/* $OpenBSD: softfloat-macros.h,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ /* =============================================================================== This C source fragment is part of the SoftFloat IEC/IEEE Floating-point Arithmetic Package, Release 2a. Written by John R. Hauser. This work was made possible in part by the International Computer Science Institute, located at Suite 600, 1947 Center Street, Berkeley, California 94704. Funding was partially provided by the National Science Foundation under grant MIP-9311980. The original version of this code was written as part of a project to build a fixed-point vector processor in collaboration with the University of California at Berkeley, overseen by Profs. Nelson Morgan and John Wawrzynek. More information is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ arithmetic/SoftFloat.html'. THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. Derivative works are acceptable, even for commercial purposes, so long as (1) they include prominent notice that the work is derivative, and (2) they include prominent notice akin to these four paragraphs for those parts of this code that are retained. =============================================================================== */ /* ------------------------------------------------------------------------------- Shifts `a' right by the number of bits given in `count'. If any nonzero bits are shifted off, they are ``jammed'' into the least significant bit of the result by setting the least significant bit to 1. The value of `count' can be arbitrarily large; in particular, if `count' is greater than 32, the result will be either 0 or 1, depending on whether `a' is zero or nonzero. The result is stored in the location pointed to by `zPtr'. ------------------------------------------------------------------------------- */ __inline void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr ) { bits32 z; if ( count == 0 ) { z = a; } else if ( count < 32 ) { z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 ); } else { z = ( a != 0 ); } *zPtr = z; } /* ------------------------------------------------------------------------------- Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the number of bits given in `count'. Any bits shifted off are lost. The value of `count' can be arbitrarily large; in particular, if `count' is greater than 64, the result will be 0. The result is broken into two 32-bit pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. ------------------------------------------------------------------------------- */ __inline void shift64Right( bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr ) { bits32 z0, z1; int8 negCount = ( - count ) & 31; if ( count == 0 ) { z1 = a1; z0 = a0; } else if ( count < 32 ) { z1 = ( a0<>count ); z0 = a0>>count; } else { z1 = ( count < 64 ) ? ( a0>>( count & 31 ) ) : 0; z0 = 0; } *z1Ptr = z1; *z0Ptr = z0; } /* ------------------------------------------------------------------------------- Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the number of bits given in `count'. If any nonzero bits are shifted off, they are ``jammed'' into the least significant bit of the result by setting the least significant bit to 1. The value of `count' can be arbitrarily large; in particular, if `count' is greater than 64, the result will be either 0 or 1, depending on whether the concatenation of `a0' and `a1' is zero or nonzero. The result is broken into two 32-bit pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. ------------------------------------------------------------------------------- */ __inline void shift64RightJamming( bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr ) { bits32 z0, z1; int8 negCount = ( - count ) & 31; if ( count == 0 ) { z1 = a1; z0 = a0; } else if ( count < 32 ) { z1 = ( a0<>count ) | ( ( a1<>count; } else { if ( count == 32 ) { z1 = a0 | ( a1 != 0 ); } else if ( count < 64 ) { z1 = ( a0>>( count & 31 ) ) | ( ( ( a0<>count ); z0 = a0>>count; } else { if ( count == 32 ) { z2 = a1; z1 = a0; } else { a2 |= a1; if ( count < 64 ) { z2 = a0<>( count & 31 ); } else { z2 = ( count == 64 ) ? a0 : ( a0 != 0 ); z1 = 0; } } z0 = 0; } z2 |= ( a2 != 0 ); } *z2Ptr = z2; *z1Ptr = z1; *z0Ptr = z0; } /* ------------------------------------------------------------------------------- Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the number of bits given in `count'. Any bits shifted off are lost. The value of `count' must be less than 32. The result is broken into two 32-bit pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. ------------------------------------------------------------------------------- */ __inline void shortShift64Left( bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr ) { *z1Ptr = a1<>( ( - count ) & 31 ) ); } /* ------------------------------------------------------------------------------- Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' left by the number of bits given in `count'. Any bits shifted off are lost. The value of `count' must be less than 32. The result is broken into three 32-bit pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'. ------------------------------------------------------------------------------- */ __inline void shortShift96Left( bits32 a0, bits32 a1, bits32 a2, int16 count, bits32 *z0Ptr, bits32 *z1Ptr, bits32 *z2Ptr ) { bits32 z0, z1, z2; int8 negCount; z2 = a2<>negCount; z0 |= a1>>negCount; } *z2Ptr = z2; *z1Ptr = z1; *z0Ptr = z0; } /* ------------------------------------------------------------------------------- Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit value formed by concatenating `b0' and `b1'. Addition is modulo 2^64, so any carry out is lost. The result is broken into two 32-bit pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. ------------------------------------------------------------------------------- */ __inline void add64( bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr ) { bits32 z1; z1 = a1 + b1; *z1Ptr = z1; *z0Ptr = a0 + b0 + ( z1 < a1 ); } /* ------------------------------------------------------------------------------- Adds the 96-bit value formed by concatenating `a0', `a1', and `a2' to the 96-bit value formed by concatenating `b0', `b1', and `b2'. Addition is modulo 2^96, so any carry out is lost. The result is broken into three 32-bit pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'. ------------------------------------------------------------------------------- */ __inline void add96( bits32 a0, bits32 a1, bits32 a2, bits32 b0, bits32 b1, bits32 b2, bits32 *z0Ptr, bits32 *z1Ptr, bits32 *z2Ptr ) { bits32 z0, z1, z2; int8 carry0, carry1; z2 = a2 + b2; carry1 = ( z2 < a2 ); z1 = a1 + b1; carry0 = ( z1 < a1 ); z0 = a0 + b0; z1 += carry1; z0 += ( z1 < carry1 ); z0 += carry0; *z2Ptr = z2; *z1Ptr = z1; *z0Ptr = z0; } /* ------------------------------------------------------------------------------- Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the 64-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo 2^64, so any borrow out (carry out) is lost. The result is broken into two 32-bit pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. ------------------------------------------------------------------------------- */ __inline void sub64( bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr ) { *z1Ptr = a1 - b1; *z0Ptr = a0 - b0 - ( a1 < b1 ); } /* ------------------------------------------------------------------------------- Subtracts the 96-bit value formed by concatenating `b0', `b1', and `b2' from the 96-bit value formed by concatenating `a0', `a1', and `a2'. Subtraction is modulo 2^96, so any borrow out (carry out) is lost. The result is broken into three 32-bit pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'. ------------------------------------------------------------------------------- */ __inline void sub96( bits32 a0, bits32 a1, bits32 a2, bits32 b0, bits32 b1, bits32 b2, bits32 *z0Ptr, bits32 *z1Ptr, bits32 *z2Ptr ) { bits32 z0, z1, z2; int8 borrow0, borrow1; z2 = a2 - b2; borrow1 = ( a2 < b2 ); z1 = a1 - b1; borrow0 = ( a1 < b1 ); z0 = a0 - b0; z0 -= ( z1 < borrow1 ); z1 -= borrow1; z0 -= borrow0; *z2Ptr = z2; *z1Ptr = z1; *z0Ptr = z0; } /* ------------------------------------------------------------------------------- Multiplies `a' by `b' to obtain a 64-bit product. The product is broken into two 32-bit pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. ------------------------------------------------------------------------------- */ __inline void mul32To64( bits32 a, bits32 b, bits32 *z0Ptr, bits32 *z1Ptr ) { bits16 aHigh, aLow, bHigh, bLow; bits32 z0, zMiddleA, zMiddleB, z1; aLow = a; aHigh = a>>16; bLow = b; bHigh = b>>16; z1 = ( (bits32) aLow ) * bLow; zMiddleA = ( (bits32) aLow ) * bHigh; zMiddleB = ( (bits32) aHigh ) * bLow; z0 = ( (bits32) aHigh ) * bHigh; zMiddleA += zMiddleB; z0 += ( ( (bits32) ( zMiddleA < zMiddleB ) )<<16 ) + ( zMiddleA>>16 ); zMiddleA <<= 16; z1 += zMiddleA; z0 += ( z1 < zMiddleA ); *z1Ptr = z1; *z0Ptr = z0; } /* ------------------------------------------------------------------------------- Multiplies the 64-bit value formed by concatenating `a0' and `a1' by `b' to obtain a 96-bit product. The product is broken into three 32-bit pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'. ------------------------------------------------------------------------------- */ __inline void mul64By32To96( bits32 a0, bits32 a1, bits32 b, bits32 *z0Ptr, bits32 *z1Ptr, bits32 *z2Ptr ) { bits32 z0, z1, z2, more1; mul32To64( a1, b, &z1, &z2 ); mul32To64( a0, b, &z0, &more1 ); add64( z0, more1, 0, z1, &z0, &z1 ); *z2Ptr = z2; *z1Ptr = z1; *z0Ptr = z0; } /* ------------------------------------------------------------------------------- Multiplies the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit value formed by concatenating `b0' and `b1' to obtain a 128-bit product. The product is broken into four 32-bit pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'. ------------------------------------------------------------------------------- */ __inline void mul64To128( bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr, bits32 *z2Ptr, bits32 *z3Ptr ) { bits32 z0, z1, z2, z3; bits32 more1, more2; mul32To64( a1, b1, &z2, &z3 ); mul32To64( a1, b0, &z1, &more2 ); add64( z1, more2, 0, z2, &z1, &z2 ); mul32To64( a0, b0, &z0, &more1 ); add64( z0, more1, 0, z1, &z0, &z1 ); mul32To64( a0, b1, &more1, &more2 ); add64( more1, more2, 0, z2, &more1, &z2 ); add64( z0, z1, 0, more1, &z0, &z1 ); *z3Ptr = z3; *z2Ptr = z2; *z1Ptr = z1; *z0Ptr = z0; } /* ------------------------------------------------------------------------------- Returns an approximation to the 32-bit integer quotient obtained by dividing `b' into the 64-bit value formed by concatenating `a0' and `a1'. The divisor `b' must be at least 2^31. If q is the exact quotient truncated toward zero, the approximation returned lies between q and q + 2 inclusive. If the exact quotient q is larger than 32 bits, the maximum positive 32-bit unsigned integer is returned. ------------------------------------------------------------------------------- */ static bits32 estimateDiv64To32( bits32 a0, bits32 a1, bits32 b ) { bits32 b0, b1; bits32 rem0, rem1, term0, term1; bits32 z; if ( b <= a0 ) return 0xFFFFFFFF; b0 = b>>16; z = ( b0<<16 <= a0 ) ? 0xFFFF0000 : ( a0 / b0 )<<16; mul32To64( b, z, &term0, &term1 ); sub64( a0, a1, term0, term1, &rem0, &rem1 ); while ( ( (sbits32) rem0 ) < 0 ) { z -= 0x10000; b1 = b<<16; add64( rem0, rem1, b0, b1, &rem0, &rem1 ); } rem0 = ( rem0<<16 ) | ( rem1>>16 ); z |= ( b0<<16 <= rem0 ) ? 0xFFFF : rem0 / b0; return z; } #ifndef SOFTFLOAT_FOR_GCC /* ------------------------------------------------------------------------------- Returns an approximation to the square root of the 32-bit significand given by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of `aExp' (the least significant bit) is 1, the integer returned approximates 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp' is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either case, the approximation returned lies strictly within +/-2 of the exact value. ------------------------------------------------------------------------------- */ static bits32 estimateSqrt32( int16 aExp, bits32 a ) { static const bits16 sqrtOddAdjustments[] = { 0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0, 0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67 }; static const bits16 sqrtEvenAdjustments[] = { 0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E, 0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002 }; int8 index; bits32 z; index = ( a>>27 ) & 15; if ( aExp & 1 ) { z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ]; z = ( ( a / z )<<14 ) + ( z<<15 ); a >>= 1; } else { z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ]; z = a / z + z; z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 ); if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 ); } return ( ( estimateDiv64To32( a, 0, z ) )>>1 ) + ( z>>1 ); } #endif /* ------------------------------------------------------------------------------- Returns the number of leading 0 bits before the most-significant 1 bit of `a'. If `a' is zero, 32 is returned. ------------------------------------------------------------------------------- */ static int8 countLeadingZeros32( bits32 a ) { static const int8 countLeadingZerosHigh[] = { 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int8 shiftCount; shiftCount = 0; if ( a < 0x10000 ) { shiftCount += 16; a <<= 16; } if ( a < 0x1000000 ) { shiftCount += 8; a <<= 8; } shiftCount += countLeadingZerosHigh[ a>>24 ]; return shiftCount; } /* ------------------------------------------------------------------------------- Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise, returns 0. ------------------------------------------------------------------------------- */ __inline flag eq64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 ) { return ( a0 == b0 ) && ( a1 == b1 ); } /* ------------------------------------------------------------------------------- Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less than or equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise, returns 0. ------------------------------------------------------------------------------- */ __inline flag le64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 ) { return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) ); } /* ------------------------------------------------------------------------------- Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less than the 64-bit value formed by concatenating `b0' and `b1'. Otherwise, returns 0. ------------------------------------------------------------------------------- */ __inline flag lt64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 ) { return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) ); } /* ------------------------------------------------------------------------------- Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is not equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise, returns 0. ------------------------------------------------------------------------------- */ __inline flag ne64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 ) { return ( a0 != b0 ) || ( a1 != b1 ); }