/* $OpenBSD: malloc.c,v 1.122 2009/12/07 18:47:38 miod Exp $ */ /* * Copyright (c) 2008 Otto Moerbeek * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Parts of this code, mainly the sub page sized chunk management code is * derived from the malloc implementation with the following license: */ /* * ---------------------------------------------------------------------------- * "THE BEER-WARE LICENSE" (Revision 42): * wrote this file. As long as you retain this notice you * can do whatever you want with this stuff. If we meet some day, and you think * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp * ---------------------------------------------------------------------------- */ /* #define MALLOC_STATS */ #include #include #include #include #include #include #include #include #include #include #include #ifdef MALLOC_STATS #include #endif #include "thread_private.h" #define MALLOC_MINSHIFT 4 #define MALLOC_MAXSHIFT 16 #if defined(__sparc__) && !defined(__sparcv9__) #define MALLOC_PAGESHIFT (13U) #elif defined(__mips64__) #define MALLOC_PAGESHIFT (14U) #else #define MALLOC_PAGESHIFT (PGSHIFT) #endif #define MALLOC_PAGESIZE (1UL << MALLOC_PAGESHIFT) #define MALLOC_MINSIZE (1UL << MALLOC_MINSHIFT) #define MALLOC_PAGEMASK (MALLOC_PAGESIZE - 1) #define MASK_POINTER(p) ((void *)(((uintptr_t)(p)) & ~MALLOC_PAGEMASK)) #define MALLOC_MAXCHUNK (1 << (MALLOC_PAGESHIFT-1)) #define MALLOC_MAXCACHE 256 #define MALLOC_DELAYED_CHUNKS 16 /* should be power of 2 */ /* * When the P option is active, we move allocations between half a page * and a whole page towards the end, subject to alignment constraints. * This is the extra headroom we allow. Set to zero to be the most * strict. */ #define MALLOC_LEEWAY 0 #define PAGEROUND(x) (((x) + (MALLOC_PAGEMASK)) & ~MALLOC_PAGEMASK) /* * What to use for Junk. This is the byte value we use to fill with * when the 'J' option is enabled. Use SOME_JUNK right after alloc, * and SOME_FREEJUNK right before free. */ #define SOME_JUNK 0xd0 /* as in "Duh" :-) */ #define SOME_FREEJUNK 0xdf #define MMAP(sz) mmap(NULL, (size_t)(sz), PROT_READ | PROT_WRITE, \ MAP_ANON | MAP_PRIVATE, -1, (off_t) 0) #define MMAPA(a,sz) mmap((a), (size_t)(sz), PROT_READ | PROT_WRITE, \ MAP_ANON | MAP_PRIVATE, -1, (off_t) 0) struct region_info { void *p; /* page; low bits used to mark chunks */ uintptr_t size; /* size for pages, or chunk_info pointer */ }; LIST_HEAD(chunk_head, chunk_info); struct dir_info { u_int32_t canary1; struct region_info *r; /* region slots */ size_t regions_total; /* number of region slots */ size_t regions_bits; /* log2 of total */ size_t regions_free; /* number of free slots */ /* list of free chunk info structs */ struct chunk_head chunk_info_list; /* lists of chunks with free slots */ struct chunk_head chunk_dir[MALLOC_MAXSHIFT]; size_t free_regions_size; /* free pages cached */ /* free pages cache */ struct region_info free_regions[MALLOC_MAXCACHE]; /* delayed free chunk slots */ void *delayed_chunks[MALLOC_DELAYED_CHUNKS]; #ifdef MALLOC_STATS size_t inserts; size_t insert_collisions; size_t finds; size_t find_collisions; size_t deletes; size_t delete_moves; size_t cheap_realloc_tries; size_t cheap_reallocs; #define STATS_INC(x) ((x)++) #define STATS_ZERO(x) ((x) = 0) #else #define STATS_INC(x) /* nothing */ #define STATS_ZERO(x) /* nothing */ #endif /* MALLOC_STATS */ u_int32_t canary2; }; #define DIR_INFO_RSZ ((sizeof(struct dir_info) + MALLOC_PAGEMASK) & \ ~MALLOC_PAGEMASK) /* * This structure describes a page worth of chunks. * * How many bits per u_long in the bitmap */ #define MALLOC_BITS (NBBY * sizeof(u_long)) struct chunk_info { LIST_ENTRY(chunk_info) entries; void *page; /* pointer to the page */ u_int32_t canary; u_short size; /* size of this page's chunks */ u_short shift; /* how far to shift for this size */ u_short free; /* how many free chunks */ u_short total; /* how many chunk */ /* which chunks are free */ u_long bits[(MALLOC_PAGESIZE / MALLOC_MINSIZE) / MALLOC_BITS]; }; struct malloc_readonly { struct dir_info *g_pool; /* Main bookkeeping information */ int malloc_abort; /* abort() on error */ int malloc_freeprot; /* mprotect free pages PROT_NONE? */ int malloc_hint; /* call madvice on free pages? */ int malloc_junk; /* junk fill? */ int malloc_move; /* move allocations to end of page? */ int malloc_realloc; /* always realloc? */ int malloc_xmalloc; /* xmalloc behaviour? */ int malloc_zero; /* zero fill? */ size_t malloc_guard; /* use guard pages after allocations? */ u_int malloc_cache; /* free pages we cache */ #ifdef MALLOC_STATS int malloc_stats; /* dump statistics at end */ #endif u_int32_t malloc_canary; /* Matched against ones in g_pool */ }; /* This object is mapped PROT_READ after initialisation to prevent tampering */ static union { struct malloc_readonly mopts; u_char _pad[MALLOC_PAGESIZE]; } malloc_readonly __attribute__((aligned(MALLOC_PAGESIZE))); #define mopts malloc_readonly.mopts #define g_pool mopts.g_pool char *malloc_options; /* compile-time options */ static char *malloc_func; /* current function */ static int malloc_active; /* status of malloc */ static size_t malloc_guarded; /* bytes used for guards */ static size_t malloc_used; /* bytes allocated */ static size_t rbytesused; /* random bytes used */ static u_char rbytes[512]; /* random bytes */ static u_char getrbyte(void); extern char *__progname; /* low bits of r->p determine size: 0 means >= page size and p->size holding * real size, otherwise r->size is a shift count, or 1 for malloc(0) */ #define REALSIZE(sz, r) \ (sz) = (uintptr_t)(r)->p & MALLOC_PAGEMASK, \ (sz) = ((sz) == 0 ? (r)->size : ((sz) == 1 ? 0 : (1 << ((sz)-1)))) static inline size_t hash(void *p) { size_t sum; union { uintptr_t p; unsigned short a[sizeof(void *) / sizeof(short)]; } u; u.p = (uintptr_t)p >> MALLOC_PAGESHIFT; sum = u.a[0]; sum = (sum << 7) - sum + u.a[1]; #ifdef __LP64__ sum = (sum << 7) - sum + u.a[2]; sum = (sum << 7) - sum + u.a[3]; #endif return sum; } #ifdef MALLOC_STATS static void dump_chunk(int fd, struct chunk_info *p, int fromfreelist) { char buf[64]; while (p != NULL) { snprintf(buf, sizeof(buf), "chunk %d %d/%d %p\n", p->size, p->free, p->total, p->page); write(fd, buf, strlen(buf)); if (!fromfreelist) break; p = LIST_NEXT(p, entries); if (p != NULL) { snprintf(buf, sizeof(buf), " "); write(fd, buf, strlen(buf)); } } } static void dump_free_chunk_info(int fd, struct dir_info *d) { char buf[64]; int i; snprintf(buf, sizeof(buf), "Free chunk structs:\n"); write(fd, buf, strlen(buf)); for (i = 0; i < MALLOC_MAXSHIFT; i++) { struct chunk_info *p = LIST_FIRST(&d->chunk_dir[i]); if (p != NULL) { snprintf(buf, sizeof(buf), "%2d) ", i); write(fd, buf, strlen(buf)); dump_chunk(fd, p, 1); } } } static void dump_free_page_info(int fd, struct dir_info *d) { char buf[64]; int i; snprintf(buf, sizeof(buf), "Free pages cached: %zu\n", d->free_regions_size); write(fd, buf, strlen(buf)); for (i = 0; i < mopts.malloc_cache; i++) { if (d->free_regions[i].p != NULL) { snprintf(buf, sizeof(buf), "%2d) ", i); write(fd, buf, strlen(buf)); snprintf(buf, sizeof(buf), "free at %p: %zu\n", d->free_regions[i].p, d->free_regions[i].size); write(fd, buf, strlen(buf)); } } } static void malloc_dump1(int fd, struct dir_info *d) { char buf[64]; size_t i, realsize; snprintf(buf, sizeof(buf), "Malloc dir of %s at %p\n", __progname, d); write(fd, buf, strlen(buf)); if (d == NULL) return; snprintf(buf, sizeof(buf), "Regions slots %zu\n", d->regions_total); write(fd, buf, strlen(buf)); snprintf(buf, sizeof(buf), "Finds %zu/%zu %f\n", d->finds, d->find_collisions, 1.0 + (double)d->find_collisions / d->finds); write(fd, buf, strlen(buf)); snprintf(buf, sizeof(buf), "Inserts %zu/%zu %f\n", d->inserts, d->insert_collisions, 1.0 + (double)d->insert_collisions / d->inserts); write(fd, buf, strlen(buf)); snprintf(buf, sizeof(buf), "Deletes %zu/%zu\n", d->deletes, d->delete_moves); write(fd, buf, strlen(buf)); snprintf(buf, sizeof(buf), "Cheap reallocs %zu/%zu\n", d->cheap_reallocs, d->cheap_realloc_tries); write(fd, buf, strlen(buf)); snprintf(buf, sizeof(buf), "Regions slots free %zu\n", d->regions_free); write(fd, buf, strlen(buf)); for (i = 0; i < d->regions_total; i++) { if (d->r[i].p != NULL) { size_t h = hash(d->r[i].p) & (d->regions_total - 1); snprintf(buf, sizeof(buf), "%4zx) #%zx %zd ", i, h, h - i); write(fd, buf, strlen(buf)); REALSIZE(realsize, &d->r[i]); if (realsize > MALLOC_MAXCHUNK) { snprintf(buf, sizeof(buf), "%p: %zu\n", d->r[i].p, realsize); write(fd, buf, strlen(buf)); } else dump_chunk(fd, (struct chunk_info *)d->r[i].size, 0); } } dump_free_chunk_info(fd, d); dump_free_page_info(fd, d); snprintf(buf, sizeof(buf), "In use %zu\n", malloc_used); write(fd, buf, strlen(buf)); snprintf(buf, sizeof(buf), "Guarded %zu\n", malloc_guarded); write(fd, buf, strlen(buf)); } void malloc_dump(int fd) { malloc_dump1(fd, g_pool); } static void malloc_exit(void) { static const char q[] = "malloc() warning: Couldn't dump stats\n"; int save_errno = errno, fd; fd = open("malloc.out", O_RDWR|O_APPEND); if (fd != -1) { malloc_dump(fd); close(fd); } else write(STDERR_FILENO, q, sizeof(q) - 1); errno = save_errno; } #endif /* MALLOC_STATS */ static void wrterror(char *p) { char *q = " error: "; struct iovec iov[5]; iov[0].iov_base = __progname; iov[0].iov_len = strlen(__progname); iov[1].iov_base = malloc_func; iov[1].iov_len = strlen(malloc_func); iov[2].iov_base = q; iov[2].iov_len = strlen(q); iov[3].iov_base = p; iov[3].iov_len = strlen(p); iov[4].iov_base = "\n"; iov[4].iov_len = 1; writev(STDERR_FILENO, iov, 5); #ifdef MALLOC_STATS if (mopts.malloc_stats) malloc_dump(STDERR_FILENO); #endif /* MALLOC_STATS */ //malloc_active--; if (mopts.malloc_abort) abort(); } /* * Cache maintenance. We keep at most malloc_cache pages cached. * If the cache is becoming full, unmap pages in the cache for real, * and then add the region to the cache * Opposed to the regular region data structure, the sizes in the * cache are in MALLOC_PAGESIZE units. */ static void unmap(struct dir_info *d, void *p, size_t sz) { size_t psz = sz >> MALLOC_PAGESHIFT; size_t rsz, tounmap; struct region_info *r; u_int i, offset; if (sz != PAGEROUND(sz)) { wrterror("munmap round"); return; } if (psz > mopts.malloc_cache) { if (munmap(p, sz)) wrterror("munmap"); malloc_used -= sz; return; } tounmap = 0; rsz = mopts.malloc_cache - d->free_regions_size; if (psz > rsz) tounmap = psz - rsz; offset = getrbyte(); for (i = 0; tounmap > 0 && i < mopts.malloc_cache; i++) { r = &d->free_regions[(i + offset) & (mopts.malloc_cache - 1)]; if (r->p != NULL) { rsz = r->size << MALLOC_PAGESHIFT; if (munmap(r->p, rsz)) wrterror("munmap"); r->p = NULL; if (tounmap > r->size) tounmap -= r->size; else tounmap = 0; d->free_regions_size -= r->size; r->size = 0; malloc_used -= rsz; } } if (tounmap > 0) wrterror("malloc cache underflow"); for (i = 0; i < mopts.malloc_cache; i++) { r = &d->free_regions[i]; if (r->p == NULL) { if (mopts.malloc_hint) madvise(p, sz, MADV_FREE); if (mopts.malloc_freeprot) mprotect(p, sz, PROT_NONE); r->p = p; r->size = psz; d->free_regions_size += psz; break; } } if (i == mopts.malloc_cache) wrterror("malloc free slot lost"); if (d->free_regions_size > mopts.malloc_cache) wrterror("malloc cache overflow"); } static void zapcacheregion(struct dir_info *d, void *p) { u_int i; struct region_info *r; size_t rsz; for (i = 0; i < mopts.malloc_cache; i++) { r = &d->free_regions[i]; if (r->p == p) { rsz = r->size << MALLOC_PAGESHIFT; if (munmap(r->p, rsz)) wrterror("munmap"); r->p = NULL; d->free_regions_size -= r->size; r->size = 0; malloc_used -= rsz; } } } static void * map(struct dir_info *d, size_t sz, int zero_fill) { size_t psz = sz >> MALLOC_PAGESHIFT; struct region_info *r, *big = NULL; u_int i, offset; void *p; if (mopts.malloc_canary != (d->canary1 ^ (u_int32_t)(uintptr_t)d) || d->canary1 != ~d->canary2) wrterror("internal struct corrupt"); if (sz != PAGEROUND(sz)) { wrterror("map round"); return NULL; } if (psz > d->free_regions_size) { p = MMAP(sz); if (p != MAP_FAILED) malloc_used += sz; /* zero fill not needed */ return p; } offset = getrbyte(); for (i = 0; i < mopts.malloc_cache; i++) { r = &d->free_regions[(i + offset) & (mopts.malloc_cache - 1)]; if (r->p != NULL) { if (r->size == psz) { p = r->p; if (mopts.malloc_freeprot) mprotect(p, sz, PROT_READ | PROT_WRITE); if (mopts.malloc_hint) madvise(p, sz, MADV_NORMAL); r->p = NULL; r->size = 0; d->free_regions_size -= psz; if (zero_fill) memset(p, 0, sz); else if (mopts.malloc_junk && mopts.malloc_freeprot) memset(p, SOME_FREEJUNK, sz); return p; } else if (r->size > psz) big = r; } } if (big != NULL) { r = big; p = (char *)r->p + ((r->size - psz) << MALLOC_PAGESHIFT); if (mopts.malloc_freeprot) mprotect(p, sz, PROT_READ | PROT_WRITE); if (mopts.malloc_hint) madvise(p, sz, MADV_NORMAL); r->size -= psz; d->free_regions_size -= psz; if (zero_fill) memset(p, 0, sz); else if (mopts.malloc_junk && mopts.malloc_freeprot) memset(p, SOME_FREEJUNK, sz); return p; } p = MMAP(sz); if (p != MAP_FAILED) malloc_used += sz; if (d->free_regions_size > mopts.malloc_cache) wrterror("malloc cache"); /* zero fill not needed */ return p; } static void rbytes_init(void) { arc4random_buf(rbytes, sizeof(rbytes)); rbytesused = 0; } static u_char getrbyte(void) { if (rbytesused >= sizeof(rbytes)) rbytes_init(); return rbytes[rbytesused++]; } /* * Initialize a dir_info, which should have been cleared by caller */ static int omalloc_init(struct dir_info **dp) { char *p, b[64]; int i, j; size_t d_avail, regioninfo_size; struct dir_info *d; rbytes_init(); /* * Default options */ mopts.malloc_abort = 1; mopts.malloc_move = 1; mopts.malloc_cache = 64; for (i = 0; i < 3; i++) { switch (i) { case 0: j = readlink("/etc/malloc.conf", b, sizeof b - 1); if (j <= 0) continue; b[j] = '\0'; p = b; break; case 1: if (issetugid() == 0) p = getenv("MALLOC_OPTIONS"); else continue; break; case 2: p = malloc_options; break; default: p = NULL; } for (; p != NULL && *p != '\0'; p++) { switch (*p) { case '>': mopts.malloc_cache <<= 1; if (mopts.malloc_cache > MALLOC_MAXCACHE) mopts.malloc_cache = MALLOC_MAXCACHE; break; case '<': mopts.malloc_cache >>= 1; break; case 'a': mopts.malloc_abort = 0; break; case 'A': mopts.malloc_abort = 1; break; #ifdef MALLOC_STATS case 'd': mopts.malloc_stats = 0; break; case 'D': mopts.malloc_stats = 1; break; #endif /* MALLOC_STATS */ case 'f': mopts.malloc_freeprot = 0; break; case 'F': mopts.malloc_freeprot = 1; break; case 'g': mopts.malloc_guard = 0; break; case 'G': mopts.malloc_guard = MALLOC_PAGESIZE; break; case 'h': mopts.malloc_hint = 0; break; case 'H': mopts.malloc_hint = 1; break; case 'j': mopts.malloc_junk = 0; break; case 'J': mopts.malloc_junk = 1; break; case 'n': case 'N': break; case 'p': mopts.malloc_move = 0; break; case 'P': mopts.malloc_move = 1; break; case 'r': mopts.malloc_realloc = 0; break; case 'R': mopts.malloc_realloc = 1; break; case 'x': mopts.malloc_xmalloc = 0; break; case 'X': mopts.malloc_xmalloc = 1; break; case 'z': mopts.malloc_zero = 0; break; case 'Z': mopts.malloc_zero = 1; break; default: { static const char q[] = "malloc() warning: " "unknown char in MALLOC_OPTIONS\n"; write(STDERR_FILENO, q, sizeof(q) - 1); break; } } } } /* * We want junk in the entire allocation, and zero only in the part * the user asked for. */ if (mopts.malloc_zero) mopts.malloc_junk = 1; #ifdef MALLOC_STATS if (mopts.malloc_stats && (atexit(malloc_exit) == -1)) { static const char q[] = "malloc() warning: atexit(2) failed." " Will not be able to dump stats on exit\n"; write(STDERR_FILENO, q, sizeof(q) - 1); } #endif /* MALLOC_STATS */ while ((mopts.malloc_canary = arc4random()) == 0) ; /* * Allocate dir_info with a guard page on either side. Also * randomise offset inside the page at which the dir_info * lies (subject to alignment by 1 << MALLOC_MINSHIFT) */ if ((p = MMAP(DIR_INFO_RSZ + (MALLOC_PAGESIZE * 2))) == MAP_FAILED) return -1; mprotect(p, MALLOC_PAGESIZE, PROT_NONE); mprotect(p + MALLOC_PAGESIZE + DIR_INFO_RSZ, MALLOC_PAGESIZE, PROT_NONE); d_avail = (DIR_INFO_RSZ - sizeof(*d)) >> MALLOC_MINSHIFT; d = (struct dir_info *)(p + MALLOC_PAGESIZE + (arc4random_uniform(d_avail) << MALLOC_MINSHIFT)); d->regions_bits = 9; d->regions_free = d->regions_total = 1 << d->regions_bits; regioninfo_size = d->regions_total * sizeof(struct region_info); d->r = MMAP(regioninfo_size); if (d->r == MAP_FAILED) { wrterror("malloc init mmap failed"); d->regions_total = 0; return 1; } LIST_INIT(&d->chunk_info_list); for (i = 0; i < MALLOC_MAXSHIFT; i++) LIST_INIT(&d->chunk_dir[i]); malloc_used += regioninfo_size; d->canary1 = mopts.malloc_canary ^ (u_int32_t)(uintptr_t)d; d->canary2 = ~d->canary1; *dp = d; /* * Options have been set and will never be reset. * Prevent further tampering with them. */ if (((uintptr_t)&malloc_readonly & MALLOC_PAGEMASK) == 0) mprotect(&malloc_readonly, sizeof(malloc_readonly), PROT_READ); return 0; } static int omalloc_grow(struct dir_info *d) { size_t newbits; size_t newtotal; size_t newsize; size_t mask; size_t i; struct region_info *p; if (d->regions_total > SIZE_MAX / sizeof(struct region_info) / 2 ) return 1; newbits = d->regions_bits + 1; newtotal = d->regions_total * 2; newsize = newtotal * sizeof(struct region_info); mask = newtotal - 1; p = MMAP(newsize); if (p == MAP_FAILED) return 1; malloc_used += newsize; memset(p, 0, newsize); STATS_ZERO(d->inserts); STATS_ZERO(d->insert_collisions); for (i = 0; i < d->regions_total; i++) { void *q = d->r[i].p; if (q != NULL) { size_t index = hash(q) & mask; STATS_INC(d->inserts); while (p[index].p != NULL) { index = (index - 1) & mask; STATS_INC(d->insert_collisions); } p[index] = d->r[i]; } } /* avoid pages containing meta info to end up in cache */ if (munmap(d->r, d->regions_total * sizeof(struct region_info))) wrterror("munmap"); else malloc_used -= d->regions_total * sizeof(struct region_info); d->regions_free = d->regions_free + d->regions_total; d->regions_total = newtotal; d->regions_bits = newbits; d->r = p; return 0; } static struct chunk_info * alloc_chunk_info(struct dir_info *d) { struct chunk_info *p; int i; if (LIST_EMPTY(&d->chunk_info_list)) { p = MMAP(MALLOC_PAGESIZE); if (p == MAP_FAILED) return NULL; malloc_used += MALLOC_PAGESIZE; for (i = 0; i < MALLOC_PAGESIZE / sizeof(*p); i++) LIST_INSERT_HEAD(&d->chunk_info_list, &p[i], entries); } p = LIST_FIRST(&d->chunk_info_list); LIST_REMOVE(p, entries); memset(p, 0, sizeof *p); p->canary = d->canary1; return p; } static int insert(struct dir_info *d, void *p, size_t sz) { size_t index; size_t mask; void *q; if (d->regions_free * 4 < d->regions_total) { if (omalloc_grow(d)) return 1; } mask = d->regions_total - 1; index = hash(p) & mask; q = d->r[index].p; STATS_INC(d->inserts); while (q != NULL) { index = (index - 1) & mask; q = d->r[index].p; STATS_INC(d->insert_collisions); } d->r[index].p = p; d->r[index].size = sz; d->regions_free--; return 0; } static struct region_info * find(struct dir_info *d, void *p) { size_t index; size_t mask = d->regions_total - 1; void *q, *r; if (mopts.malloc_canary != (d->canary1 ^ (u_int32_t)(uintptr_t)d) || d->canary1 != ~d->canary2) wrterror("internal struct corrupt"); p = MASK_POINTER(p); index = hash(p) & mask; r = d->r[index].p; q = MASK_POINTER(r); STATS_INC(d->finds); while (q != p && r != NULL) { index = (index - 1) & mask; r = d->r[index].p; q = MASK_POINTER(r); STATS_INC(d->find_collisions); } return q == p ? &d->r[index] : NULL; } static void delete(struct dir_info *d, struct region_info *ri) { /* algorithm R, Knuth Vol III section 6.4 */ size_t mask = d->regions_total - 1; size_t i, j, r; if (d->regions_total & (d->regions_total - 1)) wrterror("regions_total not 2^x"); d->regions_free++; STATS_INC(g_pool->deletes); i = ri - d->r; for (;;) { d->r[i].p = NULL; d->r[i].size = 0; j = i; for (;;) { i = (i - 1) & mask; if (d->r[i].p == NULL) return; r = hash(d->r[i].p) & mask; if ((i <= r && r < j) || (r < j && j < i) || (j < i && i <= r)) continue; d->r[j] = d->r[i]; STATS_INC(g_pool->delete_moves); break; } } } /* * Allocate a page of chunks */ static struct chunk_info * omalloc_make_chunks(struct dir_info *d, int bits) { struct chunk_info *bp; void *pp; long i, k; /* Allocate a new bucket */ pp = map(d, MALLOC_PAGESIZE, 0); if (pp == MAP_FAILED) return NULL; bp = alloc_chunk_info(d); if (bp == NULL) { unmap(d, pp, MALLOC_PAGESIZE); return NULL; } /* memory protect the page allocated in the malloc(0) case */ if (bits == 0) { bp->size = 0; bp->shift = 1; i = MALLOC_MINSIZE - 1; while (i >>= 1) bp->shift++; bp->total = bp->free = MALLOC_PAGESIZE >> bp->shift; bp->page = pp; k = mprotect(pp, MALLOC_PAGESIZE, PROT_NONE); if (k < 0) { unmap(d, pp, MALLOC_PAGESIZE); LIST_INSERT_HEAD(&d->chunk_info_list, bp, entries); return NULL; } } else { bp->size = (1UL << bits); bp->shift = bits; bp->total = bp->free = MALLOC_PAGESIZE >> bits; bp->page = pp; } /* set all valid bits in the bitmap */ k = bp->total; i = 0; /* Do a bunch at a time */ for (; (k - i) >= MALLOC_BITS; i += MALLOC_BITS) bp->bits[i / MALLOC_BITS] = ~0UL; for (; i < k; i++) bp->bits[i / MALLOC_BITS] |= 1UL << (i % MALLOC_BITS); LIST_INSERT_HEAD(&d->chunk_dir[bits], bp, entries); bits++; if ((uintptr_t)pp & bits) wrterror("pp & bits"); insert(d, (void *)((uintptr_t)pp | bits), (uintptr_t)bp); return bp; } /* * Allocate a chunk */ static void * malloc_bytes(struct dir_info *d, size_t size) { int i, j; size_t k; u_long u, *lp; struct chunk_info *bp; if (mopts.malloc_canary != (d->canary1 ^ (u_int32_t)(uintptr_t)d) || d->canary1 != ~d->canary2) wrterror("internal struct corrupt"); /* Don't bother with anything less than this */ /* unless we have a malloc(0) requests */ if (size != 0 && size < MALLOC_MINSIZE) size = MALLOC_MINSIZE; /* Find the right bucket */ if (size == 0) j = 0; else { j = MALLOC_MINSHIFT; i = (size - 1) >> (MALLOC_MINSHIFT - 1); while (i >>= 1) j++; } /* If it's empty, make a page more of that size chunks */ if (LIST_EMPTY(&d->chunk_dir[j])) { bp = omalloc_make_chunks(d, j); if (bp == NULL) return NULL; } else bp = LIST_FIRST(&d->chunk_dir[j]); if (bp->canary != d->canary1) wrterror("chunk info corrupted"); /* Find first word of bitmap which isn't empty */ for (lp = bp->bits; !*lp; lp++) /* EMPTY */; /* Find that bit, and tweak it */ u = 1; k = 0; while (!(*lp & u)) { u += u; k++; } /* advance a random # of positions */ i = (getrbyte() & (MALLOC_DELAYED_CHUNKS - 1)) % bp->free; while (i > 0) { u += u; k++; if (k >= MALLOC_BITS) { lp++; u = 1; k = 0; } if (lp - bp->bits > (bp->total - 1) / MALLOC_BITS) { wrterror("chunk overflow"); errno = EFAULT; return (NULL); } if (*lp & u) i--; } *lp ^= u; /* If there are no more free, remove from free-list */ if (!--bp->free) LIST_REMOVE(bp, entries); /* Adjust to the real offset of that chunk */ k += (lp - bp->bits) * MALLOC_BITS; k <<= bp->shift; if (mopts.malloc_junk && bp->size > 0) memset((char *)bp->page + k, SOME_JUNK, bp->size); return ((char *)bp->page + k); } /* * Free a chunk, and possibly the page it's on, if the page becomes empty. */ static void free_bytes(struct dir_info *d, struct region_info *r, void *ptr) { struct chunk_head *mp; struct chunk_info *info; long i; info = (struct chunk_info *)r->size; if (info->canary != d->canary1) wrterror("chunk info corrupted"); /* Find the chunk number on the page */ i = ((uintptr_t)ptr & MALLOC_PAGEMASK) >> info->shift; if ((uintptr_t)ptr & ((1UL << (info->shift)) - 1)) { wrterror("modified chunk-pointer"); return; } if (info->bits[i / MALLOC_BITS] & (1UL << (i % MALLOC_BITS))) { wrterror("chunk is already free"); return; } info->bits[i / MALLOC_BITS] |= 1UL << (i % MALLOC_BITS); info->free++; if (info->size != 0) mp = d->chunk_dir + info->shift; else mp = d->chunk_dir; if (info->free == 1) { /* Page became non-full */ LIST_INSERT_HEAD(mp, info, entries); return; } if (info->free != info->total) return; LIST_REMOVE(info, entries); if (info->size == 0 && !mopts.malloc_freeprot) mprotect(info->page, MALLOC_PAGESIZE, PROT_READ | PROT_WRITE); unmap(d, info->page, MALLOC_PAGESIZE); delete(d, r); LIST_INSERT_HEAD(&d->chunk_info_list, info, entries); } static void * omalloc(size_t sz, int zero_fill) { void *p; size_t psz; if (sz > MALLOC_MAXCHUNK) { if (sz >= SIZE_MAX - mopts.malloc_guard - MALLOC_PAGESIZE) { errno = ENOMEM; return NULL; } sz += mopts.malloc_guard; psz = PAGEROUND(sz); p = map(g_pool, psz, zero_fill); if (p == MAP_FAILED) { errno = ENOMEM; return NULL; } if (insert(g_pool, p, sz)) { unmap(g_pool, p, psz); errno = ENOMEM; return NULL; } if (mopts.malloc_guard) { if (mprotect((char *)p + psz - mopts.malloc_guard, mopts.malloc_guard, PROT_NONE)) wrterror("mprotect"); malloc_guarded += mopts.malloc_guard; } if (mopts.malloc_move && sz - mopts.malloc_guard < MALLOC_PAGESIZE - MALLOC_LEEWAY) { /* fill whole allocation */ if (mopts.malloc_junk) memset(p, SOME_JUNK, psz - mopts.malloc_guard); /* shift towards the end */ p = ((char *)p) + ((MALLOC_PAGESIZE - MALLOC_LEEWAY - (sz - mopts.malloc_guard)) & ~(MALLOC_MINSIZE-1)); /* fill zeros if needed and overwritten above */ if (zero_fill && mopts.malloc_junk) memset(p, 0, sz - mopts.malloc_guard); } else { if (mopts.malloc_junk) { if (zero_fill) memset(p + sz - mopts.malloc_guard, SOME_JUNK, psz - sz); else memset(p, SOME_JUNK, psz - mopts.malloc_guard); } } } else { /* takes care of SOME_JUNK */ p = malloc_bytes(g_pool, sz); if (zero_fill && p != NULL && sz > 0) memset(p, 0, sz); } return p; } /* * Common function for handling recursion. Only * print the error message once, to avoid making the problem * potentially worse. */ static void malloc_recurse(void) { static int noprint; if (noprint == 0) { noprint = 1; wrterror("recursive call"); } malloc_active--; _MALLOC_UNLOCK(); errno = EDEADLK; } static int malloc_init(void) { if (omalloc_init(&g_pool)) { _MALLOC_UNLOCK(); if (mopts.malloc_xmalloc) wrterror("out of memory"); errno = ENOMEM; return -1; } return 0; } void * malloc(size_t size) { void *r; int saved_errno = errno; _MALLOC_LOCK(); malloc_func = " in malloc():"; if (g_pool == NULL) { if (malloc_init() != 0) return NULL; } if (malloc_active++) { malloc_recurse(); return NULL; } r = omalloc(size, mopts.malloc_zero); malloc_active--; _MALLOC_UNLOCK(); if (r == NULL && mopts.malloc_xmalloc) { wrterror("out of memory"); errno = ENOMEM; } if (r != NULL) errno = saved_errno; return r; } static void ofree(void *p) { struct region_info *r; size_t sz; r = find(g_pool, p); if (r == NULL) { wrterror("bogus pointer (double free?)"); return; } REALSIZE(sz, r); if (sz > MALLOC_MAXCHUNK) { if (sz - mopts.malloc_guard >= MALLOC_PAGESIZE - MALLOC_LEEWAY) { if (r->p != p) { wrterror("bogus pointer"); return; } } else { #if notyetbecause_of_realloc /* shifted towards the end */ if (p != ((char *)r->p) + ((MALLOC_PAGESIZE - MALLOC_MINSIZE - sz - mopts.malloc_guard) & ~(MALLOC_MINSIZE-1))) { } #endif p = r->p; } if (mopts.malloc_guard) { if (sz < mopts.malloc_guard) wrterror("guard size"); if (!mopts.malloc_freeprot) { if (mprotect((char *)p + PAGEROUND(sz) - mopts.malloc_guard, mopts.malloc_guard, PROT_READ | PROT_WRITE)) wrterror("mprotect"); } malloc_guarded -= mopts.malloc_guard; } if (mopts.malloc_junk && !mopts.malloc_freeprot) memset(p, SOME_FREEJUNK, PAGEROUND(sz) - mopts.malloc_guard); unmap(g_pool, p, PAGEROUND(sz)); delete(g_pool, r); } else { void *tmp; int i; if (mopts.malloc_junk && sz > 0) memset(p, SOME_FREEJUNK, sz); if (!mopts.malloc_freeprot) { i = getrbyte() & (MALLOC_DELAYED_CHUNKS - 1); tmp = p; p = g_pool->delayed_chunks[i]; g_pool->delayed_chunks[i] = tmp; } if (p != NULL) { r = find(g_pool, p); if (r == NULL) { wrterror("bogus pointer (double free?)"); return; } free_bytes(g_pool, r, p); } } } void free(void *ptr) { int saved_errno = errno; /* This is legal. */ if (ptr == NULL) return; _MALLOC_LOCK(); malloc_func = " in free():"; if (g_pool == NULL) { _MALLOC_UNLOCK(); wrterror("free() called before allocation"); return; } if (malloc_active++) { malloc_recurse(); return; } ofree(ptr); malloc_active--; _MALLOC_UNLOCK(); errno = saved_errno; } static void * orealloc(void *p, size_t newsz) { struct region_info *r; size_t oldsz, goldsz, gnewsz; void *q; if (p == NULL) return omalloc(newsz, 0); r = find(g_pool, p); if (r == NULL) { wrterror("bogus pointer (double free?)"); return NULL; } if (newsz >= SIZE_MAX - mopts.malloc_guard - MALLOC_PAGESIZE) { errno = ENOMEM; return NULL; } REALSIZE(oldsz, r); goldsz = oldsz; if (oldsz > MALLOC_MAXCHUNK) { if (oldsz < mopts.malloc_guard) wrterror("guard size"); oldsz -= mopts.malloc_guard; } gnewsz = newsz; if (gnewsz > MALLOC_MAXCHUNK) gnewsz += mopts.malloc_guard; if (newsz > MALLOC_MAXCHUNK && oldsz > MALLOC_MAXCHUNK && p == r->p && !mopts.malloc_realloc) { size_t roldsz = PAGEROUND(goldsz); size_t rnewsz = PAGEROUND(gnewsz); if (rnewsz > roldsz) { if (!mopts.malloc_guard) { STATS_INC(g_pool->cheap_realloc_tries); zapcacheregion(g_pool, p + roldsz); q = MMAPA(p + roldsz, rnewsz - roldsz); if (q == p + roldsz) { malloc_used += rnewsz - roldsz; if (mopts.malloc_junk) memset(q, SOME_JUNK, rnewsz - roldsz); r->size = newsz; STATS_INC(g_pool->cheap_reallocs); return p; } else if (q != MAP_FAILED) munmap(q, rnewsz - roldsz); } } else if (rnewsz < roldsz) { if (mopts.malloc_guard) { if (mprotect((char *)p + roldsz - mopts.malloc_guard, mopts.malloc_guard, PROT_READ | PROT_WRITE)) wrterror("mprotect"); if (mprotect((char *)p + rnewsz - mopts.malloc_guard, mopts.malloc_guard, PROT_NONE)) wrterror("mprotect"); } unmap(g_pool, (char *)p + rnewsz, roldsz - rnewsz); r->size = gnewsz; return p; } else { if (newsz > oldsz && mopts.malloc_junk) memset((char *)p + newsz, SOME_JUNK, rnewsz - mopts.malloc_guard - newsz); r->size = gnewsz; return p; } } if (newsz <= oldsz && newsz > oldsz / 2 && !mopts.malloc_realloc) { if (mopts.malloc_junk && newsz > 0) memset((char *)p + newsz, SOME_JUNK, oldsz - newsz); return p; } else if (newsz != oldsz || mopts.malloc_realloc) { q = omalloc(newsz, 0); if (q == NULL) return NULL; if (newsz != 0 && oldsz != 0) memcpy(q, p, oldsz < newsz ? oldsz : newsz); ofree(p); return q; } else return p; } void * realloc(void *ptr, size_t size) { void *r; int saved_errno = errno; _MALLOC_LOCK(); malloc_func = " in realloc():"; if (g_pool == NULL) { if (malloc_init() != 0) return NULL; } if (malloc_active++) { malloc_recurse(); return NULL; } r = orealloc(ptr, size); malloc_active--; _MALLOC_UNLOCK(); if (r == NULL && mopts.malloc_xmalloc) { wrterror("out of memory"); errno = ENOMEM; } if (r != NULL) errno = saved_errno; return r; } #define MUL_NO_OVERFLOW (1UL << (sizeof(size_t) * 4)) void * calloc(size_t nmemb, size_t size) { void *r; int saved_errno = errno; _MALLOC_LOCK(); malloc_func = " in calloc():"; if (g_pool == NULL) { if (malloc_init() != 0) return NULL; } if ((nmemb >= MUL_NO_OVERFLOW || size >= MUL_NO_OVERFLOW) && nmemb > 0 && SIZE_MAX / nmemb < size) { _MALLOC_UNLOCK(); if (mopts.malloc_xmalloc) wrterror("out of memory"); errno = ENOMEM; return NULL; } if (malloc_active++) { malloc_recurse(); return NULL; } size *= nmemb; r = omalloc(size, 1); malloc_active--; _MALLOC_UNLOCK(); if (r == NULL && mopts.malloc_xmalloc) { wrterror("out of memory"); errno = ENOMEM; } if (r != NULL) errno = saved_errno; return r; }