u_int16_p; { u_long l; switch (xdrs->x_op) { case XDR_ENCODE: l = (u_long) *u_int16_p; return (XDR_PUTLONG(xdrs, (long *)&l)); case XDR_DECODE: if (!XDR_GETLONG(xdrs, (long *)&l)) { return (FALSE); } *u_int16_p = (u_int16_t) l; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR a char */ bool_t xdr_char(xdrs, cp) XDR *xdrs; char *cp; { int i; i = (*cp); if (!xdr_int(xdrs, &i)) { return (FALSE); } *cp = i; return (TRUE); } /* * XDR an unsigned char */ bool_t xdr_u_char(xdrs, cp) XDR *xdrs; u_char *cp; { u_int u; u = (*cp); if (!xdr_u_int(xdrs, &u)) { return (FALSE); } *cp = u; return (TRUE); } /* * XDR booleans */ bool_t xdr_bool(xdrs, bp) register XDR *xdrs; bool_t *bp; { long lb; switch (xdrs->x_op) { case XDR_ENCODE: lb = *bp ? XDR_TRUE : XDR_FALSE; return (XDR_PUTLONG(xdrs, &lb)); case XDR_DECODE: if (!XDR_GETLONG(xdrs, &lb)) { return (FALSE); } *bp = (lb == XDR_FALSE) ? FALSE : TRUE; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR enumerations */ bool_t xdr_enum(xdrs, ep) XDR *xdrs; enum_t *ep; { #ifndef lint enum sizecheck { SIZEVAL }; /* used to find the size of an enum */ /* * enums are treated as ints */ if (sizeof (enum sizecheck) == sizeof (long)) { return (xdr_long(xdrs, (long *)ep)); } else if (sizeof (enum sizecheck) == sizeof (int)) { return (xdr_int(xdrs, (int *)ep)); } else if (sizeof (enum sizecheck) == sizeof (short)) { return (xdr_short(xdrs, (short *)ep)); } else { return (FALSE); } #else (void) (xdr_short(xdrs, (short *)ep)); (void) (xdr_int(xdrs, (int *)ep)); return (xdr_long(xdrs, (long *)ep)); #endif } /* * XDR opaque data * Allows the specification of a fixed size sequence of opaque bytes. * cp points to the opaque object and cnt gives the byte length. */ bool_t xdr_opaque(xdrs, cp, cnt) register XDR *xdrs; caddr_t cp; register u_int cnt; { register u_int rndup; static crud[BYTES_PER_XDR_UNIT]; /* * if no data we are done */ if (cnt == 0) return (TRUE); /* * round byte count to full xdr units */ rndup = cnt % BYTES_PER_XDR_UNIT; if (rndup > 0) rndup = BYTES_PER_XDR_UNIT - rndup; if (xdrs->x_op == XDR_DECODE) { if (!XDR_GETBYTES(xdrs, cp, cnt)) { return (FALSE); } if (rndup == 0) return (TRUE); return (XDR_GETBYTES(xdrs, (caddr_t)crud, rndup)); } if (xdrs->x_op == XDR_ENCODE) { if (!XDR_PUTBYTES(xdrs, cp, cnt)) { return (FALSE); } if (rndup == 0) return (TRUE); return (XDR_PUTBYTES(xdrs, xdr_zero, rndup)); } if (xdrs->x_op == XDR_FREE) { return (TRUE); } return (FALSE); } /* * XDR counted bytes * *cpp is a pointer to the bytes, *sizep is the count. * If *cpp is NULL maxsize bytes are allocated */ bool_t xdr_bytes(xdrs, cpp, sizep, maxsize) register XDR *xdrs; char **cpp; register u_int *sizep; u_int maxsize; { register char *sp = *cpp; /* sp is the actual string pointer */ register u_int nodesize; /* * first deal with the length since xdr bytes are counted */ if (! xdr_u_int(xdrs, sizep)) { return (FALSE); } nodesize = *sizep; if ((nodesize > maxsize) && (xdrs->x_op != XDR_FREE)) { return (FALSE); } /* * now deal with the actual bytes */ switch (xdrs->x_op) { case XDR_DECODE: if (nodesize == 0) { return (TRUE); } if (sp == NULL) { *cpp = sp = (char *)mem_alloc(nodesize); } if (sp == NULL) { (void) fprintf(stderr, "xdr_bytes: out of memory\n"); return (FALSE); } /* fall into ... */ case XDR_ENCODE: return (xdr_opaque(xdrs, sp, nodesize)); case XDR_FREE: if (sp != NULL) { mem_free(sp, nodesize); *cpp = NULL; } return (TRUE); } return (FALSE); } /* * Implemented here due to commonality of the object. */ bool_t xdr_netobj(xdrs, np) XDR *xdrs; struct netobj *np; { return (xdr_bytes(xdrs, &np->n_bytes, &np->n_len, MAX_NETOBJ_SZ)); } /* * XDR a descriminated union * Support routine for discriminated unions. * You create an array of xdrdiscrim structures, terminated with * an entry with a null procedure pointer. The routine gets * the discriminant value and then searches the array of xdrdiscrims * looking for that value. It calls the procedure given in the xdrdiscrim * to handle the discriminant. If there is no specific routine a default * routine may be called. * If there is no specific or default routine an error is returned. */ bool_t xdr_union(xdrs, dscmp, unp, choices, dfault) register XDR *xdrs; enum_t *dscmp; /* enum to decide which arm to work on */ char *unp; /* the union itself */ struct xdr_discrim *choices; /* [value, xdr proc] for each arm */ xdrproc_t dfault; /* default xdr routine */ { register enum_t dscm; /* * we deal with the discriminator; it's an enum */ if (! xdr_enum(xdrs, dscmp)) { return (FALSE); } dscm = *dscmp; /* * search choices for a value that matches the discriminator. * if we find one, execute the xdr routine for that value. */ for (; choices->proc != NULL_xdrproc_t; choices++) { if (choices->value == dscm) return ((*(choices->proc))(xdrs, unp)); } /* * no match - execute the default xdr routine if there is one */ return ((dfault == NULL_xdrproc_t) ? FALSE : (*dfault)(xdrs, unp)); } /* * Non-portable xdr primitives. * Care should be taken when moving these routines to new architectures. */ /* * XDR null terminated ASCII strings * xdr_string deals with "C strings" - arrays of bytes that are * terminated by a NULL character. The parameter cpp references a * pointer to storage; If the pointer is null, then the necessary * storage is allocated. The last parameter is the max allowed length * of the string as specified by a protocol. */ bool_t xdr_string(xdrs, cpp, maxsize) register XDR *xdrs; char **cpp; u_int maxsize; { register char *sp = *cpp; /* sp is the actual string pointer */ u_int size; u_int nodesize; /* * first deal with the length since xdr strings are counted-strings */ switch (xdrs->x_op) { case XDR_FREE: if (sp == NULL) { return(TRUE); /* already free */ } /* fall through... */ case XDR_ENCODE: size = strlen(sp); break; } if (! xdr_u_int(xdrs, &size)) { return (FALSE); } if (size > maxsize) { return (FALSE); } nodesize = size + 1; /* * now deal with the actual bytes */ switch (xdrs->x_op) { case XDR_DECODE: if (nodesize == 0) { return (TRUE); } if (sp == NULL) *cpp = sp = (char *)mem_alloc(nodesize); if (sp == NULL) { (void) fprintf(stderr, "xdr_string: out of memory\n"); return (FALSE); } sp[size] = 0; /* fall into ... */ case XDR_ENCODE: return (xdr_opaque(xdrs, sp, size)); case XDR_FREE: mem_free(sp, nodesize); *cpp = NULL; return (TRUE); } return (FALSE); } /* * Wrapper for xdr_string that can be called directly from * routines like clnt_call */ bool_t xdr_wrapstring(xdrs, cpp) XDR *xdrs; char **cpp; { return xdr_string(xdrs, cpp, LASTUNSIGNED); }