.\" $OpenBSD: EVP_EncryptInit.3,v 1.3 2016/11/21 22:19:15 jmc Exp $ .\" .Dd $Mdocdate: November 21 2016 $ .Dt EVP_ENCRYPTINIT 3 .Os .Sh NAME .Nm EVP_CIPHER_CTX_init , .Nm EVP_EncryptInit_ex , .Nm EVP_EncryptUpdate , .Nm EVP_EncryptFinal_ex , .Nm EVP_DecryptInit_ex , .Nm EVP_DecryptUpdate , .Nm EVP_DecryptFinal_ex , .Nm EVP_CipherInit_ex , .Nm EVP_CipherUpdate , .Nm EVP_CipherFinal_ex , .Nm EVP_EncryptInit , .Nm EVP_EncryptFinal , .Nm EVP_DecryptInit , .Nm EVP_DecryptFinal , .Nm EVP_CipherInit , .Nm EVP_CipherFinal , .Nm EVP_CIPHER_CTX_set_padding , .Nm EVP_CIPHER_CTX_set_key_length , .Nm EVP_CIPHER_CTX_ctrl , .Nm EVP_CIPHER_CTX_cleanup , .Nm EVP_get_cipherbyname , .Nm EVP_get_cipherbynid , .Nm EVP_get_cipherbyobj , .Nm EVP_CIPHER_nid , .Nm EVP_CIPHER_block_size , .Nm EVP_CIPHER_key_length , .Nm EVP_CIPHER_iv_length , .Nm EVP_CIPHER_flags , .Nm EVP_CIPHER_mode , .Nm EVP_CIPHER_type , .Nm EVP_CIPHER_CTX_cipher , .Nm EVP_CIPHER_CTX_nid , .Nm EVP_CIPHER_CTX_block_size , .Nm EVP_CIPHER_CTX_key_length , .Nm EVP_CIPHER_CTX_iv_length , .Nm EVP_CIPHER_CTX_get_app_data , .Nm EVP_CIPHER_CTX_set_app_data , .Nm EVP_CIPHER_CTX_type , .Nm EVP_CIPHER_CTX_flags , .Nm EVP_CIPHER_CTX_mode , .Nm EVP_CIPHER_param_to_asn1 , .Nm EVP_CIPHER_asn1_to_param , .Nm EVP_enc_null , .Nm EVP_des_cbc , .Nm EVP_des_ecb , .Nm EVP_des_cfb , .Nm EVP_des_ofb , .Nm EVP_des_ede_cbc , .Nm EVP_des_ede , .Nm EVP_des_ede_ofb , .Nm EVP_des_ede_cfb , .Nm EVP_des_ede3_cbc , .Nm EVP_des_ede3 , .Nm EVP_des_ede3_ofb , .Nm EVP_des_ede3_cfb , .Nm EVP_desx_cbc , .Nm EVP_rc4 , .Nm EVP_rc4_40 , .Nm EVP_idea_cbc , .Nm EVP_idea_ecb , .Nm EVP_idea_cfb , .Nm EVP_idea_ofb , .Nm EVP_idea_cbc , .Nm EVP_rc2_cbc , .Nm EVP_rc2_ecb , .Nm EVP_rc2_cfb , .Nm EVP_rc2_ofb , .Nm EVP_rc2_40_cbc , .Nm EVP_rc2_64_cbc , .Nm EVP_bf_cbc , .Nm EVP_bf_ecb , .Nm EVP_bf_cfb , .Nm EVP_bf_ofb , .Nm EVP_cast5_cbc , .Nm EVP_cast5_ecb , .Nm EVP_cast5_cfb , .Nm EVP_cast5_ofb , .Nm EVP_aes_128_gcm , .Nm EVP_aes_192_gcm , .Nm EVP_aes_256_gcm , .Nm EVP_aes_128_ccm , .Nm EVP_aes_192_ccm , .Nm EVP_aes_256_ccm , .Nm EVP_rc5_32_12_16_cbc , .Nm EVP_rc5_32_12_16_cfb , .Nm EVP_rc5_32_12_16_ecb , .Nm EVP_rc5_32_12_16_ofb .Nd EVP cipher routines .Sh SYNOPSIS .In openssl/evp.h .Ft void .Fo EVP_CIPHER_CTX_init .Fa "EVP_CIPHER_CTX *ctx" .Fc .Ft int .Fo EVP_EncryptInit_ex .Fa "EVP_CIPHER_CTX *ctx" .Fa "const EVP_CIPHER *type" .Fa "ENGINE *impl" .Fa "unsigned char *key" .Fa "unsigned char *iv" .Fc .Ft int .Fo EVP_EncryptUpdate .Fa "EVP_CIPHER_CTX *ctx" .Fa "unsigned char *out" .Fa "int *outl" .Fa "unsigned char *in" .Fa "int inl" .Fc .Ft int .Fo EVP_EncryptFinal_ex .Fa "EVP_CIPHER_CTX *ctx" .Fa "unsigned char *out" .Fa "int *outl" .Fc .Ft int .Fo EVP_DecryptInit_ex .Fa "EVP_CIPHER_CTX *ctx" .Fa "const EVP_CIPHER *type" .Fa "ENGINE *impl" .Fa "unsigned char *key" .Fa "unsigned char *iv" .Fc .Ft int .Fo EVP_DecryptUpdate .Fa "EVP_CIPHER_CTX *ctx" .Fa "unsigned char *out" .Fa "int *outl" .Fa "unsigned char *in" .Fa "int inl" .Fc .Ft int .Fo EVP_DecryptFinal_ex .Fa "EVP_CIPHER_CTX *ctx" .Fa "unsigned char *outm" .Fa "int *outl" .Fc .Ft int .Fo EVP_CipherInit_ex .Fa "EVP_CIPHER_CTX *ctx" .Fa "const EVP_CIPHER *type" .Fa "ENGINE *impl" .Fa "unsigned char *key" .Fa "unsigned char *iv" .Fa "int enc" .Fc .Ft int .Fo EVP_CipherUpdate .Fa "EVP_CIPHER_CTX *ctx" .Fa "unsigned char *out" .Fa "int *outl" .Fa "unsigned char *in" .Fa "int inl" .Fc .Ft int .Fo EVP_CipherFinal_ex .Fa "EVP_CIPHER_CTX *ctx" .Fa "unsigned char *outm" .Fa "int *outl" .Fc .Ft int .Fo EVP_EncryptInit .Fa "EVP_CIPHER_CTX *ctx" .Fa "const EVP_CIPHER *type" .Fa "unsigned char *key" .Fa "unsigned char *iv" .Fc .Ft int .Fo EVP_EncryptFinal .Fa "EVP_CIPHER_CTX *ctx" .Fa "unsigned char *out" .Fa "int *outl" .Fc .Ft int .Fo EVP_DecryptInit .Fa "EVP_CIPHER_CTX *ctx" .Fa "const EVP_CIPHER *type" .Fa "unsigned char *key" .Fa "unsigned char *iv" .Fc .Ft int .Fo EVP_DecryptFinal .Fa "EVP_CIPHER_CTX *ctx" .Fa "unsigned char *outm" .Fa "int *outl" .Fc .Ft int .Fo EVP_CipherInit .Fa "EVP_CIPHER_CTX *ctx" .Fa "const EVP_CIPHER *type" .Fa "unsigned char *key" .Fa "unsigned char *iv" .Fa "int enc" .Fc .Ft int .Fo EVP_CipherFinal .Fa "EVP_CIPHER_CTX *ctx" .Fa "unsigned char *outm" .Fa "int *outl" .Fc .Ft int .Fo EVP_CIPHER_CTX_set_padding .Fa "EVP_CIPHER_CTX *x" .Fa "int padding" .Fc .Ft int .Fo EVP_CIPHER_CTX_set_key_length .Fa "EVP_CIPHER_CTX *x" .Fa "int keylen" .Fc .Ft int .Fo EVP_CIPHER_CTX_ctrl .Fa "EVP_CIPHER_CTX *ctx" .Fa "int type" .Fa "int arg" .Fa "void *ptr" .Fc .Ft int .Fo EVP_CIPHER_CTX_cleanup .Fa "EVP_CIPHER_CTX *ctx" .Fc .Ft const EVP_CIPHER * .Fo EVP_get_cipherbyname .Fa "const char *name" .Fc .Fd #define EVP_get_cipherbynid(a) EVP_get_cipherbyname(OBJ_nid2sn(a)) .Fd #define EVP_get_cipherbyobj(a) EVP_get_cipherbynid(OBJ_obj2nid(a)) .Fd #define EVP_CIPHER_nid(e) ((e)->nid) .Fd #define EVP_CIPHER_block_size(e) ((e)->block_size) .Fd #define EVP_CIPHER_key_length(e) ((e)->key_len) .Fd #define EVP_CIPHER_iv_length(e) ((e)->iv_len) .Fd #define EVP_CIPHER_flags(e) ((e)->flags) .Fd #define EVP_CIPHER_mode(e) ((e)->flags) & EVP_CIPH_MODE) .Ft int .Fo EVP_CIPHER_type .Fa "const EVP_CIPHER *ctx" .Fc .Fd #define EVP_CIPHER_CTX_cipher(e) ((e)->cipher) .Fd #define EVP_CIPHER_CTX_nid(e) ((e)->cipher->nid) .Fd #define EVP_CIPHER_CTX_block_size(e) ((e)->cipher->block_size) .Fd #define EVP_CIPHER_CTX_key_length(e) ((e)->key_len) .Fd #define EVP_CIPHER_CTX_iv_length(e) ((e)->cipher->iv_len) .Fd #define EVP_CIPHER_CTX_get_app_data(e) ((e)->app_data) .Fd #define EVP_CIPHER_CTX_set_app_data(e,d) ((e)->app_data=(char *)(d)) .Fd #define EVP_CIPHER_CTX_type(c) EVP_CIPHER_type(EVP_CIPHER_CTX_cipher(c)) .Fd #define EVP_CIPHER_CTX_flags(e) ((e)->cipher->flags) .Fd #define EVP_CIPHER_CTX_mode(e) ((e)->cipher->flags & EVP_CIPH_MODE) .Ft int .Fo EVP_CIPHER_param_to_asn1 .Fa "EVP_CIPHER_CTX *c" .Fa "ASN1_TYPE *type" .Fc .Ft int .Fo EVP_CIPHER_asn1_to_param .Fa "EVP_CIPHER_CTX *c" .Fa "ASN1_TYPE *type" .Fc .Sh DESCRIPTION The EVP cipher routines are a high level interface to certain symmetric ciphers. .Pp .Fn EVP_CIPHER_CTX_init initializes the cipher context .Fa ctx . .Pp .Fn EVP_EncryptInit_ex sets up the cipher context .Fa ctx for encryption with cipher .Fa type from .Vt ENGINE .Fa impl . .Fa ctx must be initialized before calling this function. .Fa type is normally supplied by a function such as .Fn EVP_aes_256_cbc . If .Fa impl is .Dv NULL , then the default implementation is used. .Fa key is the symmetric key to use and .Fa iv is the IV to use (if necessary). The actual number of bytes used for the key and IV depends on the cipher. It is possible to set all parameters to .Dv NULL except .Fa type in an initial call and supply the remaining parameters in subsequent calls, all of which have .Fa type set to .Dv NULL . This is done when the default cipher parameters are not appropriate. .Pp .Fn EVP_EncryptUpdate encrypts .Fa inl bytes from the buffer .Fa in and writes the encrypted version to .Fa out . This function can be called multiple times to encrypt successive blocks of data. The amount of data written depends on the block alignment of the encrypted data: as a result the amount of data written may be anything from zero bytes to (inl + cipher_block_size - 1) so .Fa outl should contain sufficient room. The actual number of bytes written is placed in .Fa outl . .Pp If padding is enabled (the default) then .Fn EVP_EncryptFinal_ex encrypts the "final" data, that is any data that remains in a partial block. It uses NOTES (aka PKCS padding). The encrypted final data is written to .Fa out which should have sufficient space for one cipher block. The number of bytes written is placed in .Fa outl . After this function is called the encryption operation is finished and no further calls to .Fn EVP_EncryptUpdate should be made. .Pp If padding is disabled then .Fn EVP_EncryptFinal_ex will not encrypt any more data and it will return an error if any data remains in a partial block: that is if the total data length is not a multiple of the block size. .Pp .Fn EVP_DecryptInit_ex , .Fn EVP_DecryptUpdate , and .Fn EVP_DecryptFinal_ex are the corresponding decryption operations. .Fn EVP_DecryptFinal will return an error code if padding is enabled and the final block is not correctly formatted. The parameters and restrictions are identical to the encryption operations except that if padding is enabled the decrypted data buffer .Fa out passed to .Fn EVP_DecryptUpdate should have sufficient room for (inl + cipher_block_size) bytes unless the cipher block size is 1 in which case .Fa inl bytes is sufficient. .Pp .Fn EVP_CipherInit_ex , .Fn EVP_CipherUpdate , and .Fn EVP_CipherFinal_ex are functions that can be used for decryption or encryption. The operation performed depends on the value of the .Fa enc parameter. It should be set to 1 for encryption, 0 for decryption and -1 to leave the value unchanged (the actual value of .Fa enc being supplied in a previous call). .Pp .Fn EVP_CIPHER_CTX_cleanup clears all information from a cipher context and free up any allocated memory associated with it. It should be called after all operations using a cipher are complete so sensitive information does not remain in memory. .Pp .Fn EVP_EncryptInit , .Fn EVP_DecryptInit , and .Fn EVP_CipherInit behave in a similar way to .Fn EVP_EncryptInit_ex , .Fn EVP_DecryptInit_ex , and .Fn EVP_CipherInit_ex except the .Fa ctx parameter does not need to be initialized and they always use the default cipher implementation. .Pp .Fn EVP_EncryptFinal , .Fn EVP_DecryptFinal , and .Fn EVP_CipherFinal are identical to .Fn EVP_EncryptFinal_ex , .Fn EVP_DecryptFinal_ex , and .Fn EVP_CipherFinal_ex . In previous releases of OpenSSL, they also used to clean up the .Fa ctx , but this is no longer done and .Fn EVP_CIPHER_CTX_cleanup must be called to free any context resources. .Pp .Fn EVP_get_cipherbyname , .Fn EVP_get_cipherbynid , and .Fn EVP_get_cipherbyobj return an .Vt EVP_CIPHER structure when passed a cipher name, a NID or an .Vt ASN1_OBJECT structure. .Pp .Fn EVP_CIPHER_nid and .Fn EVP_CIPHER_CTX_nid return the NID of a cipher when passed an .Vt EVP_CIPHER or .Vt EVP_CIPHER_CTX structure. The actual NID value is an internal value which may not have a corresponding OBJECT IDENTIFIER. .Pp .Fn EVP_CIPHER_CTX_set_padding enables or disables padding. By default encryption operations are padded using standard block padding and the padding is checked and removed when decrypting. If the .Sy padding parameter is zero, then no padding is performed, the total amount of data encrypted or decrypted must then be a multiple of the block size or an error will occur. .Pp .Fn EVP_CIPHER_key_length and .Fn EVP_CIPHER_CTX_key_length return the key length of a cipher when passed an .Vt EVP_CIPHER or .Vt EVP_CIPHER_CTX structure. The constant .Dv EVP_MAX_KEY_LENGTH is the maximum key length for all ciphers. Note: although .Fn EVP_CIPHER_key_length is fixed for a given cipher, the value of .Fn EVP_CIPHER_CTX_key_length may be different for variable key length ciphers. .Pp .Fn EVP_CIPHER_CTX_set_key_length sets the key length of the cipher ctx. If the cipher is a fixed length cipher, then attempting to set the key length to any value other than the fixed value is an error. .Pp .Fn EVP_CIPHER_iv_length and .Fn EVP_CIPHER_CTX_iv_length return the IV length of a cipher when passed an .Vt EVP_CIPHER or .Vt EVP_CIPHER_CTX . It will return zero if the cipher does not use an IV. The constant .Dv EVP_MAX_IV_LENGTH is the maximum IV length for all ciphers. .Pp .Fn EVP_CIPHER_block_size and .Fn EVP_CIPHER_CTX_block_size return the block size of a cipher when passed an .Vt EVP_CIPHER or .Vt EVP_CIPHER_CTX structure. The constant .Dv EVP_MAX_IV_LENGTH is also the maximum block length for all ciphers. .Pp .Fn EVP_CIPHER_type and .Fn EVP_CIPHER_CTX_type return the type of the passed cipher or context. This "type" is the actual NID of the cipher OBJECT IDENTIFIER as such it ignores the cipher parameters and 40-bit RC2 and 128-bit RC2 have the same NID. If the cipher does not have an object identifier or does not have ASN.1 support this function will return .Dv NID_undef . .Pp .Fn EVP_CIPHER_CTX_cipher returns the .Vt EVP_CIPHER structure when passed an .Vt EVP_CIPHER_CTX structure. .Pp .Fn EVP_CIPHER_mode and .Fn EVP_CIPHER_CTX_mode return the block cipher mode: .Dv EVP_CIPH_ECB_MODE , .Dv EVP_CIPH_CBC_MODE , .Dv EVP_CIPH_CFB_MODE , or .Dv EVP_CIPH_OFB_MODE . If the cipher is a stream cipher then .Dv EVP_CIPH_STREAM_CIPHER is returned. .Pp .Fn EVP_CIPHER_param_to_asn1 sets the AlgorithmIdentifier "parameter" based on the passed cipher. This will typically include any parameters and an IV. The cipher IV (if any) must be set when this call is made. This call should be made before the cipher is actually "used" (before any .Fn EVP_EncryptUpdate or .Fn EVP_DecryptUpdate calls, for example). This function may fail if the cipher does not have any ASN.1 support. .Pp .Fn EVP_CIPHER_asn1_to_param sets the cipher parameters based on an ASN.1 AlgorithmIdentifier "parameter". The precise effect depends on the cipher. In the case of RC2, for example, it will set the IV and effective key length. This function should be called after the base cipher type is set but before the key is set. For example .Fn EVP_CipherInit will be called with the IV and key set to .Dv NULL , .Fn EVP_CIPHER_asn1_to_param will be called and finally .Fn EVP_CipherInit again with all parameters except the key set to .Dv NULL . It is possible for this function to fail if the cipher does not have any ASN.1 support or the parameters cannot be set (for example the RC2 effective key length is not supported). .Pp .Fn EVP_CIPHER_CTX_ctrl allows various cipher specific parameters to be determined and set. Currently only the RC2 effective key length and the number of rounds of RC5 can be set. .Sh RETURN VALUES .Fn EVP_EncryptInit_ex , .Fn EVP_EncryptUpdate , and .Fn EVP_EncryptFinal_ex return 1 for success and 0 for failure. .Pp .Fn EVP_DecryptInit_ex and .Fn EVP_DecryptUpdate return 1 for success and 0 for failure. .Fn EVP_DecryptFinal_ex returns 0 if the decrypt failed or 1 for success. .Pp .Fn EVP_CipherInit_ex and .Fn EVP_CipherUpdate return 1 for success and 0 for failure. .Fn EVP_CipherFinal_ex returns 0 for a decryption failure or 1 for success. .Pp .Fn EVP_CIPHER_CTX_cleanup returns 1 for success and 0 for failure. .Pp .Fn EVP_get_cipherbyname , .Fn EVP_get_cipherbynid , and .Fn EVP_get_cipherbyobj return an .Vt EVP_CIPHER structure or .Dv NULL on error. .Pp .Fn EVP_CIPHER_nid and .Fn EVP_CIPHER_CTX_nid return a NID. .Pp .Fn EVP_CIPHER_block_size and .Fn EVP_CIPHER_CTX_block_size return the block size. .Pp .Fn EVP_CIPHER_key_length and .Fn EVP_CIPHER_CTX_key_length return the key length. .Pp .Fn EVP_CIPHER_CTX_set_padding always returns 1. .Pp .Fn EVP_CIPHER_iv_length and .Fn EVP_CIPHER_CTX_iv_length return the IV length or zero if the cipher does not use an IV. .Pp .Fn EVP_CIPHER_type and .Fn EVP_CIPHER_CTX_type return the NID of the cipher's OBJECT IDENTIFIER or .Dv NID_undef if it has no defined OBJECT IDENTIFIER. .Pp .Fn EVP_CIPHER_CTX_cipher returns an .Vt EVP_CIPHER structure. .Pp .Fn EVP_CIPHER_param_to_asn1 and .Fn EVP_CIPHER_asn1_to_param return 1 for success or 0 for failure. .Pp Where possible the EVP interface to symmetric ciphers should be used in preference to the low level interfaces. This is because the code then becomes transparent to the cipher used and much more flexible. .Pp PKCS padding works by adding n padding bytes of value n to make the total length of the encrypted data a multiple of the block size. Padding is always added so if the data is already a multiple of the block size n will equal the block size. For example if the block size is 8 and 11 bytes are to be encrypted then 5 padding bytes of value 5 will be added. .Pp When decrypting the final block is checked to see if it has the correct form. .Pp Although the decryption operation can produce an error if padding is enabled, it is not a strong test that the input data or key is correct. A random block has better than 1 in 256 chance of being of the correct format and problems with the input data earlier on will not produce a final decrypt error. .Pp If padding is disabled then the decryption operation will always succeed if the total amount of data decrypted is a multiple of the block size. .Pp The functions .Fn EVP_EncryptInit , .Fn EVP_EncryptFinal , .Fn EVP_DecryptInit , .Fn EVP_CipherInit , and .Fn EVP_CipherFinal are obsolete but are retained for compatibility with existing code. New code should use .Fn EVP_EncryptInit_ex , .Fn EVP_EncryptFinal_ex , .Fn EVP_DecryptInit_ex , .Fn EVP_DecryptFinal_ex , .Fn EVP_CipherInit_ex , and .Fn EVP_CipherFinal_ex because they can reuse an existing context without allocating and freeing it up on each call. .Sh CIPHER LISTING All algorithms have a fixed key length unless otherwise stated. .Bl -tag -width Ds .It Fn EVP_enc_null void Null cipher: does nothing. .It Xo .Fn EVP_aes_128_cbc void , .Fn EVP_aes_128_ecb void , .Fn EVP_aes_128_cfb void , .Fn EVP_aes_128_ofb void .Xc 128-bit AES in CBC, ECB, CFB and OFB modes respectively. .It Xo .Fn EVP_aes_192_cbc void , .Fn EVP_aes_192_ecb void , .Fn EVP_aes_192_cfb void , .Fn EVP_aes_192_ofb void .Xc 192-bit AES in CBC, ECB, CFB and OFB modes respectively. .It Xo .Fn EVP_aes_256_cbc void , .Fn EVP_aes_256_ecb void , .Fn EVP_aes_256_cfb void , .Fn EVP_aes_256_ofb void .Xc 256-bit AES in CBC, ECB, CFB and OFB modes respectively. .It Xo .Fn EVP_des_cbc void , .Fn EVP_des_ecb void , .Fn EVP_des_cfb void , .Fn EVP_des_ofb void .Xc DES in CBC, ECB, CFB and OFB modes respectively. .It Xo .Fn EVP_des_ede_cbc void , .Fn EVP_des_ede void , .Fn EVP_des_ede_ofb void , .Fn EVP_des_ede_cfb void .Xc Two key triple DES in CBC, ECB, CFB and OFB modes respectively. .It Xo .Fn EVP_des_ede3_cbc void , .Fn EVP_des_ede3 void , .Fn EVP_des_ede3_ofb void , .Fn EVP_des_ede3_cfb void .Xc Three key triple DES in CBC, ECB, CFB and OFB modes respectively. .It Fn EVP_desx_cbc void DESX algorithm in CBC mode. .It Fn EVP_rc4 void RC4 stream cipher. This is a variable key length cipher with default key length 128 bits. .It Fn EVP_rc4_40 void RC4 stream cipher with 40-bit key length. This is obsolete and new code should use .Fn EVP_rc4 and the .Fn EVP_CIPHER_CTX_set_key_length function. .It Xo .Fn EVP_idea_cbc void , .Fn EVP_idea_ecb void , .Fn EVP_idea_cfb void , .Fn EVP_idea_ofb void .Xc IDEA encryption algorithm in CBC, ECB, CFB and OFB modes respectively. .It Xo .Fn EVP_rc2_cbc void , .Fn EVP_rc2_ecb void , .Fn EVP_rc2_cfb void , .Fn EVP_rc2_ofb void .Xc RC2 encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key length cipher with an additional parameter called "effective key bits" or "effective key length". By default both are set to 128 bits. .It Xo .Fn EVP_rc2_40_cbc void , .Fn EVP_rc2_64_cbc void .Xc RC2 algorithm in CBC mode with a default key length and effective key length of 40 and 64 bits. These are obsolete and new code should use .Fn EVP_rc2_cbc , .Fn EVP_CIPHER_CTX_set_key_length , and .Fn EVP_CIPHER_CTX_ctrl to set the key length and effective key length. .It Xo .Fn EVP_bf_cbc void , .Fn EVP_bf_ecb void , .Fn EVP_bf_cfb void , .Fn EVP_bf_ofb void .Xc Blowfish encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key length cipher. .It Xo .Fn EVP_cast5_cbc void , .Fn EVP_cast5_ecb void , .Fn EVP_cast5_cfb void , .Fn EVP_cast5_ofb void .Xc CAST encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key length cipher. .It Xo .Fn EVP_rc5_32_12_16_cbc void , .Fn EVP_rc5_32_12_16_ecb void , .Fn EVP_rc5_32_12_16_cfb void , .Fn EVP_rc5_32_12_16_ofb void .Xc RC5 encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key length cipher with an additional "number of rounds" parameter. By default the key length is set to 128 bits and 12 rounds. .El .Sh EXAMPLES Get the number of rounds used in RC5: .Bd -literal -offset indent int nrounds; EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GET_RC5_ROUNDS, 0, &nrounds); .Ed .Pp Get the RC2 effective key length: .Bd -literal -offset indent int key_bits; EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GET_RC2_KEY_BITS, 0, &key_bits); .Ed .Pp Set the number of rounds used in RC5: .Bd -literal -offset indent int nrounds; EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_SET_RC5_ROUNDS, nrounds, NULL); .Ed .Pp Set the effective key length used in RC2: .Bd -literal -offset indent int key_bits; EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_SET_RC2_KEY_BITS, key_bits, NULL); .Ed .Pp Encrypt a string using blowfish: .Bd -literal -offset 3n int do_crypt(char *outfile) { unsigned char outbuf[1024]; int outlen, tmplen; /* * Bogus key and IV: we'd normally set these from * another source. */ unsigned char key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}; unsigned char iv[] = {1,2,3,4,5,6,7,8}; const char intext[] = "Some Crypto Text"; EVP_CIPHER_CTX ctx; FILE *out; EVP_CIPHER_CTX_init(&ctx); EVP_EncryptInit_ex(&ctx, EVP_bf_cbc(), NULL, key, iv); if (!EVP_EncryptUpdate(&ctx, outbuf, &outlen, intext, strlen(intext))) { /* Error */ return 0; } /* * Buffer passed to EVP_EncryptFinal() must be after data just * encrypted to avoid overwriting it. */ if (!EVP_EncryptFinal_ex(&ctx, outbuf + outlen, &tmplen)) { /* Error */ return 0; } outlen += tmplen; EVP_CIPHER_CTX_cleanup(&ctx); /* * Need binary mode for fopen because encrypted data is * binary data. Also cannot use strlen() on it because * it won't be NUL terminated and may contain embedded * NULs. */ out = fopen(outfile, "wb"); fwrite(outbuf, 1, outlen, out); fclose(out); return 1; } .Ed .Pp The ciphertext from the above example can be decrypted using the .Xr openssl 1 utility with the command line: .Bd -literal -offset indent openssl bf -in cipher.bin -K 000102030405060708090A0B0C0D0E0F \e -iv 0102030405060708 -d .Ed .Pp General encryption, decryption function example using FILE I/O and RC2 with an 80-bit key: .Bd -literal int do_crypt(FILE *in, FILE *out, int do_encrypt) { /* Allow enough space in output buffer for additional block */ inbuf[1024], outbuf[1024 + EVP_MAX_BLOCK_LENGTH]; int inlen, outlen; /* * Bogus key and IV: we'd normally set these from * another source. */ unsigned char key[] = "0123456789"; unsigned char iv[] = "12345678"; /* Don't set key or IV because we will modify the parameters */ EVP_CIPHER_CTX_init(&ctx); EVP_CipherInit_ex(&ctx, EVP_rc2(), NULL, NULL, NULL, do_encrypt); EVP_CIPHER_CTX_set_key_length(&ctx, 10); /* We finished modifying parameters so now we can set key and IV */ EVP_CipherInit_ex(&ctx, NULL, NULL, key, iv, do_encrypt); for(;;) { inlen = fread(inbuf, 1, 1024, in); if (inlen <= 0) break; if (!EVP_CipherUpdate(&ctx, outbuf, &outlen, inbuf, inlen)) { /* Error */ EVP_CIPHER_CTX_cleanup(&ctx); return 0; } fwrite(outbuf, 1, outlen, out); } if (!EVP_CipherFinal_ex(&ctx, outbuf, &outlen)) { /* Error */ EVP_CIPHER_CTX_cleanup(&ctx); return 0; } fwrite(outbuf, 1, outlen, out); EVP_CIPHER_CTX_cleanup(&ctx); return 1; } .Ed .Sh SEE ALSO .Xr evp 3 .Sh HISTORY .Fn EVP_CIPHER_CTX_init , .Fn EVP_EncryptInit_ex , .Fn EVP_EncryptFinal_ex , .Fn EVP_DecryptInit_ex , .Fn EVP_DecryptFinal_ex , .Fn EVP_CipherInit_ex , .Fn EVP_CipherFinal_ex , and .Fn EVP_CIPHER_CTX_set_padding appeared in OpenSSL 0.9.7. .Sh BUGS For RC5 the number of rounds can currently only be set to 8, 12 or 16. This is a limitation of the current RC5 code rather than the EVP interface. .Pp .Dv EVP_MAX_KEY_LENGTH and .Dv EVP_MAX_IV_LENGTH only refer to the internal ciphers with default key lengths. If custom ciphers exceed these values the results are unpredictable. This is because it has become standard practice to define a generic key as a fixed unsigned char array containing .Dv EVP_MAX_KEY_LENGTH bytes. .Pp The ASN.1 code is incomplete (and sometimes inaccurate). It has only been tested for certain common S/MIME ciphers (RC2, DES, triple DES) in CBC mode.