/* * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Implementation of RFC 3779 section 2.2. */ #include #include #include #include #include #include #include #include #include #include #include "ext_dat.h" #ifndef OPENSSL_NO_RFC3779 /* * OpenSSL ASN.1 template translation of RFC 3779 2.2.3. */ static const ASN1_TEMPLATE IPAddressRange_seq_tt[] = { { .flags = 0, .tag = 0, .offset = offsetof(IPAddressRange, min), .field_name = "min", .item = &ASN1_BIT_STRING_it, }, { .flags = 0, .tag = 0, .offset = offsetof(IPAddressRange, max), .field_name = "max", .item = &ASN1_BIT_STRING_it, }, }; const ASN1_ITEM IPAddressRange_it = { .itype = ASN1_ITYPE_SEQUENCE, .utype = V_ASN1_SEQUENCE, .templates = IPAddressRange_seq_tt, .tcount = sizeof(IPAddressRange_seq_tt) / sizeof(ASN1_TEMPLATE), .funcs = NULL, .size = sizeof(IPAddressRange), .sname = "IPAddressRange", }; static const ASN1_TEMPLATE IPAddressOrRange_ch_tt[] = { { .flags = 0, .tag = 0, .offset = offsetof(IPAddressOrRange, u.addressPrefix), .field_name = "u.addressPrefix", .item = &ASN1_BIT_STRING_it, }, { .flags = 0, .tag = 0, .offset = offsetof(IPAddressOrRange, u.addressRange), .field_name = "u.addressRange", .item = &IPAddressRange_it, }, }; const ASN1_ITEM IPAddressOrRange_it = { .itype = ASN1_ITYPE_CHOICE, .utype = offsetof(IPAddressOrRange, type), .templates = IPAddressOrRange_ch_tt, .tcount = sizeof(IPAddressOrRange_ch_tt) / sizeof(ASN1_TEMPLATE), .funcs = NULL, .size = sizeof(IPAddressOrRange), .sname = "IPAddressOrRange", }; static const ASN1_TEMPLATE IPAddressChoice_ch_tt[] = { { .flags = 0, .tag = 0, .offset = offsetof(IPAddressChoice, u.inherit), .field_name = "u.inherit", .item = &ASN1_NULL_it, }, { .flags = ASN1_TFLG_SEQUENCE_OF, .tag = 0, .offset = offsetof(IPAddressChoice, u.addressesOrRanges), .field_name = "u.addressesOrRanges", .item = &IPAddressOrRange_it, }, }; const ASN1_ITEM IPAddressChoice_it = { .itype = ASN1_ITYPE_CHOICE, .utype = offsetof(IPAddressChoice, type), .templates = IPAddressChoice_ch_tt, .tcount = sizeof(IPAddressChoice_ch_tt) / sizeof(ASN1_TEMPLATE), .funcs = NULL, .size = sizeof(IPAddressChoice), .sname = "IPAddressChoice", }; static const ASN1_TEMPLATE IPAddressFamily_seq_tt[] = { { .flags = 0, .tag = 0, .offset = offsetof(IPAddressFamily, addressFamily), .field_name = "addressFamily", .item = &ASN1_OCTET_STRING_it, }, { .flags = 0, .tag = 0, .offset = offsetof(IPAddressFamily, ipAddressChoice), .field_name = "ipAddressChoice", .item = &IPAddressChoice_it, }, }; const ASN1_ITEM IPAddressFamily_it = { .itype = ASN1_ITYPE_SEQUENCE, .utype = V_ASN1_SEQUENCE, .templates = IPAddressFamily_seq_tt, .tcount = sizeof(IPAddressFamily_seq_tt) / sizeof(ASN1_TEMPLATE), .funcs = NULL, .size = sizeof(IPAddressFamily), .sname = "IPAddressFamily", }; static const ASN1_TEMPLATE IPAddrBlocks_item_tt = { .flags = ASN1_TFLG_SEQUENCE_OF, .tag = 0, .offset = 0, .field_name = "IPAddrBlocks", .item = &IPAddressFamily_it, }; /* XXX: maybe special? */ static const ASN1_ITEM IPAddrBlocks_it = { .itype = ASN1_ITYPE_PRIMITIVE, .utype = -1, .templates = &IPAddrBlocks_item_tt, .tcount = 0, .funcs = NULL, .size = 0, .sname = "IPAddrBlocks", }; IPAddressRange * d2i_IPAddressRange(IPAddressRange **a, const unsigned char **in, long len) { return (IPAddressRange *)ASN1_item_d2i((ASN1_VALUE **)a, in, len, (&(IPAddressRange_it))); } int i2d_IPAddressRange(IPAddressRange *a, unsigned char **out) { return ASN1_item_i2d((ASN1_VALUE *)a, out, (&(IPAddressRange_it))); } IPAddressRange * IPAddressRange_new(void) { return (IPAddressRange *)ASN1_item_new((&(IPAddressRange_it))); } void IPAddressRange_free(IPAddressRange *a) { ASN1_item_free((ASN1_VALUE *)a, (&(IPAddressRange_it))); } IPAddressOrRange * d2i_IPAddressOrRange(IPAddressOrRange **a, const unsigned char **in, long len) { return (IPAddressOrRange *)ASN1_item_d2i((ASN1_VALUE **)a, in, len, (&(IPAddressOrRange_it))); } int i2d_IPAddressOrRange(IPAddressOrRange *a, unsigned char ** out) { return ASN1_item_i2d((ASN1_VALUE *)a, out, (&(IPAddressOrRange_it))); } IPAddressOrRange * IPAddressOrRange_new(void) { return (IPAddressOrRange *)ASN1_item_new((&(IPAddressOrRange_it))); } void IPAddressOrRange_free(IPAddressOrRange *a) { ASN1_item_free((ASN1_VALUE *)a, (&(IPAddressOrRange_it))); } IPAddressChoice * d2i_IPAddressChoice(IPAddressChoice **a, const unsigned char **in, long len) { return (IPAddressChoice *)ASN1_item_d2i((ASN1_VALUE **)a, in, len, (&(IPAddressChoice_it))); } int i2d_IPAddressChoice(IPAddressChoice *a, unsigned char **out) { return ASN1_item_i2d((ASN1_VALUE *)a, out, (&(IPAddressChoice_it))); } IPAddressChoice * IPAddressChoice_new(void) { return (IPAddressChoice *)ASN1_item_new((&(IPAddressChoice_it))); } void IPAddressChoice_free(IPAddressChoice *a) { ASN1_item_free((ASN1_VALUE *)a, (&(IPAddressChoice_it))); } IPAddressFamily * d2i_IPAddressFamily(IPAddressFamily **a, const unsigned char **in, long len) { return (IPAddressFamily *)ASN1_item_d2i((ASN1_VALUE **)a, in, len, (&(IPAddressFamily_it))); } int i2d_IPAddressFamily(IPAddressFamily *a, unsigned char **out) { return ASN1_item_i2d((ASN1_VALUE *)a, out, (&(IPAddressFamily_it))); } IPAddressFamily * IPAddressFamily_new(void) { return (IPAddressFamily *)ASN1_item_new((&(IPAddressFamily_it))); } void IPAddressFamily_free(IPAddressFamily *a) { ASN1_item_free((ASN1_VALUE *)a, (&(IPAddressFamily_it))); } /* * How much buffer space do we need for a raw address? */ #define ADDR_RAW_BUF_LEN 16 /* * What's the address length associated with this AFI? */ static int length_from_afi(const unsigned afi) { switch (afi) { case IANA_AFI_IPV4: return 4; case IANA_AFI_IPV6: return 16; default: return 0; } } /* * Extract the AFI from an IPAddressFamily. */ unsigned int X509v3_addr_get_afi(const IPAddressFamily *f) { if (f == NULL || f->addressFamily == NULL || f->addressFamily->data == NULL || f->addressFamily->length < 2) return 0; return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1]; } /* * Expand the bitstring form of an address into a raw byte array. * At the moment this is coded for simplicity, not speed. */ static int addr_expand(unsigned char *addr, const ASN1_BIT_STRING *bs, const int length, const unsigned char fill) { if (bs->length < 0 || bs->length > length) return 0; if (bs->length > 0) { memcpy(addr, bs->data, bs->length); if ((bs->flags & 7) != 0) { unsigned char mask = 0xFF >> (8 - (bs->flags & 7)); if (fill == 0) addr[bs->length - 1] &= ~mask; else addr[bs->length - 1] |= mask; } } memset(addr + bs->length, fill, length - bs->length); return 1; } /* * Extract the prefix length from a bitstring. */ #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7))) /* * i2r handler for one address bitstring. */ static int i2r_address(BIO *out, const unsigned afi, const unsigned char fill, const ASN1_BIT_STRING *bs) { unsigned char addr[ADDR_RAW_BUF_LEN]; int i, n; if (bs->length < 0) return 0; switch (afi) { case IANA_AFI_IPV4: if (!addr_expand(addr, bs, 4, fill)) return 0; BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]); break; case IANA_AFI_IPV6: if (!addr_expand(addr, bs, 16, fill)) return 0; for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00; n -= 2) ; for (i = 0; i < n; i += 2) BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1], (i < 14 ? ":" : "")); if (i < 16) BIO_puts(out, ":"); if (i == 0) BIO_puts(out, ":"); break; default: for (i = 0; i < bs->length; i++) BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]); BIO_printf(out, "[%d]", (int)(bs->flags & 7)); break; } return 1; } /* * i2r handler for a sequence of addresses and ranges. */ static int i2r_IPAddressOrRanges(BIO *out, const int indent, const IPAddressOrRanges *aors, const unsigned afi) { int i; for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) { const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i); BIO_printf(out, "%*s", indent, ""); switch (aor->type) { case IPAddressOrRange_addressPrefix: if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix)) return 0; BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix)); continue; case IPAddressOrRange_addressRange: if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min)) return 0; BIO_puts(out, "-"); if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max)) return 0; BIO_puts(out, "\n"); continue; } } return 1; } /* * i2r handler for an IPAddrBlocks extension. */ static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method, void *ext, BIO *out, int indent) { const IPAddrBlocks *addr = ext; int i; for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); const unsigned int afi = X509v3_addr_get_afi(f); switch (afi) { case IANA_AFI_IPV4: BIO_printf(out, "%*sIPv4", indent, ""); break; case IANA_AFI_IPV6: BIO_printf(out, "%*sIPv6", indent, ""); break; default: BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi); break; } if (f->addressFamily->length > 2) { switch (f->addressFamily->data[2]) { case 1: BIO_puts(out, " (Unicast)"); break; case 2: BIO_puts(out, " (Multicast)"); break; case 3: BIO_puts(out, " (Unicast/Multicast)"); break; case 4: BIO_puts(out, " (MPLS)"); break; case 64: BIO_puts(out, " (Tunnel)"); break; case 65: BIO_puts(out, " (VPLS)"); break; case 66: BIO_puts(out, " (BGP MDT)"); break; case 128: BIO_puts(out, " (MPLS-labeled VPN)"); break; default: BIO_printf(out, " (Unknown SAFI %u)", (unsigned)f->addressFamily->data[2]); break; } } switch (f->ipAddressChoice->type) { case IPAddressChoice_inherit: BIO_puts(out, ": inherit\n"); break; case IPAddressChoice_addressesOrRanges: BIO_puts(out, ":\n"); if (!i2r_IPAddressOrRanges(out, indent + 2, f->ipAddressChoice-> u.addressesOrRanges, afi)) return 0; break; } } return 1; } /* * Sort comparison function for a sequence of IPAddressOrRange * elements. * * There's no sane answer we can give if addr_expand() fails, and an * assertion failure on externally supplied data is seriously uncool, * so we just arbitrarily declare that if given invalid inputs this * function returns -1. If this messes up your preferred sort order * for garbage input, tough noogies. */ static int IPAddressOrRange_cmp(const IPAddressOrRange *a, const IPAddressOrRange *b, const int length) { unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN]; int prefixlen_a = 0, prefixlen_b = 0; int r; switch (a->type) { case IPAddressOrRange_addressPrefix: if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00)) return -1; prefixlen_a = addr_prefixlen(a->u.addressPrefix); break; case IPAddressOrRange_addressRange: if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00)) return -1; prefixlen_a = length * 8; break; } switch (b->type) { case IPAddressOrRange_addressPrefix: if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00)) return -1; prefixlen_b = addr_prefixlen(b->u.addressPrefix); break; case IPAddressOrRange_addressRange: if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00)) return -1; prefixlen_b = length * 8; break; } if ((r = memcmp(addr_a, addr_b, length)) != 0) return r; else return prefixlen_a - prefixlen_b; } /* * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort() * comparison routines are only allowed two arguments. */ static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a, const IPAddressOrRange *const *b) { return IPAddressOrRange_cmp(*a, *b, 4); } /* * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort() * comparison routines are only allowed two arguments. */ static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a, const IPAddressOrRange *const *b) { return IPAddressOrRange_cmp(*a, *b, 16); } /* * Calculate whether a range collapses to a prefix. * See last paragraph of RFC 3779 2.2.3.7. */ static int range_should_be_prefix(const unsigned char *min, const unsigned char *max, const int length) { unsigned char mask; int i, j; if (memcmp(min, max, length) <= 0) return -1; for (i = 0; i < length && min[i] == max[i]; i++) ; for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ; if (i < j) return -1; if (i > j) return i * 8; mask = min[i] ^ max[i]; switch (mask) { case 0x01: j = 7; break; case 0x03: j = 6; break; case 0x07: j = 5; break; case 0x0F: j = 4; break; case 0x1F: j = 3; break; case 0x3F: j = 2; break; case 0x7F: j = 1; break; default: return -1; } if ((min[i] & mask) != 0 || (max[i] & mask) != mask) return -1; else return i * 8 + j; } /* * Construct a prefix. */ static int make_addressPrefix(IPAddressOrRange **result, unsigned char *addr, const int prefixlen) { int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8; IPAddressOrRange *aor = IPAddressOrRange_new(); if (aor == NULL) return 0; aor->type = IPAddressOrRange_addressPrefix; if (aor->u.addressPrefix == NULL && (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL) goto err; if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen)) goto err; aor->u.addressPrefix->flags &= ~7; aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT; if (bitlen > 0) { aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen); aor->u.addressPrefix->flags |= 8 - bitlen; } *result = aor; return 1; err: IPAddressOrRange_free(aor); return 0; } /* * Construct a range. If it can be expressed as a prefix, * return a prefix instead. Doing this here simplifies * the rest of the code considerably. */ static int make_addressRange(IPAddressOrRange **result, unsigned char *min, unsigned char *max, const int length) { IPAddressOrRange *aor; int i, prefixlen; if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0) return make_addressPrefix(result, min, prefixlen); if ((aor = IPAddressOrRange_new()) == NULL) return 0; aor->type = IPAddressOrRange_addressRange; if ((aor->u.addressRange = IPAddressRange_new()) == NULL) goto err; if (aor->u.addressRange->min == NULL && (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL) goto err; if (aor->u.addressRange->max == NULL && (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL) goto err; for (i = length; i > 0 && min[i - 1] == 0x00; --i) ; if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i)) goto err; aor->u.addressRange->min->flags &= ~7; aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT; if (i > 0) { unsigned char b = min[i - 1]; int j = 1; while ((b & (0xFFU >> j)) != 0) ++j; aor->u.addressRange->min->flags |= 8 - j; } for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ; if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i)) goto err; aor->u.addressRange->max->flags &= ~7; aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT; if (i > 0) { unsigned char b = max[i - 1]; int j = 1; while ((b & (0xFFU >> j)) != (0xFFU >> j)) ++j; aor->u.addressRange->max->flags |= 8 - j; } *result = aor; return 1; err: IPAddressOrRange_free(aor); return 0; } /* * Construct a new address family or find an existing one. */ static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr, const unsigned afi, const unsigned *safi) { IPAddressFamily *f; unsigned char key[3]; int keylen; int i; key[0] = (afi >> 8) & 0xFF; key[1] = afi & 0xFF; if (safi != NULL) { key[2] = *safi & 0xFF; keylen = 3; } else { keylen = 2; } for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { f = sk_IPAddressFamily_value(addr, i); if (f->addressFamily->length == keylen && !memcmp(f->addressFamily->data, key, keylen)) return f; } if ((f = IPAddressFamily_new()) == NULL) goto err; if (f->ipAddressChoice == NULL && (f->ipAddressChoice = IPAddressChoice_new()) == NULL) goto err; if (f->addressFamily == NULL && (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL) goto err; if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen)) goto err; if (!sk_IPAddressFamily_push(addr, f)) goto err; return f; err: IPAddressFamily_free(f); return NULL; } /* * Add an inheritance element. */ int X509v3_addr_add_inherit(IPAddrBlocks *addr, const unsigned afi, const unsigned *safi) { IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); if (f == NULL || f->ipAddressChoice == NULL || (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && f->ipAddressChoice->u.addressesOrRanges != NULL)) return 0; if (f->ipAddressChoice->type == IPAddressChoice_inherit && f->ipAddressChoice->u.inherit != NULL) return 1; if (f->ipAddressChoice->u.inherit == NULL && (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL) return 0; f->ipAddressChoice->type = IPAddressChoice_inherit; return 1; } /* * Construct an IPAddressOrRange sequence, or return an existing one. */ static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr, const unsigned afi, const unsigned *safi) { IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); IPAddressOrRanges *aors = NULL; if (f == NULL || f->ipAddressChoice == NULL || (f->ipAddressChoice->type == IPAddressChoice_inherit && f->ipAddressChoice->u.inherit != NULL)) return NULL; if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) aors = f->ipAddressChoice->u.addressesOrRanges; if (aors != NULL) return aors; if ((aors = sk_IPAddressOrRange_new_null()) == NULL) return NULL; switch (afi) { case IANA_AFI_IPV4: (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp); break; case IANA_AFI_IPV6: (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp); break; } f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges; f->ipAddressChoice->u.addressesOrRanges = aors; return aors; } /* * Add a prefix. */ int X509v3_addr_add_prefix(IPAddrBlocks *addr, const unsigned afi, const unsigned *safi, unsigned char *a, const int prefixlen) { IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); IPAddressOrRange *aor; if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen)) return 0; if (sk_IPAddressOrRange_push(aors, aor)) return 1; IPAddressOrRange_free(aor); return 0; } /* * Add a range. */ int X509v3_addr_add_range(IPAddrBlocks *addr, const unsigned afi, const unsigned *safi, unsigned char *min, unsigned char *max) { IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); IPAddressOrRange *aor; int length = length_from_afi(afi); if (aors == NULL) return 0; if (!make_addressRange(&aor, min, max, length)) return 0; if (sk_IPAddressOrRange_push(aors, aor)) return 1; IPAddressOrRange_free(aor); return 0; } /* * Extract min and max values from an IPAddressOrRange. */ static int extract_min_max(IPAddressOrRange *aor, unsigned char *min, unsigned char *max, int length) { if (aor == NULL || min == NULL || max == NULL) return 0; switch (aor->type) { case IPAddressOrRange_addressPrefix: return (addr_expand(min, aor->u.addressPrefix, length, 0x00) && addr_expand(max, aor->u.addressPrefix, length, 0xFF)); case IPAddressOrRange_addressRange: return (addr_expand(min, aor->u.addressRange->min, length, 0x00) && addr_expand(max, aor->u.addressRange->max, length, 0xFF)); } return 0; } /* * Public wrapper for extract_min_max(). */ int X509v3_addr_get_range(IPAddressOrRange *aor, const unsigned afi, unsigned char *min, unsigned char *max, const int length) { int afi_length = length_from_afi(afi); if (aor == NULL || min == NULL || max == NULL || afi_length == 0 || length < afi_length || (aor->type != IPAddressOrRange_addressPrefix && aor->type != IPAddressOrRange_addressRange) || !extract_min_max(aor, min, max, afi_length)) return 0; return afi_length; } /* * Sort comparison function for a sequence of IPAddressFamily. * * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about * the ordering: I can read it as meaning that IPv6 without a SAFI * comes before IPv4 with a SAFI, which seems pretty weird. The * examples in appendix B suggest that the author intended the * null-SAFI rule to apply only within a single AFI, which is what I * would have expected and is what the following code implements. */ static int IPAddressFamily_cmp(const IPAddressFamily *const *a_, const IPAddressFamily *const *b_) { const ASN1_OCTET_STRING *a = (*a_)->addressFamily; const ASN1_OCTET_STRING *b = (*b_)->addressFamily; int len = ((a->length <= b->length) ? a->length : b->length); int cmp = memcmp(a->data, b->data, len); return cmp ? cmp : a->length - b->length; } /* * Check whether an IPAddrBLocks is in canonical form. */ int X509v3_addr_is_canonical(IPAddrBlocks *addr) { unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; IPAddressOrRanges *aors; int i, j, k; /* * Empty extension is canonical. */ if (addr == NULL) return 1; /* * Check whether the top-level list is in order. */ for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) { const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i); const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1); if (IPAddressFamily_cmp(&a, &b) >= 0) return 0; } /* * Top level's ok, now check each address family. */ for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); int length = length_from_afi(X509v3_addr_get_afi(f)); /* * Inheritance is canonical. Anything other than inheritance or * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something. */ if (f == NULL || f->ipAddressChoice == NULL) return 0; switch (f->ipAddressChoice->type) { case IPAddressChoice_inherit: continue; case IPAddressChoice_addressesOrRanges: break; default: return 0; } /* * It's an IPAddressOrRanges sequence, check it. */ aors = f->ipAddressChoice->u.addressesOrRanges; if (sk_IPAddressOrRange_num(aors) == 0) return 0; for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) { IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1); if (!extract_min_max(a, a_min, a_max, length) || !extract_min_max(b, b_min, b_max, length)) return 0; /* * Punt misordered list, overlapping start, or inverted range. */ if (memcmp(a_min, b_min, length) >= 0 || memcmp(a_min, a_max, length) > 0 || memcmp(b_min, b_max, length) > 0) return 0; /* * Punt if adjacent or overlapping. Check for adjacency by * subtracting one from b_min first. */ for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ; if (memcmp(a_max, b_min, length) >= 0) return 0; /* * Check for range that should be expressed as a prefix. */ if (a->type == IPAddressOrRange_addressRange && range_should_be_prefix(a_min, a_max, length) >= 0) return 0; } /* * Check range to see if it's inverted or should be a * prefix. */ j = sk_IPAddressOrRange_num(aors) - 1; { IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); if (a != NULL && a->type == IPAddressOrRange_addressRange) { if (!extract_min_max(a, a_min, a_max, length)) return 0; if (memcmp(a_min, a_max, length) > 0 || range_should_be_prefix(a_min, a_max, length) >= 0) return 0; } } } /* * If we made it through all that, we're happy. */ return 1; } /* * Whack an IPAddressOrRanges into canonical form. */ static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors, const unsigned afi) { int i, j, length = length_from_afi(afi); /* * Sort the IPAddressOrRanges sequence. */ sk_IPAddressOrRange_sort(aors); /* * Clean up representation issues, punt on duplicates or overlaps. */ for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) { IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i); IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1); unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; if (!extract_min_max(a, a_min, a_max, length) || !extract_min_max(b, b_min, b_max, length)) return 0; /* * Punt inverted ranges. */ if (memcmp(a_min, a_max, length) > 0 || memcmp(b_min, b_max, length) > 0) return 0; /* * Punt overlaps. */ if (memcmp(a_max, b_min, length) >= 0) return 0; /* * Merge if a and b are adjacent. We check for * adjacency by subtracting one from b_min first. */ for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ; if (memcmp(a_max, b_min, length) == 0) { IPAddressOrRange *merged; if (!make_addressRange(&merged, a_min, b_max, length)) return 0; (void)sk_IPAddressOrRange_set(aors, i, merged); (void)sk_IPAddressOrRange_delete(aors, i + 1); IPAddressOrRange_free(a); IPAddressOrRange_free(b); --i; continue; } } /* * Check for inverted final range. */ j = sk_IPAddressOrRange_num(aors) - 1; { IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); if (a != NULL && a->type == IPAddressOrRange_addressRange) { unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; if (!extract_min_max(a, a_min, a_max, length)) return 0; if (memcmp(a_min, a_max, length) > 0) return 0; } } return 1; } /* * Whack an IPAddrBlocks extension into canonical form. */ int X509v3_addr_canonize(IPAddrBlocks *addr) { int i; for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && !IPAddressOrRanges_canonize(f->ipAddressChoice-> u.addressesOrRanges, X509v3_addr_get_afi(f))) return 0; } (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp); sk_IPAddressFamily_sort(addr); OPENSSL_assert(X509v3_addr_is_canonical(addr)); return 1; } /* * v2i handler for the IPAddrBlocks extension. */ static void *v2i_IPAddrBlocks(const struct v3_ext_method *method, struct v3_ext_ctx *ctx, STACK_OF(CONF_VALUE) *values) { static const char v4addr_chars[] = "0123456789."; static const char v6addr_chars[] = "0123456789.:abcdefABCDEF"; IPAddrBlocks *addr = NULL; char *s = NULL, *t; int i; if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) { X509V3error(ERR_R_MALLOC_FAILURE); return NULL; } for (i = 0; i < sk_CONF_VALUE_num(values); i++) { CONF_VALUE *val = sk_CONF_VALUE_value(values, i); unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN]; unsigned afi, *safi = NULL, safi_; const char *addr_chars = NULL; int prefixlen, i1, i2, delim, length; if (!name_cmp(val->name, "IPv4")) { afi = IANA_AFI_IPV4; } else if (!name_cmp(val->name, "IPv6")) { afi = IANA_AFI_IPV6; } else if (!name_cmp(val->name, "IPv4-SAFI")) { afi = IANA_AFI_IPV4; safi = &safi_; } else if (!name_cmp(val->name, "IPv6-SAFI")) { afi = IANA_AFI_IPV6; safi = &safi_; } else { X509V3error(X509V3_R_EXTENSION_NAME_ERROR); X509V3_conf_err(val); goto err; } switch (afi) { case IANA_AFI_IPV4: addr_chars = v4addr_chars; break; case IANA_AFI_IPV6: addr_chars = v6addr_chars; break; } length = length_from_afi(afi); /* * Handle SAFI, if any, and strdup() so we can null-terminate * the other input values. */ if (safi != NULL) { *safi = strtoul(val->value, &t, 0); t += strspn(t, " \t"); if (*safi > 0xFF || *t++ != ':') { X509V3error(X509V3_R_INVALID_SAFI); X509V3_conf_err(val); goto err; } t += strspn(t, " \t"); s = strdup(t); } else { s = strdup(val->value); } if (s == NULL) { X509V3error(ERR_R_MALLOC_FAILURE); goto err; } /* * Check for inheritance. Not worth additional complexity to * optimize this (seldom-used) case. */ if (strcmp(s, "inherit") == 0) { if (!X509v3_addr_add_inherit(addr, afi, safi)) { X509V3error(X509V3_R_INVALID_INHERITANCE); X509V3_conf_err(val); goto err; } free(s); s = NULL; continue; } i1 = strspn(s, addr_chars); i2 = i1 + strspn(s + i1, " \t"); delim = s[i2++]; s[i1] = '\0'; if (a2i_ipadd(min, s) != length) { X509V3error(X509V3_R_INVALID_IPADDRESS); X509V3_conf_err(val); goto err; } switch (delim) { case '/': prefixlen = (int)strtoul(s + i2, &t, 10); if (t == s + i2 || *t != '\0') { X509V3error(X509V3_R_EXTENSION_VALUE_ERROR); X509V3_conf_err(val); goto err; } if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) { X509V3error(ERR_R_MALLOC_FAILURE); goto err; } break; case '-': i1 = i2 + strspn(s + i2, " \t"); i2 = i1 + strspn(s + i1, addr_chars); if (i1 == i2 || s[i2] != '\0') { X509V3error(X509V3_R_EXTENSION_VALUE_ERROR); X509V3_conf_err(val); goto err; } if (a2i_ipadd(max, s + i1) != length) { X509V3error(X509V3_R_INVALID_IPADDRESS); X509V3_conf_err(val); goto err; } if (memcmp(min, max, length_from_afi(afi)) > 0) { X509V3error(X509V3_R_EXTENSION_VALUE_ERROR); X509V3_conf_err(val); goto err; } if (!X509v3_addr_add_range(addr, afi, safi, min, max)) { X509V3error(ERR_R_MALLOC_FAILURE); goto err; } break; case '\0': if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) { X509V3error(ERR_R_MALLOC_FAILURE); goto err; } break; default: X509V3error(X509V3_R_EXTENSION_VALUE_ERROR); X509V3_conf_err(val); goto err; } free(s); s = NULL; } /* * Canonize the result, then we're done. */ if (!X509v3_addr_canonize(addr)) goto err; return addr; err: free(s); sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free); return NULL; } /* * OpenSSL dispatch */ const X509V3_EXT_METHOD v3_addr = { NID_sbgp_ipAddrBlock, /* nid */ 0, /* flags */ &IPAddrBlocks_it, 0, 0, 0, 0, /* old functions, ignored */ 0, /* i2s */ 0, /* s2i */ 0, /* i2v */ v2i_IPAddrBlocks, /* v2i */ i2r_IPAddrBlocks, /* i2r */ 0, /* r2i */ NULL /* extension-specific data */ }; /* * Figure out whether extension sues inheritance. */ int X509v3_addr_inherits(IPAddrBlocks *addr) { int i; if (addr == NULL) return 0; for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); if (f->ipAddressChoice->type == IPAddressChoice_inherit) return 1; } return 0; } /* * Figure out whether parent contains child. */ static int addr_contains(IPAddressOrRanges *parent, IPAddressOrRanges *child, int length) { unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN]; unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN]; int p, c; if (child == NULL || parent == child) return 1; if (parent == NULL) return 0; p = 0; for (c = 0; c < sk_IPAddressOrRange_num(child); c++) { if (!extract_min_max(sk_IPAddressOrRange_value(child, c), c_min, c_max, length)) return -1; for (;; p++) { if (p >= sk_IPAddressOrRange_num(parent)) return 0; if (!extract_min_max(sk_IPAddressOrRange_value(parent, p), p_min, p_max, length)) return 0; if (memcmp(p_max, c_max, length) < 0) continue; if (memcmp(p_min, c_min, length) > 0) return 0; break; } } return 1; } /* * Test whether a is a subset of b. */ int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b) { int i; if (a == NULL || a == b) return 1; if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b)) return 0; (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp); for (i = 0; i < sk_IPAddressFamily_num(a); i++) { IPAddressFamily *fa = sk_IPAddressFamily_value(a, i); int j = sk_IPAddressFamily_find(b, fa); IPAddressFamily *fb; fb = sk_IPAddressFamily_value(b, j); if (fb == NULL) return 0; if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges, fa->ipAddressChoice->u.addressesOrRanges, length_from_afi(X509v3_addr_get_afi(fb)))) return 0; } return 1; } /* * Validation error handling via callback. */ #define validation_err(_err_) \ do { \ if (ctx != NULL) { \ ctx->error = _err_; \ ctx->error_depth = i; \ ctx->current_cert = x; \ ret = ctx->verify_cb(0, ctx); \ } else { \ ret = 0; \ } \ if (!ret) \ goto done; \ } while (0) /* * Core code for RFC 3779 2.3 path validation. * * Returns 1 for success, 0 on error. * * When returning 0, ctx->error MUST be set to an appropriate value other than * X509_V_OK. */ static int addr_validate_path_internal(X509_STORE_CTX *ctx, STACK_OF(X509) *chain, IPAddrBlocks *ext) { IPAddrBlocks *child = NULL; int i, j, ret = 1; X509 *x; OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0); OPENSSL_assert(ctx != NULL || ext != NULL); OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL); /* * Figure out where to start. If we don't have an extension to * check, we're done. Otherwise, check canonical form and * set up for walking up the chain. */ if (ext != NULL) { i = -1; x = NULL; } else { i = 0; x = sk_X509_value(chain, i); if ((ext = x->rfc3779_addr) == NULL) goto done; } if (!X509v3_addr_is_canonical(ext)) validation_err(X509_V_ERR_INVALID_EXTENSION); (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp); if ((child = sk_IPAddressFamily_dup(ext)) == NULL) { X509V3error(ERR_R_MALLOC_FAILURE); if (ctx != NULL) ctx->error = X509_V_ERR_OUT_OF_MEM; ret = 0; goto done; } /* * Now walk up the chain. No cert may list resources that its * parent doesn't list. */ for (i++; i < sk_X509_num(chain); i++) { x = sk_X509_value(chain, i); if (!X509v3_addr_is_canonical(x->rfc3779_addr)) validation_err(X509_V_ERR_INVALID_EXTENSION); if (x->rfc3779_addr == NULL) { for (j = 0; j < sk_IPAddressFamily_num(child); j++) { IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); if (fc->ipAddressChoice->type != IPAddressChoice_inherit) { validation_err(X509_V_ERR_UNNESTED_RESOURCE); break; } } continue; } (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, IPAddressFamily_cmp); for (j = 0; j < sk_IPAddressFamily_num(child); j++) { IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc); IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k); if (fp == NULL) { if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) { validation_err(X509_V_ERR_UNNESTED_RESOURCE); break; } continue; } if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) { if (fc->ipAddressChoice->type == IPAddressChoice_inherit || addr_contains(fp->ipAddressChoice->u.addressesOrRanges, fc->ipAddressChoice->u.addressesOrRanges, length_from_afi(X509v3_addr_get_afi(fc)))) sk_IPAddressFamily_set(child, j, fp); else validation_err(X509_V_ERR_UNNESTED_RESOURCE); } } } /* * Trust anchor can't inherit. */ if (x->rfc3779_addr != NULL) { for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) { IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j); if (fp->ipAddressChoice->type == IPAddressChoice_inherit && sk_IPAddressFamily_find(child, fp) >= 0) validation_err(X509_V_ERR_UNNESTED_RESOURCE); } } done: sk_IPAddressFamily_free(child); return ret; } #undef validation_err /* * RFC 3779 2.3 path validation -- called from X509_verify_cert(). */ int X509v3_addr_validate_path(X509_STORE_CTX *ctx) { if (ctx->chain == NULL || sk_X509_num(ctx->chain) == 0 || ctx->verify_cb == NULL) { ctx->error = X509_V_ERR_UNSPECIFIED; return 0; } return addr_validate_path_internal(ctx, ctx->chain, NULL); } /* * RFC 3779 2.3 path validation of an extension. * Test whether chain covers extension. */ int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain, IPAddrBlocks *ext, int allow_inheritance) { if (ext == NULL) return 1; if (chain == NULL || sk_X509_num(chain) == 0) return 0; if (!allow_inheritance && X509v3_addr_inherits(ext)) return 0; return addr_validate_path_internal(NULL, chain, ext); } #endif /* OPENSSL_NO_RFC3779 */