.\" $OpenBSD: regexp.3,v 1.12 2010/09/20 07:41:17 jmc Exp $ .\" Copyright (c) 1991, 1993 .\" The Regents of the University of California. All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" 3. Neither the name of the University nor the names of its contributors .\" may be used to endorse or promote products derived from this software .\" without specific prior written permission. .\" .\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" @(#)regexp.3 8.1 (Berkeley) 6/4/93 .\" .Dd $Mdocdate: September 20 2010 $ .Dt REGEXP 3 .Os .Sh NAME .Nm regexp .Nd obsolete regular expression routines .Sh SYNOPSIS .Fd #include .Ft regexp * .Fn regcomp "const char *exp" .Ft int .Fn regexec "const regexp *prog" "const char *string" .Ft void .Fn regsub "const regexp *prog" "const char *source" "char *dest" .Sh DESCRIPTION .Bf -symbolic This interface is made obsolete by .Xr regex 3 . It is available from the compatibility library, libcompat. .Ef .Pp The .Fn regcomp , .Fn regexec , .Fn regsub , and .Fn regerror functions implement .Xr egrep 1 Ns -style regular expressions and supporting facilities. .Pp The .Fn regcomp function compiles a regular expression into a structure of type .Xr regexp , and returns a pointer to it. The space has been allocated using .Xr malloc 3 and may be released by .Xr free 3 . .Pp The .Fn regexec function matches a .Dv NUL Ns -terminated .Fa string against the compiled regular expression in .Fa prog . It returns 1 for success and 0 for failure, and adjusts the contents of .Fa prog Ns 's .Em startp and .Em endp (see below) accordingly. .Pp The members of a .Xr regexp structure include at least the following (not necessarily in order): .Bd -literal -offset indent char *startp[NSUBEXP]; char *endp[NSUBEXP]; .Ed .Pp where .Dv NSUBEXP is defined (as 10) in the header file. Once a successful .Fn regexec has been done using the .Fn regexp , each .Em startp Ns - Em endp pair describes one substring within the .Fa string , with the .Em startp pointing to the first character of the substring and the .Em endp pointing to the first character following the substring. The 0th substring is the substring of .Fa string that matched the whole regular expression. The others are those substrings that matched parenthesized expressions within the regular expression, with parenthesized expressions numbered in left-to-right order of their opening parentheses. .Pp The .Fn regsub function copies .Fa source to .Fa dest , making substitutions according to the most recent .Fn regexec performed using .Fa prog . Each instance of `&' in .Fa source is replaced by the substring indicated by .Em startp Ns Bq and .Em endp Ns Bq . Each instance of .Sq \e Ns Em n , where .Em n is a digit, is replaced by the substring indicated by .Em startp Ns Bq Em n and .Em endp Ns Bq Em n . To get a literal `&' or .Sq \e Ns Em n into .Fa dest , prefix it with `\e'; to get a literal `\e' preceding `&' or .Sq \e Ns Em n , prefix it with another `\e'. .Pp The .Fn regerror function is called whenever an error is detected in .Fn regcomp , .Fn regexec , or .Fn regsub . The default .Fn regerror writes the string .Fa msg , with a suitable indicator of origin, on the standard error output and invokes .Xr exit 3 . The .Fn regerror function can be replaced by the user if other actions are desirable. .Sh REGULAR EXPRESSION SYNTAX A regular expression is zero or more .Em branches , separated by `|'. It matches anything that matches one of the branches. .Pp A branch is zero or more .Em pieces , concatenated. It matches a match for the first, followed by a match for the second, etc. .Pp A piece is an .Em atom possibly followed by `*', `+', or `?'. An atom followed by `*' matches a sequence of 0 or more matches of the atom. An atom followed by `+' matches a sequence of 1 or more matches of the atom. An atom followed by `?' matches a match of the atom, or the null string. .Pp An atom is a regular expression in parentheses (matching a match for the regular expression), a .Em range (see below), `.' (matching any single character), `^' (matching the null string at the beginning of the input string), `$' (matching the null string at the end of the input string), a `\e' followed by a single character (matching that character), or a single character with no other significance (matching that character). .Pp A .Em range is a sequence of characters enclosed in `[]'. It normally matches any single character from the sequence. If the sequence begins with `^', it matches any single character .Em not from the rest of the sequence. If two characters in the sequence are separated by `\-', this is shorthand for the full list of .Tn ASCII characters between them (e.g., `[0-9]' matches any decimal digit). To include a literal `]' in the sequence, make it the first character (following a possible `^'). To include a literal `\-', make it the first or last character. .Sh AMBIGUITY If a regular expression could match two different parts of the input string, it will match the one which begins earliest. If both begin in the same place but match different lengths, or match the same length in different ways, life gets messier, as follows. .Pp In general, the possibilities in a list of branches are considered in left-to-right order, the possibilities for `*', `+', and `?' are considered longest-first, nested constructs are considered from the outermost in, and concatenated constructs are considered leftmost-first. The match that will be chosen is the one that uses the earliest possibility in the first choice that has to be made. If there is more than one choice, the next will be made in the same manner (earliest possibility) subject to the decision on the first choice. And so forth. .Pp For example, .Sq Li (ab|a)b*c could match `abc' in one of two ways. The first choice is between `ab' and `a'; since `ab' is earlier, and does lead to a successful overall match, it is chosen. Since the `b' is already spoken for, the `b*' must match its last possibility\(emthe empty string\(emsince it must respect the earlier choice. .Pp In the particular case where no `|'s are present and there is only one `*', `+', or `?', the net effect is that the longest possible match will be chosen. So .Sq Li ab* , presented with `xabbbby', will match `abbbb'. Note that if .Sq Li ab* , is tried against `xabyabbbz', it will match `ab' just after `x', due to the begins-earliest rule. (In effect, the decision on where to start the match is the first choice to be made; hence subsequent choices must respect it even if this leads them to less-preferred alternatives.) .Sh RETURN VALUES The .Fn regcomp function returns .Dv NULL for a failure .Pf ( Fn regerror permitting), where failures are syntax errors, exceeding implementation limits, or applying `+' or `*' to a possibly NULL operand. .Sh SEE ALSO .Xr ed 1 , .Xr egrep 1 , .Xr ex 1 , .Xr expr 1 , .Xr fgrep 1 , .Xr grep 1 , .Xr regex 3 .Sh HISTORY Both code and manual page for .Fn regcomp , .Fn regexec , .Fn regsub , and .Fn regerror were written at the University of Toronto and appeared in .Bx 4.3 tahoe . They are intended to be compatible with the Bell V8 .Fn regexp , but are not derived from Bell code. .Sh BUGS Empty branches and empty regular expressions are not portable to V8. .Pp The restriction against applying `*' or `+' to a possibly NULL operand is an artifact of the simplistic implementation. .Pp Does not support .Eo .Xr egrep 1 .Ec 's newline-separated branches; neither does the V8 .Fn regexp though. .Pp Due to emphasis on compactness and simplicity, it's not strikingly fast. It does give special attention to handling simple cases quickly.