/* $OpenBSD: ec_lib.c,v 1.41 2021/09/12 16:23:19 tb Exp $ */ /* * Originally written by Bodo Moeller for the OpenSSL project. */ /* ==================================================================== * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * Binary polynomial ECC support in OpenSSL originally developed by * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */ #include #include #include #include #include "bn_lcl.h" #include "ec_lcl.h" /* functions for EC_GROUP objects */ EC_GROUP * EC_GROUP_new(const EC_METHOD * meth) { EC_GROUP *ret; if (meth == NULL) { ECerror(EC_R_SLOT_FULL); return NULL; } if (meth->group_init == 0) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return NULL; } ret = malloc(sizeof *ret); if (ret == NULL) { ECerror(ERR_R_MALLOC_FAILURE); return NULL; } ret->meth = meth; ret->extra_data = NULL; ret->generator = NULL; BN_init(&ret->order); BN_init(&ret->cofactor); ret->curve_name = 0; ret->asn1_flag = OPENSSL_EC_NAMED_CURVE; ret->asn1_form = POINT_CONVERSION_UNCOMPRESSED; ret->seed = NULL; ret->seed_len = 0; if (!meth->group_init(ret)) { free(ret); return NULL; } return ret; } void EC_GROUP_free(EC_GROUP * group) { if (!group) return; if (group->meth->group_finish != 0) group->meth->group_finish(group); EC_EX_DATA_free_all_data(&group->extra_data); EC_POINT_free(group->generator); BN_free(&group->order); BN_free(&group->cofactor); free(group->seed); free(group); } void EC_GROUP_clear_free(EC_GROUP * group) { if (!group) return; if (group->meth->group_clear_finish != 0) group->meth->group_clear_finish(group); else if (group->meth->group_finish != 0) group->meth->group_finish(group); EC_EX_DATA_clear_free_all_data(&group->extra_data); EC_POINT_clear_free(group->generator); BN_clear_free(&group->order); BN_clear_free(&group->cofactor); freezero(group->seed, group->seed_len); freezero(group, sizeof *group); } int EC_GROUP_copy(EC_GROUP * dest, const EC_GROUP * src) { EC_EXTRA_DATA *d; if (dest->meth->group_copy == 0) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (dest->meth != src->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); return 0; } if (dest == src) return 1; EC_EX_DATA_free_all_data(&dest->extra_data); for (d = src->extra_data; d != NULL; d = d->next) { void *t = d->dup_func(d->data); if (t == NULL) return 0; if (!EC_EX_DATA_set_data(&dest->extra_data, t, d->dup_func, d->free_func, d->clear_free_func)) return 0; } if (src->generator != NULL) { if (dest->generator == NULL) { dest->generator = EC_POINT_new(dest); if (dest->generator == NULL) return 0; } if (!EC_POINT_copy(dest->generator, src->generator)) return 0; } else { /* src->generator == NULL */ EC_POINT_clear_free(dest->generator); dest->generator = NULL; } if (!BN_copy(&dest->order, &src->order)) return 0; if (!BN_copy(&dest->cofactor, &src->cofactor)) return 0; dest->curve_name = src->curve_name; dest->asn1_flag = src->asn1_flag; dest->asn1_form = src->asn1_form; if (src->seed) { free(dest->seed); dest->seed = malloc(src->seed_len); if (dest->seed == NULL) return 0; memcpy(dest->seed, src->seed, src->seed_len); dest->seed_len = src->seed_len; } else { free(dest->seed); dest->seed = NULL; dest->seed_len = 0; } return dest->meth->group_copy(dest, src); } EC_GROUP * EC_GROUP_dup(const EC_GROUP * a) { EC_GROUP *t = NULL; if ((a != NULL) && ((t = EC_GROUP_new(a->meth)) != NULL) && (!EC_GROUP_copy(t, a))) { EC_GROUP_free(t); t = NULL; } return t; } const EC_METHOD * EC_GROUP_method_of(const EC_GROUP *group) { return group->meth; } int EC_METHOD_get_field_type(const EC_METHOD *meth) { return meth->field_type; } /* * Try computing the cofactor from generator order n and field cardinality q. * This works for all curves of cryptographic interest. * * Hasse's theorem: | h * n - (q + 1) | <= 2 * sqrt(q) * * So: h_min = (q + 1 - 2*sqrt(q)) / n and h_max = (q + 1 + 2*sqrt(q)) / n and * therefore h_max - h_min = 4*sqrt(q) / n. So if n > 4*sqrt(q) holds, there is * only one possible value for h: * * h = \lfloor (h_min + h_max)/2 \rceil = \lfloor (q + 1)/n \rceil * * Otherwise, zero cofactor and return success. */ static int ec_guess_cofactor(EC_GROUP *group) { BN_CTX *ctx = NULL; BIGNUM *q = NULL; int ret = 0; /* * If the cofactor is too large, we cannot guess it and default to zero. * The RHS of below is a strict overestimate of log(4 * sqrt(q)). */ if (BN_num_bits(&group->order) <= (BN_num_bits(&group->field) + 1) / 2 + 3) { BN_zero(&group->cofactor); return 1; } if ((ctx = BN_CTX_new()) == NULL) goto err; BN_CTX_start(ctx); if ((q = BN_CTX_get(ctx)) == NULL) goto err; /* Set q = 2**m for binary fields; q = p otherwise. */ if (group->meth->field_type == NID_X9_62_characteristic_two_field) { BN_zero(q); if (!BN_set_bit(q, BN_num_bits(&group->field) - 1)) goto err; } else { if (!BN_copy(q, &group->field)) goto err; } /* * Compute * h = \lfloor (q + 1)/n \rceil = \lfloor (q + 1 + n/2) / n \rfloor. */ /* h = n/2 */ if (!BN_rshift1(&group->cofactor, &group->order)) goto err; /* h = 1 + n/2 */ if (!BN_add(&group->cofactor, &group->cofactor, BN_value_one())) goto err; /* h = q + 1 + n/2 */ if (!BN_add(&group->cofactor, &group->cofactor, q)) goto err; /* h = (q + 1 + n/2) / n */ if (!BN_div_ct(&group->cofactor, NULL, &group->cofactor, &group->order, ctx)) goto err; ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(ctx); BN_zero(&group->cofactor); return ret; } int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator, const BIGNUM *order, const BIGNUM *cofactor) { if (generator == NULL) { ECerror(ERR_R_PASSED_NULL_PARAMETER); return 0; } /* Require group->field >= 1. */ if (BN_is_zero(&group->field) || BN_is_negative(&group->field)) { ECerror(EC_R_INVALID_FIELD); return 0; } /* * Require order >= 1 and enforce an upper bound of at most one bit more * than the field cardinality due to Hasse's theorem. */ if (order == NULL || BN_is_zero(order) || BN_is_negative(order) || BN_num_bits(order) > BN_num_bits(&group->field) + 1) { ECerror(EC_R_INVALID_GROUP_ORDER); return 0; } /* * Unfortunately, the cofactor is an optional field in many standards. * Internally, the library uses a 0 cofactor as a marker for "unknown * cofactor". So accept cofactor == NULL or cofactor >= 0. */ if (cofactor != NULL && BN_is_negative(cofactor)) { ECerror(EC_R_UNKNOWN_COFACTOR); return 0; } if (group->generator == NULL) { group->generator = EC_POINT_new(group); if (group->generator == NULL) return 0; } if (!EC_POINT_copy(group->generator, generator)) return 0; if (!BN_copy(&group->order, order)) return 0; /* Either take the provided positive cofactor, or try to compute it. */ if (cofactor != NULL && !BN_is_zero(cofactor)) { if (!BN_copy(&group->cofactor, cofactor)) return 0; } else if (!ec_guess_cofactor(group)) return 0; return 1; } const EC_POINT * EC_GROUP_get0_generator(const EC_GROUP *group) { return group->generator; } int EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx) { if (!BN_copy(order, &group->order)) return 0; return !BN_is_zero(order); } int EC_GROUP_order_bits(const EC_GROUP *group) { return group->meth->group_order_bits(group); } int EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor, BN_CTX *ctx) { if (!BN_copy(cofactor, &group->cofactor)) return 0; return !BN_is_zero(&group->cofactor); } void EC_GROUP_set_curve_name(EC_GROUP * group, int nid) { group->curve_name = nid; } int EC_GROUP_get_curve_name(const EC_GROUP * group) { return group->curve_name; } void EC_GROUP_set_asn1_flag(EC_GROUP * group, int flag) { group->asn1_flag = flag; } int EC_GROUP_get_asn1_flag(const EC_GROUP * group) { return group->asn1_flag; } void EC_GROUP_set_point_conversion_form(EC_GROUP * group, point_conversion_form_t form) { group->asn1_form = form; } point_conversion_form_t EC_GROUP_get_point_conversion_form(const EC_GROUP * group) { return group->asn1_form; } size_t EC_GROUP_set_seed(EC_GROUP * group, const unsigned char *p, size_t len) { if (group->seed) { free(group->seed); group->seed = NULL; group->seed_len = 0; } if (!len || !p) return 1; if ((group->seed = malloc(len)) == NULL) return 0; memcpy(group->seed, p, len); group->seed_len = len; return len; } unsigned char * EC_GROUP_get0_seed(const EC_GROUP * group) { return group->seed; } size_t EC_GROUP_get_seed_len(const EC_GROUP * group) { return group->seed_len; } int EC_GROUP_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { if (group->meth->group_set_curve == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } return group->meth->group_set_curve(group, p, a, b, ctx); } int EC_GROUP_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) { if (group->meth->group_get_curve == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } return group->meth->group_get_curve(group, p, a, b, ctx); } int EC_GROUP_set_curve_GFp(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { return EC_GROUP_set_curve(group, p, a, b, ctx); } int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) { return EC_GROUP_get_curve(group, p, a, b, ctx); } #ifndef OPENSSL_NO_EC2M int EC_GROUP_set_curve_GF2m(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { return EC_GROUP_set_curve(group, p, a, b, ctx); } int EC_GROUP_get_curve_GF2m(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) { return EC_GROUP_get_curve(group, p, a, b, ctx); } #endif int EC_GROUP_get_degree(const EC_GROUP * group) { if (group->meth->group_get_degree == 0) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } return group->meth->group_get_degree(group); } int EC_GROUP_check_discriminant(const EC_GROUP * group, BN_CTX * ctx) { if (group->meth->group_check_discriminant == 0) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } return group->meth->group_check_discriminant(group, ctx); } int EC_GROUP_cmp(const EC_GROUP * a, const EC_GROUP * b, BN_CTX * ctx) { int r = 0; BIGNUM *a1, *a2, *a3, *b1, *b2, *b3; BN_CTX *ctx_new = NULL; /* compare the field types */ if (EC_METHOD_get_field_type(EC_GROUP_method_of(a)) != EC_METHOD_get_field_type(EC_GROUP_method_of(b))) return 1; /* compare the curve name (if present in both) */ if (EC_GROUP_get_curve_name(a) && EC_GROUP_get_curve_name(b) && EC_GROUP_get_curve_name(a) != EC_GROUP_get_curve_name(b)) return 1; if (!ctx) ctx_new = ctx = BN_CTX_new(); if (!ctx) return -1; BN_CTX_start(ctx); if ((a1 = BN_CTX_get(ctx)) == NULL) goto err; if ((a2 = BN_CTX_get(ctx)) == NULL) goto err; if ((a3 = BN_CTX_get(ctx)) == NULL) goto err; if ((b1 = BN_CTX_get(ctx)) == NULL) goto err; if ((b2 = BN_CTX_get(ctx)) == NULL) goto err; if ((b3 = BN_CTX_get(ctx)) == NULL) goto err; /* * XXX This approach assumes that the external representation of * curves over the same field type is the same. */ if (!a->meth->group_get_curve(a, a1, a2, a3, ctx) || !b->meth->group_get_curve(b, b1, b2, b3, ctx)) r = 1; if (r || BN_cmp(a1, b1) || BN_cmp(a2, b2) || BN_cmp(a3, b3)) r = 1; /* XXX EC_POINT_cmp() assumes that the methods are equal */ if (r || EC_POINT_cmp(a, EC_GROUP_get0_generator(a), EC_GROUP_get0_generator(b), ctx)) r = 1; if (!r) { /* compare the order and cofactor */ if (!EC_GROUP_get_order(a, a1, ctx) || !EC_GROUP_get_order(b, b1, ctx) || !EC_GROUP_get_cofactor(a, a2, ctx) || !EC_GROUP_get_cofactor(b, b2, ctx)) goto err; if (BN_cmp(a1, b1) || BN_cmp(a2, b2)) r = 1; } BN_CTX_end(ctx); if (ctx_new) BN_CTX_free(ctx); return r; err: BN_CTX_end(ctx); if (ctx_new) BN_CTX_free(ctx); return -1; } /* * Coordinate blinding for EC_POINT. * * The underlying EC_METHOD can optionally implement this function: * underlying implementations should return 0 on errors, or 1 on success. * * This wrapper returns 1 in case the underlying EC_METHOD does not support * coordinate blinding. */ int ec_point_blind_coordinates(const EC_GROUP *group, EC_POINT *p, BN_CTX *ctx) { if (group->meth->blind_coordinates == NULL) return 1; return group->meth->blind_coordinates(group, p, ctx); } /* this has 'package' visibility */ int EC_EX_DATA_set_data(EC_EXTRA_DATA ** ex_data, void *data, void *(*dup_func) (void *), void (*free_func) (void *), void (*clear_free_func) (void *)) { EC_EXTRA_DATA *d; if (ex_data == NULL) return 0; for (d = *ex_data; d != NULL; d = d->next) { if (d->dup_func == dup_func && d->free_func == free_func && d->clear_free_func == clear_free_func) { ECerror(EC_R_SLOT_FULL); return 0; } } if (data == NULL) /* no explicit entry needed */ return 1; d = malloc(sizeof *d); if (d == NULL) return 0; d->data = data; d->dup_func = dup_func; d->free_func = free_func; d->clear_free_func = clear_free_func; d->next = *ex_data; *ex_data = d; return 1; } /* this has 'package' visibility */ void * EC_EX_DATA_get_data(const EC_EXTRA_DATA * ex_data, void *(*dup_func) (void *), void (*free_func) (void *), void (*clear_free_func) (void *)) { const EC_EXTRA_DATA *d; for (d = ex_data; d != NULL; d = d->next) { if (d->dup_func == dup_func && d->free_func == free_func && d->clear_free_func == clear_free_func) return d->data; } return NULL; } /* this has 'package' visibility */ void EC_EX_DATA_free_data(EC_EXTRA_DATA ** ex_data, void *(*dup_func) (void *), void (*free_func) (void *), void (*clear_free_func) (void *)) { EC_EXTRA_DATA **p; if (ex_data == NULL) return; for (p = ex_data; *p != NULL; p = &((*p)->next)) { if ((*p)->dup_func == dup_func && (*p)->free_func == free_func && (*p)->clear_free_func == clear_free_func) { EC_EXTRA_DATA *next = (*p)->next; (*p)->free_func((*p)->data); free(*p); *p = next; return; } } } /* this has 'package' visibility */ void EC_EX_DATA_clear_free_data(EC_EXTRA_DATA ** ex_data, void *(*dup_func) (void *), void (*free_func) (void *), void (*clear_free_func) (void *)) { EC_EXTRA_DATA **p; if (ex_data == NULL) return; for (p = ex_data; *p != NULL; p = &((*p)->next)) { if ((*p)->dup_func == dup_func && (*p)->free_func == free_func && (*p)->clear_free_func == clear_free_func) { EC_EXTRA_DATA *next = (*p)->next; (*p)->clear_free_func((*p)->data); free(*p); *p = next; return; } } } /* this has 'package' visibility */ void EC_EX_DATA_free_all_data(EC_EXTRA_DATA ** ex_data) { EC_EXTRA_DATA *d; if (ex_data == NULL) return; d = *ex_data; while (d) { EC_EXTRA_DATA *next = d->next; d->free_func(d->data); free(d); d = next; } *ex_data = NULL; } /* this has 'package' visibility */ void EC_EX_DATA_clear_free_all_data(EC_EXTRA_DATA ** ex_data) { EC_EXTRA_DATA *d; if (ex_data == NULL) return; d = *ex_data; while (d) { EC_EXTRA_DATA *next = d->next; d->clear_free_func(d->data); free(d); d = next; } *ex_data = NULL; } /* functions for EC_POINT objects */ EC_POINT * EC_POINT_new(const EC_GROUP * group) { EC_POINT *ret; if (group == NULL) { ECerror(ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (group->meth->point_init == 0) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return NULL; } ret = malloc(sizeof *ret); if (ret == NULL) { ECerror(ERR_R_MALLOC_FAILURE); return NULL; } ret->meth = group->meth; if (!ret->meth->point_init(ret)) { free(ret); return NULL; } return ret; } void EC_POINT_free(EC_POINT * point) { if (!point) return; if (point->meth->point_finish != 0) point->meth->point_finish(point); free(point); } void EC_POINT_clear_free(EC_POINT * point) { if (!point) return; if (point->meth->point_clear_finish != 0) point->meth->point_clear_finish(point); else if (point->meth->point_finish != 0) point->meth->point_finish(point); freezero(point, sizeof *point); } int EC_POINT_copy(EC_POINT * dest, const EC_POINT * src) { if (dest->meth->point_copy == 0) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (dest->meth != src->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); return 0; } if (dest == src) return 1; return dest->meth->point_copy(dest, src); } EC_POINT * EC_POINT_dup(const EC_POINT * a, const EC_GROUP * group) { EC_POINT *t; int r; if (a == NULL) return NULL; t = EC_POINT_new(group); if (t == NULL) return (NULL); r = EC_POINT_copy(t, a); if (!r) { EC_POINT_free(t); return NULL; } else return t; } const EC_METHOD * EC_POINT_method_of(const EC_POINT * point) { return point->meth; } int EC_POINT_set_to_infinity(const EC_GROUP * group, EC_POINT * point) { if (group->meth->point_set_to_infinity == 0) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (group->meth != point->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->point_set_to_infinity(group, point); } int EC_POINT_set_Jprojective_coordinates(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *ctx) { if (group->meth->point_set_Jprojective_coordinates == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (group->meth != point->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->point_set_Jprojective_coordinates(group, point, x, y, z, ctx); } int EC_POINT_get_Jprojective_coordinates(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx) { if (group->meth->point_get_Jprojective_coordinates == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (group->meth != point->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->point_get_Jprojective_coordinates(group, point, x, y, z, ctx); } int EC_POINT_set_Jprojective_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *ctx) { return EC_POINT_set_Jprojective_coordinates(group, point, x, y, z, ctx); } int EC_POINT_get_Jprojective_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx) { return EC_POINT_get_Jprojective_coordinates(group, point, x, y, z, ctx); } int EC_POINT_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) { if (group->meth->point_set_affine_coordinates == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (group->meth != point->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); return 0; } if (!group->meth->point_set_affine_coordinates(group, point, x, y, ctx)) return 0; if (EC_POINT_is_on_curve(group, point, ctx) <= 0) { ECerror(EC_R_POINT_IS_NOT_ON_CURVE); return 0; } return 1; } int EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) { return EC_POINT_set_affine_coordinates(group, point, x, y, ctx); } #ifndef OPENSSL_NO_EC2M int EC_POINT_set_affine_coordinates_GF2m(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) { return EC_POINT_set_affine_coordinates(group, point, x, y, ctx); } #endif int EC_POINT_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) { if (group->meth->point_get_affine_coordinates == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (group->meth != point->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->point_get_affine_coordinates(group, point, x, y, ctx); } int EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) { return EC_POINT_get_affine_coordinates(group, point, x, y, ctx); } #ifndef OPENSSL_NO_EC2M int EC_POINT_get_affine_coordinates_GF2m(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) { return EC_POINT_get_affine_coordinates(group, point, x, y, ctx); } #endif int EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) { if (group->meth->add == 0) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if ((group->meth != r->meth) || (r->meth != a->meth) || (a->meth != b->meth)) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->add(group, r, a, b, ctx); } int EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) { if (group->meth->dbl == 0) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if ((group->meth != r->meth) || (r->meth != a->meth)) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->dbl(group, r, a, ctx); } int EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx) { if (group->meth->invert == 0) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (group->meth != a->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->invert(group, a, ctx); } int EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) { if (group->meth->is_at_infinity == 0) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (group->meth != point->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->is_at_infinity(group, point); } int EC_POINT_is_on_curve(const EC_GROUP * group, const EC_POINT * point, BN_CTX * ctx) { if (group->meth->is_on_curve == 0) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (group->meth != point->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->is_on_curve(group, point, ctx); } int EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX * ctx) { if (group->meth->point_cmp == 0) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return -1; } if ((group->meth != a->meth) || (a->meth != b->meth)) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); return -1; } return group->meth->point_cmp(group, a, b, ctx); } int EC_POINT_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) { if (group->meth->make_affine == 0) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (group->meth != point->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->make_affine(group, point, ctx); } int EC_POINTs_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx) { size_t i; if (group->meth->points_make_affine == 0) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } for (i = 0; i < num; i++) { if (group->meth != points[i]->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); return 0; } } return group->meth->points_make_affine(group, num, points, ctx); } /* Functions for point multiplication */ int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) { /* * The function pointers must be set, and only support num == 0 and * num == 1. */ if (group->meth->mul_generator_ct == NULL || group->meth->mul_single_ct == NULL || group->meth->mul_double_nonct == NULL || num > 1) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } /* Either bP or aG + bP, this is sane. */ if (num == 1 && points != NULL && scalars != NULL) return EC_POINT_mul(group, r, scalar, points[0], scalars[0], ctx); /* aG, this is sane */ if (scalar != NULL && points == NULL && scalars == NULL) return EC_POINT_mul(group, r, scalar, NULL, NULL, ctx); /* anything else is an error */ ECerror(ERR_R_EC_LIB); return 0; } int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, const EC_POINT *point, const BIGNUM *p_scalar, BN_CTX *ctx) { if (group->meth->mul_generator_ct == NULL || group->meth->mul_single_ct == NULL || group->meth->mul_double_nonct == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (g_scalar != NULL && point == NULL && p_scalar == NULL) { /* * In this case we want to compute g_scalar * GeneratorPoint: * this codepath is reached most prominently by (ephemeral) key * generation of EC cryptosystems (i.e. ECDSA keygen and sign * setup, ECDH keygen/first half), where the scalar is always * secret. This is why we ignore if BN_FLG_CONSTTIME is actually * set and we always call the constant time version. */ return group->meth->mul_generator_ct(group, r, g_scalar, ctx); } if (g_scalar == NULL && point != NULL && p_scalar != NULL) { /* In this case we want to compute p_scalar * GenericPoint: * this codepath is reached most prominently by the second half * of ECDH, where the secret scalar is multiplied by the peer's * public point. To protect the secret scalar, we ignore if * BN_FLG_CONSTTIME is actually set and we always call the * constant time version. */ return group->meth->mul_single_ct(group, r, p_scalar, point, ctx); } if (g_scalar != NULL && point != NULL && p_scalar != NULL) { /* * In this case we want to compute * g_scalar * GeneratorPoint + p_scalar * GenericPoint: * this codepath is reached most prominently by ECDSA signature * verification. So we call the non-ct version. */ return group->meth->mul_double_nonct(group, r, g_scalar, p_scalar, point, ctx); } /* Anything else is an error. */ ECerror(ERR_R_EC_LIB); return 0; } int EC_GROUP_precompute_mult(EC_GROUP * group, BN_CTX * ctx) { if (group->meth->precompute_mult != 0) return group->meth->precompute_mult(group, ctx); else return 1; /* nothing to do, so report success */ } int EC_GROUP_have_precompute_mult(const EC_GROUP * group) { if (group->meth->have_precompute_mult != 0) return group->meth->have_precompute_mult(group); else return 0; /* cannot tell whether precomputation has * been performed */ } int ec_group_simple_order_bits(const EC_GROUP *group) { /* XXX change group->order to a pointer? */ #if 0 if (group->order == NULL) return 0; #endif return BN_num_bits(&group->order); } EC_KEY * ECParameters_dup(EC_KEY *key) { unsigned char *p = NULL; EC_KEY *k = NULL; int len; if (key == NULL) return (NULL); if ((len = i2d_ECParameters(key, &p)) > 0) k = d2i_ECParameters(NULL, (const unsigned char **)&p, len); return (k); }