#!/usr/bin/env perl # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # July 2004 # # 2.22x RC4 tune-up:-) It should be noted though that my hand [as in # "hand-coded assembler"] doesn't stand for the whole improvement # coefficient. It turned out that eliminating RC4_CHAR from config # line results in ~40% improvement (yes, even for C implementation). # Presumably it has everything to do with AMD cache architecture and # RAW or whatever penalties. Once again! The module *requires* config # line *without* RC4_CHAR! As for coding "secret," I bet on partial # register arithmetics. For example instead of 'inc %r8; and $255,%r8' # I simply 'inc %r8b'. Even though optimization manual discourages # to operate on partial registers, it turned out to be the best bet. # At least for AMD... How IA32E would perform remains to be seen... # November 2004 # # As was shown by Marc Bevand reordering of couple of load operations # results in even higher performance gain of 3.3x:-) At least on # Opteron... For reference, 1x in this case is RC4_CHAR C-code # compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock. # Latter means that if you want to *estimate* what to expect from # *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz. # November 2004 # # Intel P4 EM64T core was found to run the AMD64 code really slow... # The only way to achieve comparable performance on P4 was to keep # RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to # compose blended code, which would perform even within 30% marginal # on either AMD and Intel platforms, I implement both cases. See # rc4_skey.c for further details... # April 2005 # # P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing # those with add/sub results in 50% performance improvement of folded # loop... # May 2005 # # As was shown by Zou Nanhai loop unrolling can improve Intel EM64T # performance by >30% [unlike P4 32-bit case that is]. But this is # provided that loads are reordered even more aggressively! Both code # pathes, AMD64 and EM64T, reorder loads in essentially same manner # as my IA-64 implementation. On Opteron this resulted in modest 5% # improvement [I had to test it], while final Intel P4 performance # achieves respectful 432MBps on 2.8GHz processor now. For reference. # If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than # RC4_INT code-path. While if executed on Opteron, it's only 25% # slower than the RC4_INT one [meaning that if CPU µ-arch detection # is not implemented, then this final RC4_CHAR code-path should be # preferred, as it provides better *all-round* performance]. # March 2007 # # Intel Core2 was observed to perform poorly on both code paths:-( It # apparently suffers from some kind of partial register stall, which # occurs in 64-bit mode only [as virtually identical 32-bit loop was # observed to outperform 64-bit one by almost 50%]. Adding two movzb to # cloop1 boosts its performance by 80%! This loop appears to be optimal # fit for Core2 and therefore the code was modified to skip cloop8 on # this CPU. # May 2010 # # Intel Westmere was observed to perform suboptimally. Adding yet # another movzb to cloop1 improved performance by almost 50%! Core2 # performance is improved too, but nominally... # May 2011 # # The only code path that was not modified is P4-specific one. Non-P4 # Intel code path optimization is heavily based on submission by Maxim # Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used # some of the ideas even in attempt to optmize the original RC4_INT # code path... Current performance in cycles per processed byte (less # is better) and improvement coefficients relative to previous # version of this module are: # # Opteron 5.3/+0%(*) # P4 6.5 # Core2 6.2/+15%(**) # Westmere 4.2/+60% # Sandy Bridge 4.2/+120% # Atom 9.3/+80% # # (*) But corresponding loop has less instructions, which should have # positive effect on upcoming Bulldozer, which has one less ALU. # For reference, Intel code runs at 6.8 cpb rate on Opteron. # (**) Note that Core2 result is ~15% lower than corresponding result # for 32-bit code, meaning that it's possible to improve it, # but more than likely at the cost of the others (see rc4-586.pl # to get the idea)... $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open OUT,"| \"$^X\" $xlate $flavour $output"; *STDOUT=*OUT; $dat="%rdi"; # arg1 $len="%rsi"; # arg2 $inp="%rdx"; # arg3 $out="%rcx"; # arg4 { $code=<<___; .text .extern OPENSSL_ia32cap_P .globl RC4 .type RC4,\@function,4 .align 16 RC4: or $len,$len jne .Lentry ret .Lentry: push %rbx push %r12 push %r13 .Lprologue: mov $len,%r11 mov $inp,%r12 mov $out,%r13 ___ my $len="%r11"; # reassign input arguments my $inp="%r12"; my $out="%r13"; my @XX=("%r10","%rsi"); my @TX=("%rax","%rbx"); my $YY="%rcx"; my $TY="%rdx"; $code.=<<___; xor $XX[0],$XX[0] xor $YY,$YY lea 8($dat),$dat mov -8($dat),$XX[0]#b mov -4($dat),$YY#b cmpl \$-1,256($dat) je .LRC4_CHAR mov OPENSSL_ia32cap_P(%rip),%r8d xor $TX[1],$TX[1] inc $XX[0]#b sub $XX[0],$TX[1] sub $inp,$out movl ($dat,$XX[0],4),$TX[0]#d test \$-16,$len jz .Lloop1 bt \$30,%r8d # Intel CPU? jc .Lintel and \$7,$TX[1] lea 1($XX[0]),$XX[1] jz .Loop8 sub $TX[1],$len .Loop8_warmup: add $TX[0]#b,$YY#b movl ($dat,$YY,4),$TY#d movl $TX[0]#d,($dat,$YY,4) movl $TY#d,($dat,$XX[0],4) add $TY#b,$TX[0]#b inc $XX[0]#b movl ($dat,$TX[0],4),$TY#d movl ($dat,$XX[0],4),$TX[0]#d xorb ($inp),$TY#b movb $TY#b,($out,$inp) lea 1($inp),$inp dec $TX[1] jnz .Loop8_warmup lea 1($XX[0]),$XX[1] jmp .Loop8 .align 16 .Loop8: ___ for ($i=0;$i<8;$i++) { $code.=<<___ if ($i==7); add \$8,$XX[1]#b ___ $code.=<<___; add $TX[0]#b,$YY#b movl ($dat,$YY,4),$TY#d movl $TX[0]#d,($dat,$YY,4) movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d ror \$8,%r8 # ror is redundant when $i=0 movl $TY#d,4*$i($dat,$XX[0],4) add $TX[0]#b,$TY#b movb ($dat,$TY,4),%r8b ___ push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers } $code.=<<___; add \$8,$XX[0]#b ror \$8,%r8 sub \$8,$len xor ($inp),%r8 mov %r8,($out,$inp) lea 8($inp),$inp test \$-8,$len jnz .Loop8 cmp \$0,$len jne .Lloop1 jmp .Lexit .align 16 .Lintel: test \$-32,$len jz .Lloop1 and \$15,$TX[1] jz .Loop16_is_hot sub $TX[1],$len .Loop16_warmup: add $TX[0]#b,$YY#b movl ($dat,$YY,4),$TY#d movl $TX[0]#d,($dat,$YY,4) movl $TY#d,($dat,$XX[0],4) add $TY#b,$TX[0]#b inc $XX[0]#b movl ($dat,$TX[0],4),$TY#d movl ($dat,$XX[0],4),$TX[0]#d xorb ($inp),$TY#b movb $TY#b,($out,$inp) lea 1($inp),$inp dec $TX[1] jnz .Loop16_warmup mov $YY,$TX[1] xor $YY,$YY mov $TX[1]#b,$YY#b .Loop16_is_hot: lea ($dat,$XX[0],4),$XX[1] ___ sub RC4_loop { my $i=shift; my $j=$i<0?0:$i; my $xmm="%xmm".($j&1); $code.=" add \$16,$XX[0]#b\n" if ($i==15); $code.=" movdqu ($inp),%xmm2\n" if ($i==15); $code.=" add $TX[0]#b,$YY#b\n" if ($i<=0); $code.=" movl ($dat,$YY,4),$TY#d\n"; $code.=" pxor %xmm0,%xmm2\n" if ($i==0); $code.=" psllq \$8,%xmm1\n" if ($i==0); $code.=" pxor $xmm,$xmm\n" if ($i<=1); $code.=" movl $TX[0]#d,($dat,$YY,4)\n"; $code.=" add $TY#b,$TX[0]#b\n"; $code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15); $code.=" movz $TX[0]#b,$TX[0]#d\n"; $code.=" movl $TY#d,4*$j($XX[1])\n"; $code.=" pxor %xmm1,%xmm2\n" if ($i==0); $code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15); $code.=" add $TX[1]#b,$YY#b\n" if ($i<15); $code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n"; $code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0); $code.=" lea 16($inp),$inp\n" if ($i==0); $code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15); } RC4_loop(-1); $code.=<<___; jmp .Loop16_enter .align 16 .Loop16: ___ for ($i=0;$i<16;$i++) { $code.=".Loop16_enter:\n" if ($i==1); RC4_loop($i); push(@TX,shift(@TX)); # "rotate" registers } $code.=<<___; mov $YY,$TX[1] xor $YY,$YY # keyword to partial register sub \$16,$len mov $TX[1]#b,$YY#b test \$-16,$len jnz .Loop16 psllq \$8,%xmm1 pxor %xmm0,%xmm2 pxor %xmm1,%xmm2 movdqu %xmm2,($out,$inp) lea 16($inp),$inp cmp \$0,$len jne .Lloop1 jmp .Lexit .align 16 .Lloop1: add $TX[0]#b,$YY#b movl ($dat,$YY,4),$TY#d movl $TX[0]#d,($dat,$YY,4) movl $TY#d,($dat,$XX[0],4) add $TY#b,$TX[0]#b inc $XX[0]#b movl ($dat,$TX[0],4),$TY#d movl ($dat,$XX[0],4),$TX[0]#d xorb ($inp),$TY#b movb $TY#b,($out,$inp) lea 1($inp),$inp dec $len jnz .Lloop1 jmp .Lexit .align 16 .LRC4_CHAR: add \$1,$XX[0]#b movzb ($dat,$XX[0]),$TX[0]#d test \$-8,$len jz .Lcloop1 jmp .Lcloop8 .align 16 .Lcloop8: mov ($inp),%r8d mov 4($inp),%r9d ___ # unroll 2x4-wise, because 64-bit rotates kill Intel P4... for ($i=0;$i<4;$i++) { $code.=<<___; add $TX[0]#b,$YY#b lea 1($XX[0]),$XX[1] movzb ($dat,$YY),$TY#d movzb $XX[1]#b,$XX[1]#d movzb ($dat,$XX[1]),$TX[1]#d movb $TX[0]#b,($dat,$YY) cmp $XX[1],$YY movb $TY#b,($dat,$XX[0]) jne .Lcmov$i # Intel cmov is sloooow... mov $TX[0],$TX[1] .Lcmov$i: add $TX[0]#b,$TY#b xor ($dat,$TY),%r8b ror \$8,%r8d ___ push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers } for ($i=4;$i<8;$i++) { $code.=<<___; add $TX[0]#b,$YY#b lea 1($XX[0]),$XX[1] movzb ($dat,$YY),$TY#d movzb $XX[1]#b,$XX[1]#d movzb ($dat,$XX[1]),$TX[1]#d movb $TX[0]#b,($dat,$YY) cmp $XX[1],$YY movb $TY#b,($dat,$XX[0]) jne .Lcmov$i # Intel cmov is sloooow... mov $TX[0],$TX[1] .Lcmov$i: add $TX[0]#b,$TY#b xor ($dat,$TY),%r9b ror \$8,%r9d ___ push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers } $code.=<<___; lea -8($len),$len mov %r8d,($out) lea 8($inp),$inp mov %r9d,4($out) lea 8($out),$out test \$-8,$len jnz .Lcloop8 cmp \$0,$len jne .Lcloop1 jmp .Lexit ___ $code.=<<___; .align 16 .Lcloop1: add $TX[0]#b,$YY#b movzb $YY#b,$YY#d movzb ($dat,$YY),$TY#d movb $TX[0]#b,($dat,$YY) movb $TY#b,($dat,$XX[0]) add $TX[0]#b,$TY#b add \$1,$XX[0]#b movzb $TY#b,$TY#d movzb $XX[0]#b,$XX[0]#d movzb ($dat,$TY),$TY#d movzb ($dat,$XX[0]),$TX[0]#d xorb ($inp),$TY#b lea 1($inp),$inp movb $TY#b,($out) lea 1($out),$out sub \$1,$len jnz .Lcloop1 jmp .Lexit .align 16 .Lexit: sub \$1,$XX[0]#b movl $XX[0]#d,-8($dat) movl $YY#d,-4($dat) mov (%rsp),%r13 mov 8(%rsp),%r12 mov 16(%rsp),%rbx add \$24,%rsp .Lepilogue: ret .size RC4,.-RC4 ___ } $idx="%r8"; $ido="%r9"; $code.=<<___; .globl RC4_set_key .type RC4_set_key,\@function,3 .align 16 RC4_set_key: lea 8($dat),$dat lea ($inp,$len),$inp neg $len mov $len,%rcx xor %eax,%eax xor $ido,$ido xor %r10,%r10 xor %r11,%r11 mov OPENSSL_ia32cap_P(%rip),$idx#d bt \$20,$idx#d # RC4_CHAR? jc .Lc1stloop jmp .Lw1stloop .align 16 .Lw1stloop: mov %eax,($dat,%rax,4) add \$1,%al jnc .Lw1stloop xor $ido,$ido xor $idx,$idx .align 16 .Lw2ndloop: mov ($dat,$ido,4),%r10d add ($inp,$len,1),$idx#b add %r10b,$idx#b add \$1,$len mov ($dat,$idx,4),%r11d cmovz %rcx,$len mov %r10d,($dat,$idx,4) mov %r11d,($dat,$ido,4) add \$1,$ido#b jnc .Lw2ndloop jmp .Lexit_key .align 16 .Lc1stloop: mov %al,($dat,%rax) add \$1,%al jnc .Lc1stloop xor $ido,$ido xor $idx,$idx .align 16 .Lc2ndloop: mov ($dat,$ido),%r10b add ($inp,$len),$idx#b add %r10b,$idx#b add \$1,$len mov ($dat,$idx),%r11b jnz .Lcnowrap mov %rcx,$len .Lcnowrap: mov %r10b,($dat,$idx) mov %r11b,($dat,$ido) add \$1,$ido#b jnc .Lc2ndloop movl \$-1,256($dat) .align 16 .Lexit_key: xor %eax,%eax mov %eax,-8($dat) mov %eax,-4($dat) ret .size RC4_set_key,.-RC4_set_key .globl RC4_options .type RC4_options,\@abi-omnipotent .align 16 RC4_options: lea .Lopts(%rip),%rax mov OPENSSL_ia32cap_P(%rip),%edx bt \$20,%edx jc .L8xchar bt \$30,%edx jnc .Ldone add \$25,%rax ret .L8xchar: add \$12,%rax .Ldone: ret .align 64 .Lopts: .asciz "rc4(8x,int)" .asciz "rc4(8x,char)" .asciz "rc4(16x,int)" .asciz "RC4 for x86_64, CRYPTOGAMS by " .align 64 .size RC4_options,.-RC4_options ___ sub reg_part { my ($reg,$conv)=@_; if ($reg =~ /%r[0-9]+/) { $reg .= $conv; } elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; } elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; } elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; } return $reg; } $code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem; $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT;