/* * Copyright (c) 1995 John Birrell . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by John Birrell. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $OpenBSD: uthread_mutex.c,v 1.6 1999/01/06 05:29:25 d Exp $ * */ #include #include #include #ifdef _THREAD_SAFE #include #include "pthread_private.h" static spinlock_t static_init_lock = _SPINLOCK_INITIALIZER; int pthread_mutex_init(pthread_mutex_t * mutex, const pthread_mutexattr_t * mutex_attr) { enum pthread_mutextype type; pthread_mutex_t pmutex; int ret = 0; if (mutex == NULL) { ret = EINVAL; } else { /* Check if default mutex attributes: */ if (mutex_attr == NULL || *mutex_attr == NULL) /* Default to a fast mutex: */ type = PTHREAD_MUTEX_DEFAULT; else if ((*mutex_attr)->m_type >= MUTEX_TYPE_MAX) /* Return an invalid argument error: */ ret = EINVAL; else /* Use the requested mutex type: */ type = (*mutex_attr)->m_type; /* Check no errors so far: */ if (ret == 0) { if ((pmutex = (pthread_mutex_t) malloc(sizeof(struct pthread_mutex))) == NULL) ret = ENOMEM; else { /* Reset the mutex flags: */ pmutex->m_flags = 0; /* Process according to mutex type: */ switch (type) { /* Fast mutex: */ case PTHREAD_MUTEX_DEFAULT: case PTHREAD_MUTEX_NORMAL: case PTHREAD_MUTEX_ERRORCHECK: /* Nothing to do here. */ break; /* Counting mutex: */ case PTHREAD_MUTEX_RECURSIVE: /* Reset the mutex count: */ pmutex->m_data.m_count = 0; break; /* Trap invalid mutex types: */ default: /* Return an invalid argument error: */ ret = EINVAL; break; } if (ret == 0) { /* Initialise the rest of the mutex: */ _thread_queue_init(&pmutex->m_queue); pmutex->m_flags |= MUTEX_FLAGS_INITED; pmutex->m_owner = NULL; pmutex->m_type = type; _SPINUNLOCK(&pmutex->lock); *mutex = pmutex; } else { free(pmutex); *mutex = NULL; } } } } /* Return the completion status: */ return (ret); } int pthread_mutex_destroy(pthread_mutex_t * mutex) { int ret = 0; if (mutex == NULL || *mutex == NULL) ret = EINVAL; else { /* Lock the mutex structure: */ _SPINLOCK(&(*mutex)->lock); /* * Free the memory allocated for the mutex * structure: */ free(*mutex); /* * Leave the caller's pointer NULL now that * the mutex has been destroyed: */ *mutex = NULL; } /* Return the completion status: */ return (ret); } static int init_static (pthread_mutex_t *mutex) { int ret; _SPINLOCK(&static_init_lock); if (*mutex == NULL) ret = pthread_mutex_init(mutex, NULL); else ret = 0; _SPINUNLOCK(&static_init_lock); return(ret); } int pthread_mutex_trylock(pthread_mutex_t * mutex) { int ret = 0; if (mutex == NULL) ret = EINVAL; /* * If the mutex is statically initialized, perform the dynamic * initialization: */ else if (*mutex != NULL || (ret = init_static(mutex)) == 0) { /* Lock the mutex structure: */ _SPINLOCK(&(*mutex)->lock); /* Process according to mutex type: */ switch ((*mutex)->m_type) { /* Fast mutex: */ case PTHREAD_MUTEX_NORMAL: case PTHREAD_MUTEX_DEFAULT: case PTHREAD_MUTEX_ERRORCHECK: /* Check if this mutex is not locked: */ if ((*mutex)->m_owner == NULL) { /* Lock the mutex for the running thread: */ (*mutex)->m_owner = _thread_run; } else { /* Return a busy error: */ ret = EBUSY; } break; /* Counting mutex: */ case PTHREAD_MUTEX_RECURSIVE: /* Check if this mutex is locked: */ if ((*mutex)->m_owner != NULL) { /* * Check if the mutex is locked by the running * thread: */ if ((*mutex)->m_owner == _thread_run) { /* Increment the lock count: */ (*mutex)->m_data.m_count++; } else { /* Return a busy error: */ ret = EBUSY; } } else { /* Lock the mutex for the running thread: */ (*mutex)->m_owner = _thread_run; } break; /* Trap invalid mutex types: */ default: /* Return an invalid argument error: */ ret = EINVAL; break; } /* Unlock the mutex structure: */ _SPINUNLOCK(&(*mutex)->lock); } /* Return the completion status: */ return (ret); } int pthread_mutex_lock(pthread_mutex_t * mutex) { int ret = 0; if (mutex == NULL) ret = EINVAL; /* * If the mutex is statically initialized, perform the dynamic * initialization: */ else if (*mutex != NULL || (ret = init_static(mutex)) == 0) { /* Lock the mutex structure: */ _SPINLOCK(&(*mutex)->lock); /* Process according to mutex type: */ switch ((*mutex)->m_type) { /* What SS2 define as a 'normal' mutex. This has to deadlock on attempts to get a lock you already own. */ case PTHREAD_MUTEX_NORMAL: if ((*mutex)->m_owner == _thread_run) { /* Intentionally deadlock: */ _thread_run->data.mutex = mutex; for (;;) _thread_kern_sched_state(PS_MUTEX_WAIT, __FILE__, __LINE__); } goto COMMON_LOCK; /* Return error (not OK) on attempting to re-lock */ case PTHREAD_MUTEX_ERRORCHECK: if ((*mutex)->m_owner == _thread_run) { ret = EDEADLK; break; } /* Fast mutexes do not check for any error conditions: */ case PTHREAD_MUTEX_DEFAULT: COMMON_LOCK: /* * Enter a loop to wait for the mutex to be locked by the * current thread: */ while ((*mutex)->m_owner != _thread_run) { /* Check if the mutex is not locked: */ if ((*mutex)->m_owner == NULL) { /* Lock the mutex for this thread: */ (*mutex)->m_owner = _thread_run; } else { /* * Join the queue of threads waiting to lock * the mutex: */ _thread_queue_enq(&(*mutex)->m_queue, _thread_run); _thread_run->data.mutex = mutex; /* Wait for the mutex: */ _thread_kern_sched_state_unlock( PS_MUTEX_WAIT, &(*mutex)->lock, __FILE__, __LINE__); /* Lock the mutex again: */ _SPINLOCK(&(*mutex)->lock); } } break; /* Counting mutex: */ case PTHREAD_MUTEX_RECURSIVE: /* * Enter a loop to wait for the mutex to be locked by the * current thread: */ while ((*mutex)->m_owner != _thread_run) { /* Check if the mutex is not locked: */ if ((*mutex)->m_owner == NULL) { /* Lock the mutex for this thread: */ (*mutex)->m_owner = _thread_run; /* Reset the lock count for this mutex: */ (*mutex)->m_data.m_count = 0; } else { /* * Join the queue of threads waiting to lock * the mutex: */ _thread_queue_enq(&(*mutex)->m_queue, _thread_run); _thread_run->data.mutex = mutex; /* Wait for the mutex: */ _thread_kern_sched_state_unlock( PS_MUTEX_WAIT, &(*mutex)->lock, __FILE__, __LINE__); /* Lock the mutex again: */ _SPINLOCK(&(*mutex)->lock); } } /* Increment the lock count for this mutex: */ (*mutex)->m_data.m_count++; break; /* Trap invalid mutex types: */ default: /* Return an invalid argument error: */ ret = EINVAL; break; } /* Unlock the mutex structure: */ _SPINUNLOCK(&(*mutex)->lock); } /* Return the completion status: */ return (ret); } int pthread_mutex_unlock(pthread_mutex_t * mutex) { int ret = 0; if (mutex == NULL || *mutex == NULL) { ret = EINVAL; } else { /* Lock the mutex structure: */ _SPINLOCK(&(*mutex)->lock); /* Process according to mutex type: */ switch ((*mutex)->m_type) { /* Default & normal mutexes do not really need to check for any error conditions: */ case PTHREAD_MUTEX_NORMAL: case PTHREAD_MUTEX_DEFAULT: case PTHREAD_MUTEX_ERRORCHECK: /* Check if the running thread is not the owner of the mutex: */ if ((*mutex)->m_owner != _thread_run) { /* This thread doesn't have permission: */ ret = EPERM; } /* * Get the next thread from the queue of threads waiting on * the mutex: */ else if (((*mutex)->m_owner = _thread_queue_deq(&(*mutex)->m_queue)) != NULL) { /* Allow the new owner of the mutex to run: */ PTHREAD_NEW_STATE((*mutex)->m_owner,PS_RUNNING); } break; /* Counting mutex: */ case PTHREAD_MUTEX_RECURSIVE: /* Check if the running thread is not the owner of the mutex: */ if ((*mutex)->m_owner != _thread_run) { /* Return an invalid argument error: */ ret = EINVAL; } /* Check if there are still counts: */ else if ((*mutex)->m_data.m_count > 1) { /* Decrement the count: */ (*mutex)->m_data.m_count--; } else { (*mutex)->m_data.m_count = 0; /* * Get the next thread from the queue of threads waiting on * the mutex: */ if (((*mutex)->m_owner = _thread_queue_deq(&(*mutex)->m_queue)) != NULL) { /* Allow the new owner of the mutex to run: */ PTHREAD_NEW_STATE((*mutex)->m_owner,PS_RUNNING); } } break; /* Trap invalid mutex types: */ default: /* Return an invalid argument error: */ ret = EINVAL; break; } /* Unlock the mutex structure: */ _SPINUNLOCK(&(*mutex)->lock); } /* Return the completion status: */ return (ret); } #endif