/* crypto/bn/bn_sqr.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include <stdio.h> #include "cryptlib.h" #include "bn_lcl.h" /* r must not be a */ /* I've just gone over this and it is now %20 faster on x86 - eay - 27 Jun 96 */ int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { int max, al; int ret = 0; BIGNUM *tmp, *rr; #ifdef BN_COUNT fprintf(stderr, "BN_sqr %d * %d\n", a->top, a->top); #endif bn_check_top(a); al = a->top; if (al <= 0) { r->top = 0; return 1; } BN_CTX_start(ctx); rr = (a != r) ? r : BN_CTX_get(ctx); tmp = BN_CTX_get(ctx); if (!rr || !tmp) goto err; max = 2 * al; /* Non-zero (from above) */ if (bn_wexpand(rr, max) == NULL) goto err; if (al == 4) { #ifndef BN_SQR_COMBA BN_ULONG t[8]; bn_sqr_normal(rr->d, a->d, 4, t); #else bn_sqr_comba4(rr->d, a->d); #endif } else if (al == 8) { #ifndef BN_SQR_COMBA BN_ULONG t[16]; bn_sqr_normal(rr->d, a->d, 8, t); #else bn_sqr_comba8(rr->d, a->d); #endif } else { #if defined(BN_RECURSION) if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) { BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL*2]; bn_sqr_normal(rr->d, a->d, al, t); } else { int j, k; j = BN_num_bits_word((BN_ULONG)al); j = 1 << (j - 1); k = j + j; if (al == j) { if (bn_wexpand(tmp, k * 2) == NULL) goto err; bn_sqr_recursive(rr->d, a->d, al, tmp->d); } else { if (bn_wexpand(tmp, max) == NULL) goto err; bn_sqr_normal(rr->d, a->d, al, tmp->d); } } #else if (bn_wexpand(tmp, max) == NULL) goto err; bn_sqr_normal(rr->d, a->d, al, tmp->d); #endif } rr->neg = 0; /* If the most-significant half of the top word of 'a' is zero, then * the square of 'a' will max-1 words. */ if (a->d[al - 1] == (a->d[al - 1] & BN_MASK2l)) rr->top = max - 1; else rr->top = max; if (rr != r) BN_copy(r, rr); ret = 1; err: bn_check_top(rr); bn_check_top(tmp); BN_CTX_end(ctx); return (ret); } /* tmp must have 2*n words */ void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp) { int i, j, max; const BN_ULONG *ap; BN_ULONG *rp; max = n * 2; ap = a; rp = r; rp[0] = rp[max - 1] = 0; rp++; j = n; if (--j > 0) { ap++; rp[j] = bn_mul_words(rp, ap, j, ap[-1]); rp += 2; } for (i = n - 2; i > 0; i--) { j--; ap++; rp[j] = bn_mul_add_words(rp, ap, j, ap[-1]); rp += 2; } bn_add_words(r, r, r, max); /* There will not be a carry */ bn_sqr_words(tmp, a, n); bn_add_words(r, r, tmp, max); } #ifdef BN_RECURSION /* r is 2*n words in size, * a and b are both n words in size. (There's not actually a 'b' here ...) * n must be a power of 2. * We multiply and return the result. * t must be 2*n words in size * We calculate * a[0]*b[0] * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) * a[1]*b[1] */ void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t) { int n = n2 / 2; int zero, c1; BN_ULONG ln, lo, *p; #ifdef BN_COUNT fprintf(stderr, " bn_sqr_recursive %d * %d\n", n2, n2); #endif if (n2 == 4) { #ifndef BN_SQR_COMBA bn_sqr_normal(r, a, 4, t); #else bn_sqr_comba4(r, a); #endif return; } else if (n2 == 8) { #ifndef BN_SQR_COMBA bn_sqr_normal(r, a, 8, t); #else bn_sqr_comba8(r, a); #endif return; } if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) { bn_sqr_normal(r, a, n2, t); return; } /* r=(a[0]-a[1])*(a[1]-a[0]) */ c1 = bn_cmp_words(a, &(a[n]), n); zero = 0; if (c1 > 0) bn_sub_words(t, a, &(a[n]), n); else if (c1 < 0) bn_sub_words(t, &(a[n]), a, n); else zero = 1; /* The result will always be negative unless it is zero */ p = &(t[n2*2]); if (!zero) bn_sqr_recursive(&(t[n2]), t, n, p); else memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG)); bn_sqr_recursive(r, a, n, p); bn_sqr_recursive(&(r[n2]), &(a[n]), n, p); /* t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) */ c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); /* t[32] is negative */ c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); /* t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1]) * r[10] holds (a[0]*a[0]) * r[32] holds (a[1]*a[1]) * c1 holds the carry bits */ c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); if (c1) { p = &(r[n + n2]); lo= *p; ln = (lo + c1) & BN_MASK2; *p = ln; /* The overflow will stop before we over write * words we should not overwrite */ if (ln < (BN_ULONG)c1) { do { p++; lo= *p; ln = (lo + 1) & BN_MASK2; *p = ln; } while (ln == 0); } } } #endif