.\" $OpenBSD: fcntl.2,v 1.31 2014/12/16 00:06:49 schwarze Exp $ .\" $NetBSD: fcntl.2,v 1.6 1995/02/27 12:32:29 cgd Exp $ .\" .\" Copyright (c) 1983, 1993 .\" The Regents of the University of California. All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" 3. Neither the name of the University nor the names of its contributors .\" may be used to endorse or promote products derived from this software .\" without specific prior written permission. .\" .\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" @(#)fcntl.2 8.2 (Berkeley) 1/12/94 .\" .Dd $Mdocdate: December 16 2014 $ .Dt FCNTL 2 .Os .Sh NAME .Nm fcntl .Nd file control .Sh SYNOPSIS .In fcntl.h .Ft int .Fn fcntl "int fd" "int cmd" "..." .Sh DESCRIPTION The .Fn fcntl provides control over the properties of a file that is already open. The argument .Fa fd is a descriptor to be operated on by .Fa cmd as described below. The third parameter is called .Fa arg and is technically a pointer to .Fa void , but is interpreted as an .Li int by some commands, a pointer to a .Li struct flock by others (see below), and ignored by the rest. .Pp The commands are: .Bl -tag -width F_DUPFD_CLOEXEC .It Dv F_DUPFD Return a new descriptor as follows: .Pp .Bl -bullet -compact .It Lowest numbered available descriptor greater than or equal to .Fa arg (interpreted as an .Li int ) . .It Same object references as the original descriptor. .It New descriptor shares the same file offset if the object was a file. .It Same access mode (read, write or read/write). .It Same file status flags (i.e., both file descriptors share the same file status flags). .It The close-on-exec flag associated with the new file descriptor is set to remain open across .Xr execve 2 calls. .El .It Dv F_DUPFD_CLOEXEC Like .Dv F_DUPFD , but the .Dv FD_CLOEXEC flag associated with the new file descriptor is set, so the file descriptor is closed when .Xr execve 2 is called. .It Dv F_GETFD Get the close-on-exec flag associated with the file descriptor .Fa fd as .Dv FD_CLOEXEC . If the returned value ANDed with .Dv FD_CLOEXEC is 0, the file will remain open across .Fn exec , otherwise the file will be closed upon execution of .Fn exec .Fa ( arg is ignored). .It Dv F_SETFD Set the close-on-exec flag associated with .Fa fd to .Fa arg , where .Fa arg (interpreted as an .Li int ) is either 0 or .Dv FD_CLOEXEC , as described above. .It Dv F_GETFL Get file status flags associated with the file descriptor .Fa fd , as described below .Fa ( arg is ignored). .It Dv F_SETFL Set file status flags associated with the file descriptor .Fa fd to .Fa arg (interpreted as an .Li int ) . .It Dv F_GETOWN Get the process ID or process group currently receiving .Dv SIGIO and .Dv SIGURG signals; process groups are returned as negative values .Fa ( arg is ignored). .It Dv F_SETOWN Set the process or process group to receive .Dv SIGIO and .Dv SIGURG signals; process groups are specified by supplying .Fa arg (interpreted as an .Li int ) as negative, otherwise .Fa arg is taken as a process ID. .El .Pp The flags for the .Dv F_GETFL and .Dv F_SETFL commands are as follows: .Bl -tag -width O_NONBLOCKX .It Dv O_NONBLOCK Non-blocking I/O; if no data is available to a .Xr read 2 call, or if a .Xr write 2 operation would block, the read or write call returns \-1 with the error .Er EAGAIN . .It Dv O_APPEND Force each write to append at the end of file; corresponds to the .Dv O_APPEND flag of .Xr open 2 . .It Dv O_ASYNC Enable the .Dv SIGIO signal to be sent to the process group when I/O is possible, e.g., upon availability of data to be read. .It Dv O_SYNC Cause writes to be synchronous. Data will be written to the physical device instead of just being stored in the buffer cache; corresponds to the .Dv O_SYNC flag of .Xr open 2 . .El .Pp Several commands are available for doing advisory file locking; they all operate on the following structure: .Bd -literal struct flock { off_t l_start; /* starting offset */ off_t l_len; /* len = 0 means until end of file */ pid_t l_pid; /* lock owner */ short l_type; /* lock type: read/write, etc. */ short l_whence; /* type of l_start */ }; .Ed .Pp The commands available for advisory record locking are as follows: .Bl -tag -width F_SETLKWX .It Dv F_GETLK Get the first lock that blocks the lock description pointed to by the third argument, .Fa arg , taken as a pointer to a .Fa "struct flock" (see above). The information retrieved overwrites the information passed to .Fn fcntl in the .Fa flock structure. If no lock is found that would prevent this lock from being created, the structure is left unchanged by this function call except for the lock type which is set to .Dv F_UNLCK . .It Dv F_SETLK Set or clear a file segment lock according to the lock description pointed to by the third argument, .Fa arg , taken as a pointer to a .Fa "struct flock" (see above). .Dv F_SETLK is used to establish shared (or read) locks .Pq Dv F_RDLCK or exclusive (or write) locks .Pq Dv F_WRLCK , as well as remove either type of lock .Pq Dv F_UNLCK . If a shared or exclusive lock cannot be set, .Fn fcntl returns immediately with .Er EAGAIN . .It Dv F_SETLKW This command is the same as .Dv F_SETLK except that if a shared or exclusive lock is blocked by other locks, the process waits until the request can be satisfied. If a signal that is to be caught is received while .Fn fcntl is waiting for a region, the .Fn fcntl will be interrupted if the signal handler has not specified the .Dv SA_RESTART (see .Xr sigaction 2 ) . .El .Pp When a shared lock has been set on a segment of a file, other processes can set shared locks on that segment or a portion of it. A shared lock prevents any other process from setting an exclusive lock on any portion of the protected area. A request for a shared lock fails if the file descriptor was not opened with read access. .Pp An exclusive lock prevents any other process from setting a shared lock or an exclusive lock on any portion of the protected area. A request for an exclusive lock fails if the file was not opened with write access. .Pp The value of .Fa l_whence is .Dv SEEK_SET , .Dv SEEK_CUR , or .Dv SEEK_END to indicate that the relative offset, .Fa l_start bytes, will be measured from the start of the file, current position, or end of the file, respectively. The value of .Fa l_len is the number of consecutive bytes to be locked. If .Fa l_len is negative, the result is undefined. The .Fa l_pid field is only used with .Dv F_GETLK to return the process ID of the process holding a blocking lock. After a successful .Dv F_GETLK request, the value of .Fa l_whence is .Dv SEEK_SET . .Pp Locks may start and extend beyond the current end of a file, but may not start or extend before the beginning of the file. A lock is set to extend to the largest possible value of the file offset for that file if .Fa l_len is set to zero. If .Fa l_whence and .Fa l_start point to the beginning of the file, and .Fa l_len is zero, the entire file is locked. If an application wishes only to do entire file locking, the .Xr flock 2 system call is much more efficient. .Pp There is at most one type of lock set for each byte in the file. Before a successful return from an .Dv F_SETLK or an .Dv F_SETLKW request when the calling process has previously existing locks on bytes in the region specified by the request, the previous lock type for each byte in the specified region is replaced by the new lock type. As specified above under the descriptions of shared locks and exclusive locks, an .Dv F_SETLK or an .Dv F_SETLKW request fails or blocks respectively when another process has existing locks on bytes in the specified region and the type of any of those locks conflicts with the type specified in the request. .Pp This interface follows the completely stupid semantics of System V and .St -p1003.1-88 that require that all locks associated with a file for a given process are removed when .Em any file descriptor for that file is closed by that process. This semantic means that applications must be aware of any files that a subroutine library may access. For example if an application for updating the password file locks the password file database while making the update, and then calls .Xr getpwnam 3 to retrieve a record, the lock will be lost because .Xr getpwnam 3 opens, reads, and closes the password database. The database close will release all locks that the process has associated with the database, even if the library routine never requested a lock on the database. Another minor semantic problem with this interface is that locks are not inherited by a child process created using the .Xr fork 2 function. The .Xr flock 2 interface has much more rational last close semantics and allows locks to be inherited by child processes. .Xr flock 2 is recommended for applications that want to ensure the integrity of their locks when using library routines or wish to pass locks to their children. Note that .Xr flock 2 and .Fn fcntl locks may be safely used concurrently. .Pp All locks associated with a file for a given process are removed when the process terminates. .Pp A potential for deadlock occurs if a process controlling a locked region is put to sleep by attempting to lock the locked region of another process. This implementation detects that sleeping until a locked region is unlocked would cause a deadlock and fails with an .Er EDEADLK error. .Sh RETURN VALUES Upon successful completion, the value returned depends on .Fa cmd as follows: .Bl -tag -width F_DUPFD_CLOEXEC -offset indent .It Dv F_DUPFD A new file descriptor. .It Dv F_DUPFD_CLOEXEC A new file descriptor. .It Dv F_GETFD Value of flag (only the low-order bit is defined). .It Dv F_GETFL Value of flags. .It Dv F_GETOWN Value of file descriptor owner. .It other Value other than \-1. .El .Pp Otherwise, a value of \-1 is returned and .Va errno is set to indicate the error. .Sh ERRORS .Fn fcntl will fail if: .Bl -tag -width Er .It Bq Er EAGAIN The argument .Fa cmd is .Dv F_SETLK , the type of lock .Pq Fa l_type is a shared lock .Pq Dv F_RDLCK or exclusive lock .Pq Dv F_WRLCK , and the segment of a file to be locked is already exclusive-locked by another process; or the type is an exclusive lock and some portion of the segment of a file to be locked is already shared-locked or exclusive-locked by another process. .It Bq Er EBADF .Fa fd is not a valid open file descriptor. .Pp The argument .Fa cmd is .Dv F_SETLK or .Dv F_SETLKW , the type of lock .Pq Fa l_type is a shared lock .Pq Dv F_RDLCK , and .Fa fd is not a valid file descriptor open for reading. .Pp The argument .Fa cmd is .Dv F_SETLK or .Dv F_SETLKW , the type of lock .Pq Fa l_type is an exclusive lock .Pq Dv F_WRLCK , and .Fa fd is not a valid file descriptor open for writing. .It Bq Er EDEADLK The argument .Fa cmd is .Dv F_SETLKW , and a deadlock condition was detected. .It Bq Er EINTR The argument .Fa cmd is invalid. .Pp The argument .Fa cmd is .Dv F_SETLKW , and the function was interrupted by a signal. .It Bq Er EINVAL .Fa cmd is .Dv F_DUPFD and .Fa arg is negative or greater than the maximum allowable number (see .Xr getdtablesize 3 ) . .Pp The argument .Fa cmd is .Dv F_GETLK , .Dv F_SETLK , or .Dv F_SETLKW and the data to which .Fa arg points is not valid, or .Fa fd refers to a file that does not support locking. .It Bq Er EMFILE The argument .Fa cmd is .Dv F_DUPFD and the maximum number of open file descriptors permitted for the process are already in use, or no file descriptors greater than or equal to .Fa arg are available. .It Bq Er ENOLCK The argument .Fa cmd is .Dv F_SETLK or .Dv F_SETLKW , and satisfying the lock or unlock request would result in the number of locked regions in the system exceeding a system-imposed limit. .It Bq Er ESRCH .Fa cmd is .Dv F_SETOWN and the process ID given in .Fa arg is not in use. .El .Sh SEE ALSO .Xr close 2 , .Xr execve 2 , .Xr flock 2 , .Xr open 2 , .Xr sigaction 2 , .Xr getdtablesize 3 .Sh STANDARDS The .Fn fcntl function conforms to .St -p1003.1-2008 . .Sh HISTORY The .Fn fcntl function call appeared in .Bx 4.2 .