/* $OpenBSD: e_aes.c,v 1.22 2014/06/15 22:53:21 tedu Exp $ */ /* ==================================================================== * Copyright (c) 2001-2011 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * */ #include #ifndef OPENSSL_NO_AES #include #include #include #include #include #include "evp_locl.h" #include "modes_lcl.h" #include typedef struct { AES_KEY ks; block128_f block; union { cbc128_f cbc; ctr128_f ctr; } stream; } EVP_AES_KEY; typedef struct { AES_KEY ks; /* AES key schedule to use */ int key_set; /* Set if key initialised */ int iv_set; /* Set if an iv is set */ GCM128_CONTEXT gcm; unsigned char *iv; /* Temporary IV store */ int ivlen; /* IV length */ int taglen; int iv_gen; /* It is OK to generate IVs */ int tls_aad_len; /* TLS AAD length */ ctr128_f ctr; } EVP_AES_GCM_CTX; typedef struct { AES_KEY ks1, ks2; /* AES key schedules to use */ XTS128_CONTEXT xts; void (*stream)(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); } EVP_AES_XTS_CTX; typedef struct { AES_KEY ks; /* AES key schedule to use */ int key_set; /* Set if key initialised */ int iv_set; /* Set if an iv is set */ int tag_set; /* Set if tag is valid */ int len_set; /* Set if message length set */ int L, M; /* L and M parameters from RFC3610 */ CCM128_CONTEXT ccm; ccm128_f str; } EVP_AES_CCM_CTX; #define MAXBITCHUNK ((size_t)1<<(sizeof(size_t)*8-4)) #ifdef VPAES_ASM int vpaes_set_encrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); int vpaes_set_decrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); void vpaes_encrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void vpaes_decrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void vpaes_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, int enc); #endif #ifdef BSAES_ASM void bsaes_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char ivec[16], int enc); void bsaes_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, const unsigned char ivec[16]); void bsaes_xts_encrypt(const unsigned char *inp, unsigned char *out, size_t len, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); void bsaes_xts_decrypt(const unsigned char *inp, unsigned char *out, size_t len, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); #endif #ifdef AES_CTR_ASM void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key, const unsigned char ivec[AES_BLOCK_SIZE]); #endif #ifdef AES_XTS_ASM void AES_xts_encrypt(const char *inp, char *out, size_t len, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); void AES_xts_decrypt(const char *inp, char *out, size_t len, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); #endif #if defined(AES_ASM) && !defined(I386_ONLY) && ( \ ((defined(__i386) || defined(__i386__) || \ defined(_M_IX86)) && defined(OPENSSL_IA32_SSE2))|| \ defined(__x86_64) || defined(__x86_64__) || \ defined(_M_AMD64) || defined(_M_X64) || \ defined(__INTEL__) ) extern unsigned int OPENSSL_ia32cap_P[2]; #ifdef VPAES_ASM #define VPAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32))) #endif #ifdef BSAES_ASM #define BSAES_CAPABLE VPAES_CAPABLE #endif /* * AES-NI section */ #define AESNI_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(57-32))) int aesni_set_encrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); int aesni_set_decrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); void aesni_encrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void aesni_decrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void aesni_ecb_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, int enc); void aesni_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, int enc); void aesni_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out, size_t blocks, const void *key, const unsigned char *ivec); void aesni_xts_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); void aesni_xts_decrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); void aesni_ccm64_encrypt_blocks (const unsigned char *in, unsigned char *out, size_t blocks, const void *key, const unsigned char ivec[16], unsigned char cmac[16]); void aesni_ccm64_decrypt_blocks (const unsigned char *in, unsigned char *out, size_t blocks, const void *key, const unsigned char ivec[16], unsigned char cmac[16]); static int aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { int ret, mode; EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; mode = ctx->cipher->flags & EVP_CIPH_MODE; if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { ret = aesni_set_decrypt_key(key, ctx->key_len * 8, ctx->cipher_data); dat->block = (block128_f)aesni_decrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)aesni_cbc_encrypt : NULL; } else { ret = aesni_set_encrypt_key(key, ctx->key_len * 8, ctx->cipher_data); dat->block = (block128_f)aesni_encrypt; if (mode == EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f)aesni_cbc_encrypt; else if (mode == EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f)aesni_ctr32_encrypt_blocks; else dat->stream.cbc = NULL; } if (ret < 0) { EVPerr(EVP_F_AESNI_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED); return 0; } return 1; } static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { aesni_cbc_encrypt(in, out, len, ctx->cipher_data, ctx->iv, ctx->encrypt); return 1; } static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { size_t bl = ctx->cipher->block_size; if (len < bl) return 1; aesni_ecb_encrypt(in, out, len, ctx->cipher_data, ctx->encrypt); return 1; } #define aesni_ofb_cipher aes_ofb_cipher static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); #define aesni_cfb_cipher aes_cfb_cipher static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); #define aesni_cfb8_cipher aes_cfb8_cipher static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); #define aesni_cfb1_cipher aes_cfb1_cipher static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); #define aesni_ctr_cipher aes_ctr_cipher static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_GCM_CTX *gctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { aesni_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f)aesni_encrypt); gctx->ctr = (ctr128_f)aesni_ctr32_encrypt_blocks; /* If we have an iv can set it directly, otherwise use * saved IV. */ if (iv == NULL && gctx->iv_set) iv = gctx->iv; if (iv) { CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); gctx->iv_set = 1; } gctx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (gctx->key_set) CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); else memcpy(gctx->iv, iv, gctx->ivlen); gctx->iv_set = 1; gctx->iv_gen = 0; } return 1; } #define aesni_gcm_cipher aes_gcm_cipher static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_XTS_CTX *xctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { /* key_len is two AES keys */ if (enc) { aesni_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1); xctx->xts.block1 = (block128_f)aesni_encrypt; xctx->stream = aesni_xts_encrypt; } else { aesni_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1); xctx->xts.block1 = (block128_f)aesni_decrypt; xctx->stream = aesni_xts_decrypt; } aesni_set_encrypt_key(key + ctx->key_len / 2, ctx->key_len * 4, &xctx->ks2); xctx->xts.block2 = (block128_f)aesni_encrypt; xctx->xts.key1 = &xctx->ks1; } if (iv) { xctx->xts.key2 = &xctx->ks2; memcpy(ctx->iv, iv, 16); } return 1; } #define aesni_xts_cipher aes_xts_cipher static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_CCM_CTX *cctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { aesni_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks); CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, &cctx->ks, (block128_f)aesni_encrypt); cctx->str = enc ? (ccm128_f)aesni_ccm64_encrypt_blocks : (ccm128_f)aesni_ccm64_decrypt_blocks; cctx->key_set = 1; } if (iv) { memcpy(ctx->iv, iv, 15 - cctx->L); cctx->iv_set = 1; } return 1; } #define aesni_ccm_cipher aes_ccm_cipher static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); #define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ static const EVP_CIPHER aesni_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aesni_init_key, \ aesni_##mode##_cipher, \ NULL, \ sizeof(EVP_AES_KEY), \ NULL,NULL,NULL,NULL }; \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize, \ keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_init_key, \ aes_##mode##_cipher, \ NULL, \ sizeof(EVP_AES_KEY), \ NULL,NULL,NULL,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } #define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ static const EVP_CIPHER aesni_##keylen##_##mode = { \ nid##_##keylen##_##mode,blocksize, \ (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aesni_##mode##_init_key, \ aesni_##mode##_cipher, \ aes_##mode##_cleanup, \ sizeof(EVP_AES_##MODE##_CTX), \ NULL,NULL,aes_##mode##_ctrl,NULL }; \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##mode,blocksize, \ (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_##mode##_init_key, \ aes_##mode##_cipher, \ aes_##mode##_cleanup, \ sizeof(EVP_AES_##MODE##_CTX), \ NULL,NULL,aes_##mode##_ctrl,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } #else #define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_init_key, \ aes_##mode##_cipher, \ NULL, \ sizeof(EVP_AES_KEY), \ NULL,NULL,NULL,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return &aes_##keylen##_##mode; } #define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##mode,blocksize, \ (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_##mode##_init_key, \ aes_##mode##_cipher, \ aes_##mode##_cleanup, \ sizeof(EVP_AES_##MODE##_CTX), \ NULL,NULL,aes_##mode##_ctrl,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return &aes_##keylen##_##mode; } #endif #define BLOCK_CIPHER_generic_pack(nid,keylen,flags) \ BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags) \ BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags) \ BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags) static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { int ret, mode; EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; mode = ctx->cipher->flags & EVP_CIPH_MODE; if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) #ifdef BSAES_CAPABLE if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) { ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks); dat->block = (block128_f)AES_decrypt; dat->stream.cbc = (cbc128_f)bsaes_cbc_encrypt; } else #endif #ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks); dat->block = (block128_f)vpaes_decrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL; } else #endif { ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks); dat->block = (block128_f)AES_decrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL; } else #ifdef BSAES_CAPABLE if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) { ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks); dat->block = (block128_f)AES_encrypt; dat->stream.ctr = (ctr128_f)bsaes_ctr32_encrypt_blocks; } else #endif #ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { ret = vpaes_set_encrypt_key(key, ctx->key_len * 8, &dat->ks); dat->block = (block128_f)vpaes_encrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL; } else #endif { ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks); dat->block = (block128_f)AES_encrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL; #ifdef AES_CTR_ASM if (mode == EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f)AES_ctr32_encrypt; #endif } if (ret < 0) { EVPerr(EVP_F_AES_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED); return 0; } return 1; } static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; if (dat->stream.cbc) (*dat->stream.cbc)(in, out, len, &dat->ks, ctx->iv, ctx->encrypt); else if (ctx->encrypt) CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv, dat->block); else CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, ctx->iv, dat->block); return 1; } static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { size_t bl = ctx->cipher->block_size; size_t i; EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; if (len < bl) return 1; for (i = 0, len -= bl; i <= len; i += bl) (*dat->block)(in + i, out + i, &dat->ks); return 1; } static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; CRYPTO_ofb128_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num, dat->block); return 1; } static int aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; CRYPTO_cfb128_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num, ctx->encrypt, dat->block); return 1; } static int aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num, ctx->encrypt, dat->block); return 1; } static int aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; if (ctx->flags&EVP_CIPH_FLAG_LENGTH_BITS) { CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num, ctx->encrypt, dat->block); return 1; } while (len >= MAXBITCHUNK) { CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK*8, &dat->ks, ctx->iv, &ctx->num, ctx->encrypt, dat->block); len -= MAXBITCHUNK; } if (len) CRYPTO_cfb128_1_encrypt(in, out, len*8, &dat->ks, ctx->iv, &ctx->num, ctx->encrypt, dat->block); return 1; } static int aes_ctr_cipher (EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { unsigned int num = ctx->num; EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; if (dat->stream.ctr) CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks, ctx->iv, ctx->buf, &num, dat->stream.ctr); else CRYPTO_ctr128_encrypt(in, out, len, &dat->ks, ctx->iv, ctx->buf, &num, dat->block); ctx->num = (size_t)num; return 1; } BLOCK_CIPHER_generic_pack(NID_aes, 128, EVP_CIPH_FLAG_FIPS) BLOCK_CIPHER_generic_pack(NID_aes, 192, EVP_CIPH_FLAG_FIPS) BLOCK_CIPHER_generic_pack(NID_aes, 256, EVP_CIPH_FLAG_FIPS) static int aes_gcm_cleanup(EVP_CIPHER_CTX *c) { EVP_AES_GCM_CTX *gctx = c->cipher_data; if (gctx->iv != c->iv) free(gctx->iv); OPENSSL_cleanse(gctx, sizeof(*gctx)); return 1; } /* increment counter (64-bit int) by 1 */ static void ctr64_inc(unsigned char *counter) { int n = 8; unsigned char c; do { --n; c = counter[n]; ++c; counter[n] = c; if (c) return; } while (n); } static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_AES_GCM_CTX *gctx = c->cipher_data; switch (type) { case EVP_CTRL_INIT: gctx->key_set = 0; gctx->iv_set = 0; gctx->ivlen = c->cipher->iv_len; gctx->iv = c->iv; gctx->taglen = -1; gctx->iv_gen = 0; gctx->tls_aad_len = -1; return 1; case EVP_CTRL_GCM_SET_IVLEN: if (arg <= 0) return 0; /* Allocate memory for IV if needed */ if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) { if (gctx->iv != c->iv) free(gctx->iv); gctx->iv = malloc(arg); if (!gctx->iv) return 0; } gctx->ivlen = arg; return 1; case EVP_CTRL_GCM_SET_TAG: if (arg <= 0 || arg > 16 || c->encrypt) return 0; memcpy(c->buf, ptr, arg); gctx->taglen = arg; return 1; case EVP_CTRL_GCM_GET_TAG: if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) return 0; memcpy(ptr, c->buf, arg); return 1; case EVP_CTRL_GCM_SET_IV_FIXED: /* Special case: -1 length restores whole IV */ if (arg == -1) { memcpy(gctx->iv, ptr, gctx->ivlen); gctx->iv_gen = 1; return 1; } /* Fixed field must be at least 4 bytes and invocation field * at least 8. */ if ((arg < 4) || (gctx->ivlen - arg) < 8) return 0; if (arg) memcpy(gctx->iv, ptr, arg); if (c->encrypt && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0) return 0; gctx->iv_gen = 1; return 1; case EVP_CTRL_GCM_IV_GEN: if (gctx->iv_gen == 0 || gctx->key_set == 0) return 0; CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); if (arg <= 0 || arg > gctx->ivlen) arg = gctx->ivlen; memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); /* Invocation field will be at least 8 bytes in size and * so no need to check wrap around or increment more than * last 8 bytes. */ ctr64_inc(gctx->iv + gctx->ivlen - 8); gctx->iv_set = 1; return 1; case EVP_CTRL_GCM_SET_IV_INV: if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) return 0; memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); gctx->iv_set = 1; return 1; case EVP_CTRL_AEAD_TLS1_AAD: /* Save the AAD for later use */ if (arg != 13) return 0; memcpy(c->buf, ptr, arg); gctx->tls_aad_len = arg; { unsigned int len = c->buf[arg - 2] << 8 | c->buf[arg - 1]; /* Correct length for explicit IV */ len -= EVP_GCM_TLS_EXPLICIT_IV_LEN; /* If decrypting correct for tag too */ if (!c->encrypt) len -= EVP_GCM_TLS_TAG_LEN; c->buf[arg - 2] = len >> 8; c->buf[arg - 1] = len & 0xff; } /* Extra padding: tag appended to record */ return EVP_GCM_TLS_TAG_LEN; default: return -1; } } static ctr128_f aes_gcm_set_key(AES_KEY *aes_key, GCM128_CONTEXT *gcm_ctx, const unsigned char *key, size_t key_len) { #ifdef BSAES_CAPABLE if (BSAES_CAPABLE) { AES_set_encrypt_key(key, key_len * 8, aes_key); CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt); return (ctr128_f)bsaes_ctr32_encrypt_blocks; } else #endif #ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { vpaes_set_encrypt_key(key, key_len * 8, aes_key); CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)vpaes_encrypt); return NULL; } else #endif (void)0; /* terminate potentially open 'else' */ AES_set_encrypt_key(key, key_len * 8, aes_key); CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt); #ifdef AES_CTR_ASM return (ctr128_f)AES_ctr32_encrypt; #else return NULL; #endif } static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_GCM_CTX *gctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { gctx->ctr = aes_gcm_set_key(&gctx->ks, &gctx->gcm, key, ctx->key_len); /* If we have an iv can set it directly, otherwise use * saved IV. */ if (iv == NULL && gctx->iv_set) iv = gctx->iv; if (iv) { CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); gctx->iv_set = 1; } gctx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (gctx->key_set) CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); else memcpy(gctx->iv, iv, gctx->ivlen); gctx->iv_set = 1; gctx->iv_gen = 0; } return 1; } /* Handle TLS GCM packet format. This consists of the last portion of the IV * followed by the payload and finally the tag. On encrypt generate IV, * encrypt payload and write the tag. On verify retrieve IV, decrypt payload * and verify tag. */ static int aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_GCM_CTX *gctx = ctx->cipher_data; int rv = -1; /* Encrypt/decrypt must be performed in place */ if (out != in || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN)) return -1; /* Set IV from start of buffer or generate IV and write to start * of buffer. */ if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ? EVP_CTRL_GCM_IV_GEN : EVP_CTRL_GCM_SET_IV_INV, EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0) goto err; /* Use saved AAD */ if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len)) goto err; /* Fix buffer and length to point to payload */ in += EVP_GCM_TLS_EXPLICIT_IV_LEN; out += EVP_GCM_TLS_EXPLICIT_IV_LEN; len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; if (ctx->encrypt) { /* Encrypt payload */ if (gctx->ctr) { if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, in, out, len, gctx->ctr)) goto err; } else { if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, len)) goto err; } out += len; /* Finally write tag */ CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN); rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; } else { /* Decrypt */ if (gctx->ctr) { if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, in, out, len, gctx->ctr)) goto err; } else { if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, len)) goto err; } /* Retrieve tag */ CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, EVP_GCM_TLS_TAG_LEN); /* If tag mismatch wipe buffer */ if (memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN)) { OPENSSL_cleanse(out, len); goto err; } rv = len; } err: gctx->iv_set = 0; gctx->tls_aad_len = -1; return rv; } static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_GCM_CTX *gctx = ctx->cipher_data; /* If not set up, return error */ if (!gctx->key_set) return -1; if (gctx->tls_aad_len >= 0) return aes_gcm_tls_cipher(ctx, out, in, len); if (!gctx->iv_set) return -1; if (in) { if (out == NULL) { if (CRYPTO_gcm128_aad(&gctx->gcm, in, len)) return -1; } else if (ctx->encrypt) { if (gctx->ctr) { if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, in, out, len, gctx->ctr)) return -1; } else { if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, len)) return -1; } } else { if (gctx->ctr) { if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, in, out, len, gctx->ctr)) return -1; } else { if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, len)) return -1; } } return len; } else { if (!ctx->encrypt) { if (gctx->taglen < 0) return -1; if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen) != 0) return -1; gctx->iv_set = 0; return 0; } CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16); gctx->taglen = 16; /* Don't reuse the IV */ gctx->iv_set = 0; return 0; } } #define CUSTOM_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 \ | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \ | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT) BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM, EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_AEAD_CIPHER|CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM, EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_AEAD_CIPHER|CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM, EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_AEAD_CIPHER|CUSTOM_FLAGS) static int aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_AES_XTS_CTX *xctx = c->cipher_data; if (type != EVP_CTRL_INIT) return -1; /* key1 and key2 are used as an indicator both key and IV are set */ xctx->xts.key1 = NULL; xctx->xts.key2 = NULL; return 1; } static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_XTS_CTX *xctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) do { #ifdef AES_XTS_ASM xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt; #else xctx->stream = NULL; #endif /* key_len is two AES keys */ #ifdef BSAES_CAPABLE if (BSAES_CAPABLE) xctx->stream = enc ? bsaes_xts_encrypt : bsaes_xts_decrypt; else #endif #ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { if (enc) { vpaes_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1); xctx->xts.block1 = (block128_f)vpaes_encrypt; } else { vpaes_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1); xctx->xts.block1 = (block128_f)vpaes_decrypt; } vpaes_set_encrypt_key(key + ctx->key_len / 2, ctx->key_len * 4, &xctx->ks2); xctx->xts.block2 = (block128_f)vpaes_encrypt; xctx->xts.key1 = &xctx->ks1; break; } else #endif (void)0; /* terminate potentially open 'else' */ if (enc) { AES_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1); xctx->xts.block1 = (block128_f)AES_encrypt; } else { AES_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1); xctx->xts.block1 = (block128_f)AES_decrypt; } AES_set_encrypt_key(key + ctx->key_len / 2, ctx->key_len * 4, &xctx->ks2); xctx->xts.block2 = (block128_f)AES_encrypt; xctx->xts.key1 = &xctx->ks1; } while (0); if (iv) { xctx->xts.key2 = &xctx->ks2; memcpy(ctx->iv, iv, 16); } return 1; } static int aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_XTS_CTX *xctx = ctx->cipher_data; if (!xctx->xts.key1 || !xctx->xts.key2) return 0; if (!out || !in || len < AES_BLOCK_SIZE) return 0; if (xctx->stream) (*xctx->stream)(in, out, len, xctx->xts.key1, xctx->xts.key2, ctx->iv); else if (CRYPTO_xts128_encrypt(&xctx->xts, ctx->iv, in, out, len, ctx->encrypt)) return 0; return 1; } #define aes_xts_cleanup NULL #define XTS_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV \ | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT) BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS, EVP_CIPH_FLAG_FIPS|XTS_FLAGS) BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS, EVP_CIPH_FLAG_FIPS|XTS_FLAGS) static int aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_AES_CCM_CTX *cctx = c->cipher_data; switch (type) { case EVP_CTRL_INIT: cctx->key_set = 0; cctx->iv_set = 0; cctx->L = 8; cctx->M = 12; cctx->tag_set = 0; cctx->len_set = 0; return 1; case EVP_CTRL_CCM_SET_IVLEN: arg = 15 - arg; case EVP_CTRL_CCM_SET_L: if (arg < 2 || arg > 8) return 0; cctx->L = arg; return 1; case EVP_CTRL_CCM_SET_TAG: if ((arg & 1) || arg < 4 || arg > 16) return 0; if ((c->encrypt && ptr) || (!c->encrypt && !ptr)) return 0; if (ptr) { cctx->tag_set = 1; memcpy(c->buf, ptr, arg); } cctx->M = arg; return 1; case EVP_CTRL_CCM_GET_TAG: if (!c->encrypt || !cctx->tag_set) return 0; if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg)) return 0; cctx->tag_set = 0; cctx->iv_set = 0; cctx->len_set = 0; return 1; default: return -1; } } static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_CCM_CTX *cctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) do { #ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { vpaes_set_encrypt_key(key, ctx->key_len*8, &cctx->ks); CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, &cctx->ks, (block128_f)vpaes_encrypt); cctx->str = NULL; cctx->key_set = 1; break; } #endif AES_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks); CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, &cctx->ks, (block128_f)AES_encrypt); cctx->str = NULL; cctx->key_set = 1; } while (0); if (iv) { memcpy(ctx->iv, iv, 15 - cctx->L); cctx->iv_set = 1; } return 1; } static int aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_CCM_CTX *cctx = ctx->cipher_data; CCM128_CONTEXT *ccm = &cctx->ccm; /* If not set up, return error */ if (!cctx->iv_set && !cctx->key_set) return -1; if (!ctx->encrypt && !cctx->tag_set) return -1; if (!out) { if (!in) { if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len)) return -1; cctx->len_set = 1; return len; } /* If have AAD need message length */ if (!cctx->len_set && len) return -1; CRYPTO_ccm128_aad(ccm, in, len); return len; } /* EVP_*Final() doesn't return any data */ if (!in) return 0; /* If not set length yet do it */ if (!cctx->len_set) { if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len)) return -1; cctx->len_set = 1; } if (ctx->encrypt) { if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len, cctx->str) : CRYPTO_ccm128_encrypt(ccm, in, out, len)) return -1; cctx->tag_set = 1; return len; } else { int rv = -1; if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len, cctx->str) : !CRYPTO_ccm128_decrypt(ccm, in, out, len)) { unsigned char tag[16]; if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) { if (!memcmp(tag, ctx->buf, cctx->M)) rv = len; } } if (rv == -1) OPENSSL_cleanse(out, len); cctx->iv_set = 0; cctx->tag_set = 0; cctx->len_set = 0; return rv; } } #define aes_ccm_cleanup NULL BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM, EVP_CIPH_FLAG_FIPS|CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM, EVP_CIPH_FLAG_FIPS|CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM, EVP_CIPH_FLAG_FIPS|CUSTOM_FLAGS) #define EVP_AEAD_AES_GCM_TAG_LEN 16 struct aead_aes_gcm_ctx { union { double align; AES_KEY ks; } ks; GCM128_CONTEXT gcm; ctr128_f ctr; unsigned char tag_len; }; static int aead_aes_gcm_init(EVP_AEAD_CTX *ctx, const unsigned char *key, size_t key_len, size_t tag_len) { struct aead_aes_gcm_ctx *gcm_ctx; const size_t key_bits = key_len * 8; /* EVP_AEAD_CTX_init should catch this. */ if (key_bits != 128 && key_bits != 256) { EVPerr(EVP_F_AEAD_AES_GCM_INIT, EVP_R_BAD_KEY_LENGTH); return 0; } if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) tag_len = EVP_AEAD_AES_GCM_TAG_LEN; if (tag_len > EVP_AEAD_AES_GCM_TAG_LEN) { EVPerr(EVP_F_AEAD_AES_GCM_INIT, EVP_R_TAG_TOO_LARGE); return 0; } gcm_ctx = malloc(sizeof(struct aead_aes_gcm_ctx)); if (gcm_ctx == NULL) return 0; #ifdef AESNI_CAPABLE if (AESNI_CAPABLE) { aesni_set_encrypt_key(key, key_bits, &gcm_ctx->ks.ks); CRYPTO_gcm128_init(&gcm_ctx->gcm, &gcm_ctx->ks.ks, (block128_f)aesni_encrypt); gcm_ctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks; } else #endif { gcm_ctx->ctr = aes_gcm_set_key(&gcm_ctx->ks.ks, &gcm_ctx->gcm, key, key_len); } gcm_ctx->tag_len = tag_len; ctx->aead_state = gcm_ctx; return 1; } static void aead_aes_gcm_cleanup(EVP_AEAD_CTX *ctx) { struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state; OPENSSL_cleanse(gcm_ctx, sizeof(*gcm_ctx)); free(gcm_ctx); } static int aead_aes_gcm_seal(const EVP_AEAD_CTX *ctx, unsigned char *out, size_t *out_len, size_t max_out_len, const unsigned char *nonce, size_t nonce_len, const unsigned char *in, size_t in_len, const unsigned char *ad, size_t ad_len) { const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state; GCM128_CONTEXT gcm; size_t bulk = 0; if (max_out_len < in_len + gcm_ctx->tag_len) { EVPerr(EVP_F_AEAD_AES_GCM_SEAL, EVP_R_BUFFER_TOO_SMALL); return 0; } memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm)); CRYPTO_gcm128_setiv(&gcm, nonce, nonce_len); if (ad_len > 0 && CRYPTO_gcm128_aad(&gcm, ad, ad_len)) return 0; if (gcm_ctx->ctr) { if (CRYPTO_gcm128_encrypt_ctr32(&gcm, in + bulk, out + bulk, in_len - bulk, gcm_ctx->ctr)) return 0; } else { if (CRYPTO_gcm128_encrypt(&gcm, in + bulk, out + bulk, in_len - bulk)) return 0; } CRYPTO_gcm128_tag(&gcm, out + in_len, gcm_ctx->tag_len); *out_len = in_len + gcm_ctx->tag_len; return 1; } static int aead_aes_gcm_open(const EVP_AEAD_CTX *ctx, unsigned char *out, size_t *out_len, size_t max_out_len, const unsigned char *nonce, size_t nonce_len, const unsigned char *in, size_t in_len, const unsigned char *ad, size_t ad_len) { const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state; unsigned char tag[EVP_AEAD_AES_GCM_TAG_LEN]; GCM128_CONTEXT gcm; size_t plaintext_len; size_t bulk = 0; if (in_len < gcm_ctx->tag_len) { EVPerr(EVP_F_AEAD_AES_GCM_OPEN, EVP_R_BAD_DECRYPT); return 0; } plaintext_len = in_len - gcm_ctx->tag_len; if (max_out_len < plaintext_len) { EVPerr(EVP_F_AEAD_AES_GCM_OPEN, EVP_R_BUFFER_TOO_SMALL); return 0; } memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm)); CRYPTO_gcm128_setiv(&gcm, nonce, nonce_len); if (CRYPTO_gcm128_aad(&gcm, ad, ad_len)) return 0; if (gcm_ctx->ctr) { if (CRYPTO_gcm128_decrypt_ctr32(&gcm, in + bulk, out + bulk, in_len - bulk - gcm_ctx->tag_len, gcm_ctx->ctr)) return 0; } else { if (CRYPTO_gcm128_decrypt(&gcm, in + bulk, out + bulk, in_len - bulk - gcm_ctx->tag_len)) return 0; } CRYPTO_gcm128_tag(&gcm, tag, gcm_ctx->tag_len); if (CRYPTO_memcmp(tag, in + plaintext_len, gcm_ctx->tag_len) != 0) { EVPerr(EVP_F_AEAD_AES_GCM_OPEN, EVP_R_BAD_DECRYPT); return 0; } *out_len = plaintext_len; return 1; } static const EVP_AEAD aead_aes_128_gcm = { .key_len = 16, .nonce_len = 12, .overhead = EVP_AEAD_AES_GCM_TAG_LEN, .max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN, .init = aead_aes_gcm_init, .cleanup = aead_aes_gcm_cleanup, .seal = aead_aes_gcm_seal, .open = aead_aes_gcm_open, }; static const EVP_AEAD aead_aes_256_gcm = { .key_len = 32, .nonce_len = 12, .overhead = EVP_AEAD_AES_GCM_TAG_LEN, .max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN, .init = aead_aes_gcm_init, .cleanup = aead_aes_gcm_cleanup, .seal = aead_aes_gcm_seal, .open = aead_aes_gcm_open, }; const EVP_AEAD * EVP_aead_aes_128_gcm(void) { return &aead_aes_128_gcm; } const EVP_AEAD * EVP_aead_aes_256_gcm(void) { return &aead_aes_256_gcm; } #endif