/* $OpenBSD: lib_mvcur.c,v 1.8 2000/07/10 03:06:16 millert Exp $ */ /**************************************************************************** * Copyright (c) 1998,1999,2000 Free Software Foundation, Inc. * * * * Permission is hereby granted, free of charge, to any person obtaining a * * copy of this software and associated documentation files (the * * "Software"), to deal in the Software without restriction, including * * without limitation the rights to use, copy, modify, merge, publish, * * distribute, distribute with modifications, sublicense, and/or sell * * copies of the Software, and to permit persons to whom the Software is * * furnished to do so, subject to the following conditions: * * * * The above copyright notice and this permission notice shall be included * * in all copies or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * * IN NO EVENT SHALL THE ABOVE COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR * * THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * * * Except as contained in this notice, the name(s) of the above copyright * * holders shall not be used in advertising or otherwise to promote the * * sale, use or other dealings in this Software without prior written * * authorization. * ****************************************************************************/ /**************************************************************************** * Author: Zeyd M. Ben-Halim 1992,1995 * * and: Eric S. Raymond * ****************************************************************************/ /* ** lib_mvcur.c ** ** The routines for moving the physical cursor and scrolling: ** ** void _nc_mvcur_init(void) ** ** void _nc_mvcur_resume(void) ** ** int mvcur(int old_y, int old_x, int new_y, int new_x) ** ** void _nc_mvcur_wrap(void) ** ** Comparisons with older movement optimizers: ** SVr3 curses mvcur() can't use cursor_to_ll or auto_left_margin. ** 4.4BSD curses can't use cuu/cud/cuf/cub/hpa/vpa/tab/cbt for local ** motions. It doesn't use tactics based on auto_left_margin. Weirdly ** enough, it doesn't use its own hardware-scrolling routine to scroll up ** destination lines for out-of-bounds addresses! ** old ncurses optimizer: less accurate cost computations (in fact, ** it was broken and had to be commented out!). ** ** Compile with -DMAIN to build an interactive tester/timer for the movement ** optimizer. You can use it to investigate the optimizer's behavior. ** You can also use it for tuning the formulas used to determine whether ** or not full optimization is attempted. ** ** This code has a nasty tendency to find bugs in terminfo entries, because it ** exercises the non-cup movement capabilities heavily. If you think you've ** found a bug, try deleting subsets of the following capabilities (arranged ** in decreasing order of suspiciousness): it, tab, cbt, hpa, vpa, cuu, cud, ** cuf, cub, cuu1, cud1, cuf1, cub1. It may be that one or more are wrong. ** ** Note: you should expect this code to look like a resource hog in a profile. ** That's because it does a lot of I/O, through the tputs() calls. The I/O ** cost swamps the computation overhead (and as machines get faster, this ** will become even more true). Comments in the test exerciser at the end ** go into detail about tuning and how you can gauge the optimizer's ** effectiveness. **/ /**************************************************************************** * * Constants and macros for optimizer tuning. * ****************************************************************************/ /* * The average overhead of a full optimization computation in character * transmission times. If it's too high, the algorithm will be a bit * over-biased toward using cup rather than local motions; if it's too * low, the algorithm may spend more time than is strictly optimal * looking for non-cup motions. Profile the optimizer using the `t' * command of the exerciser (see below), and round to the nearest integer. * * Yes, I (esr) thought about computing expected overhead dynamically, say * by derivation from a running average of optimizer times. But the * whole point of this optimization is to *decrease* the frequency of * system calls. :-) */ #define COMPUTE_OVERHEAD 1 /* I use a 90MHz Pentium @ 9.6Kbps */ /* * LONG_DIST is the distance we consider to be just as costly to move over as a * cup sequence is to emit. In other words, it's the length of a cup sequence * adjusted for average computation overhead. The magic number is the length * of "\033[yy;xxH", the typical cup sequence these days. */ #define LONG_DIST (8 - COMPUTE_OVERHEAD) /* * Tell whether a motion is optimizable by local motions. Needs to be cheap to * compute. In general, all the fast moves go to either the right or left edge * of the screen. So any motion to a location that is (a) further away than * LONG_DIST and (b) further inward from the right or left edge than LONG_DIST, * we'll consider nonlocal. */ #define NOT_LOCAL(fy, fx, ty, tx) ((tx > LONG_DIST) && (tx < screen_lines - 1 - LONG_DIST) && (abs(ty-fy) + abs(tx-fx) > LONG_DIST)) /**************************************************************************** * * External interfaces * ****************************************************************************/ /* * For this code to work OK, the following components must live in the * screen structure: * * int _char_padding; // cost of character put * int _cr_cost; // cost of (carriage_return) * int _cup_cost; // cost of (cursor_address) * int _home_cost; // cost of (cursor_home) * int _ll_cost; // cost of (cursor_to_ll) *#if USE_HARD_TABS * int _ht_cost; // cost of (tab) * int _cbt_cost; // cost of (back_tab) *#endif USE_HARD_TABS * int _cub1_cost; // cost of (cursor_left) * int _cuf1_cost; // cost of (cursor_right) * int _cud1_cost; // cost of (cursor_down) * int _cuu1_cost; // cost of (cursor_up) * int _cub_cost; // cost of (parm_cursor_left) * int _cuf_cost; // cost of (parm_cursor_right) * int _cud_cost; // cost of (parm_cursor_down) * int _cuu_cost; // cost of (parm_cursor_up) * int _hpa_cost; // cost of (column_address) * int _vpa_cost; // cost of (row_address) * int _ech_cost; // cost of (erase_chars) * int _rep_cost; // cost of (repeat_char) * * The USE_HARD_TABS switch controls whether it is reliable to use tab/backtabs * for local motions. On many systems, it's not, due to uncertainties about * tab delays and whether or not tabs will be expanded in raw mode. If you * have parm_right_cursor, tab motions don't win you a lot anyhow. */ #include #include #include MODULE_ID("$From: lib_mvcur.c,v 1.67 2000/06/24 21:13:51 tom Exp $") #define STRLEN(s) (s != 0) ? strlen(s) : 0 #define CURRENT_ROW SP->_cursrow /* phys cursor row */ #define CURRENT_COLUMN SP->_curscol /* phys cursor column */ #define CURRENT_ATTR SP->_current_attr /* current phys attribute */ #define REAL_ATTR SP->_current_attr /* phys current attribute */ #define WANT_CHAR(y, x) SP->_newscr->_line[y].text[x] /* desired state */ #define BAUDRATE cur_term->_baudrate /* bits per second */ #if defined(MAIN) || defined(NCURSES_TEST) #include static bool profiling = FALSE; static float diff; #endif /* MAIN */ #define OPT_SIZE 512 static int normalized_cost(const char *const cap, int affcnt); #if !HAVE_STRSTR char * _nc_strstr(const char *haystack, const char *needle) { size_t len1 = strlen(haystack); size_t len2 = strlen(needle); char *result = 0; while ((len1 != 0) && (len1-- >= len2)) { if (!strncmp(haystack, needle, len2)) { result = haystack; break; } haystack++; } return result; } #endif /**************************************************************************** * * Initialization/wrapup (including cost pre-computation) * ****************************************************************************/ #ifdef TRACE static int trace_cost_of(const char *capname, const char *cap, int affcnt) { int result = _nc_msec_cost(cap, affcnt); TR(TRACE_CHARPUT | TRACE_MOVE, ("CostOf %s %d %s", capname, result, _nc_visbuf(cap))); return result; } #define CostOf(cap,affcnt) trace_cost_of(#cap,cap,affcnt); static int trace_normalized_cost(const char *capname, const char *cap, int affcnt) { int result = normalized_cost(cap, affcnt); TR(TRACE_CHARPUT | TRACE_MOVE, ("NormalizedCost %s %d %s", capname, result, _nc_visbuf(cap))); return result; } #define NormalizedCost(cap,affcnt) trace_normalized_cost(#cap,cap,affcnt); #else #define CostOf(cap,affcnt) _nc_msec_cost(cap,affcnt); #define NormalizedCost(cap,affcnt) normalized_cost(cap,affcnt); #endif int _nc_msec_cost(const char *const cap, int affcnt) /* compute the cost of a given operation */ { if (cap == 0) return (INFINITY); else { const char *cp; float cum_cost = 0; for (cp = cap; *cp; cp++) { /* extract padding, either mandatory or required */ if (cp[0] == '$' && cp[1] == '<' && strchr(cp, '>')) { float number = 0; for (cp += 2; *cp != '>'; cp++) { if (isdigit(*cp)) number = number * 10 + (*cp - '0'); else if (*cp == '*') number *= affcnt; else if (*cp == '.' && (*++cp != '>') && isdigit(*cp)) number += (*cp - '0') / 10.0; } #ifdef NCURSES_NO_PADDING if (!(SP->_no_padding)) #endif cum_cost += number * 10; } else cum_cost += SP->_char_padding; } return ((int) cum_cost); } } static int normalized_cost(const char *const cap, int affcnt) /* compute the effective character-count for an operation (round up) */ { int cost = _nc_msec_cost(cap, affcnt); if (cost != INFINITY) cost = (cost + SP->_char_padding - 1) / SP->_char_padding; return cost; } static void reset_scroll_region(void) /* Set the scroll-region to a known state (the default) */ { if (change_scroll_region) { TPUTS_TRACE("change_scroll_region"); putp(tparm(change_scroll_region, 0, screen_lines - 1)); } } void _nc_mvcur_resume(void) /* what to do at initialization time and after each shellout */ { /* initialize screen for cursor access */ if (enter_ca_mode) { TPUTS_TRACE("enter_ca_mode"); putp(enter_ca_mode); } /* * Doing this here rather than in _nc_mvcur_wrap() ensures that * ncurses programs will see a reset scroll region even if a * program that messed with it died ungracefully. * * This also undoes the effects of terminal init strings that assume * they know the screen size. This is useful when you're running * a vt100 emulation through xterm. */ reset_scroll_region(); SP->_cursrow = SP->_curscol = -1; /* restore cursor shape */ if (SP->_cursor != -1) { int cursor = SP->_cursor; SP->_cursor = -1; curs_set(cursor); } } void _nc_mvcur_init(void) /* initialize the cost structure */ { /* * 9 = 7 bits + 1 parity + 1 stop. */ SP->_char_padding = (9 * 1000 * 10) / (BAUDRATE > 0 ? BAUDRATE : 9600); if (SP->_char_padding <= 0) SP->_char_padding = 1; /* must be nonzero */ TR(TRACE_CHARPUT | TRACE_MOVE, ("char_padding %d msecs", SP->_char_padding)); /* non-parameterized local-motion strings */ SP->_cr_cost = CostOf(carriage_return, 0); SP->_home_cost = CostOf(cursor_home, 0); SP->_ll_cost = CostOf(cursor_to_ll, 0); #if USE_HARD_TABS SP->_ht_cost = CostOf(tab, 0); SP->_cbt_cost = CostOf(back_tab, 0); #endif /* USE_HARD_TABS */ SP->_cub1_cost = CostOf(cursor_left, 0); SP->_cuf1_cost = CostOf(cursor_right, 0); SP->_cud1_cost = CostOf(cursor_down, 0); SP->_cuu1_cost = CostOf(cursor_up, 0); SP->_smir_cost = CostOf(enter_insert_mode, 0); SP->_rmir_cost = CostOf(exit_insert_mode, 0); SP->_ip_cost = 0; if (insert_padding) { SP->_ip_cost = CostOf(insert_padding, 0); } /* * Assumption: if the terminal has memory_relative addressing, the * initialization strings or smcup will set single-page mode so we * can treat it like absolute screen addressing. This seems to be true * for all cursor_mem_address terminal types in the terminfo database. */ SP->_address_cursor = cursor_address ? cursor_address : cursor_mem_address; /* * Parametrized local-motion strings. This static cost computation * depends on the following assumptions: * * (1) They never have * padding. In the entire master terminfo database * as of March 1995, only the obsolete Zenith Z-100 pc violates this. * (Proportional padding is found mainly in insert, delete and scroll * capabilities). * * (2) The average case of cup has two two-digit parameters. Strictly, * the average case for a 24 * 80 screen has ((10*10*(1 + 1)) + * (14*10*(1 + 2)) + (10*70*(2 + 1)) + (14*70*4)) / (24*80) = 3.458 * digits of parameters. On a 25x80 screen the average is 3.6197. * On larger screens the value gets much closer to 4. * * (3) The average case of cub/cuf/hpa/ech/rep has 2 digits of parameters * (strictly, (((10 * 1) + (70 * 2)) / 80) = 1.8750). * * (4) The average case of cud/cuu/vpa has 2 digits of parameters * (strictly, (((10 * 1) + (14 * 2)) / 24) = 1.5833). * * All these averages depend on the assumption that all parameter values * are equally probable. */ SP->_cup_cost = CostOf(tparm(SP->_address_cursor, 23, 23), 1); SP->_cub_cost = CostOf(tparm(parm_left_cursor, 23), 1); SP->_cuf_cost = CostOf(tparm(parm_right_cursor, 23), 1); SP->_cud_cost = CostOf(tparm(parm_down_cursor, 23), 1); SP->_cuu_cost = CostOf(tparm(parm_up_cursor, 23), 1); SP->_hpa_cost = CostOf(tparm(column_address, 23), 1); SP->_vpa_cost = CostOf(tparm(row_address, 23), 1); /* non-parameterized screen-update strings */ SP->_ed_cost = NormalizedCost(clr_eos, 1); SP->_el_cost = NormalizedCost(clr_eol, 1); SP->_el1_cost = NormalizedCost(clr_bol, 1); SP->_dch1_cost = NormalizedCost(delete_character, 1); SP->_ich1_cost = NormalizedCost(insert_character, 1); /* parameterized screen-update strings */ SP->_dch_cost = NormalizedCost(tparm(parm_dch, 23), 1); SP->_ich_cost = NormalizedCost(tparm(parm_ich, 23), 1); SP->_ech_cost = NormalizedCost(tparm(erase_chars, 23), 1); SP->_rep_cost = NormalizedCost(tparm(repeat_char, ' ', 23), 1); SP->_cup_ch_cost = NormalizedCost(tparm(SP->_address_cursor, 23, 23), 1); SP->_hpa_ch_cost = NormalizedCost(tparm(column_address, 23), 1); SP->_cuf_ch_cost = NormalizedCost(tparm(parm_right_cursor, 23), 1); SP->_inline_cost = min(SP->_cup_ch_cost, min(SP->_hpa_ch_cost, SP->_cuf_ch_cost)); /* pre-compute some capability lengths */ SP->_carriage_return_length = STRLEN(carriage_return); SP->_cursor_home_length = STRLEN(cursor_home); SP->_cursor_to_ll_length = STRLEN(cursor_to_ll); /* * If save_cursor is used within enter_ca_mode, we should not use it for * scrolling optimization, since the corresponding restore_cursor is not * nested on the various terminals (vt100, xterm, etc.) which use this * feature. */ if (save_cursor != 0 && enter_ca_mode != 0 && strstr(enter_ca_mode, save_cursor) != 0) { T(("...suppressed sc/rc capability due to conflict with smcup/rmcup")); save_cursor = 0; restore_cursor = 0; } /* * A different, possibly better way to arrange this would be to set * SP->_endwin = TRUE at window initialization time and let this be * called by doupdate's return-from-shellout code. */ _nc_mvcur_resume(); } void _nc_mvcur_wrap(void) /* wrap up cursor-addressing mode */ { /* leave cursor at screen bottom */ mvcur(-1, -1, screen_lines - 1, 0); /* set cursor to normal mode */ if (SP->_cursor != -1) curs_set(1); if (exit_ca_mode) { TPUTS_TRACE("exit_ca_mode"); putp(exit_ca_mode); } /* * Reset terminal's tab counter. There's a long-time bug that * if you exit a "curses" program such as vi or more, tab * forward, and then backspace, the cursor doesn't go to the * right place. The problem is that the kernel counts the * escape sequences that reset things as column positions. * Utter a \r to reset this invisibly. */ _nc_outch('\r'); } /**************************************************************************** * * Optimized cursor movement * ****************************************************************************/ /* * Perform repeated-append, returning cost */ static inline int repeated_append(int total, int num, int repeat, char *dst, const char *src) { register size_t src_len = strlen(src); register size_t dst_len = STRLEN(dst); if ((dst_len + repeat * src_len) < OPT_SIZE - 1) { total += (num * repeat); if (dst) { dst += dst_len; while (repeat-- > 0) { (void) strcpy(dst, src); dst += src_len; } } } else { total = INFINITY; } return total; } #ifndef NO_OPTIMIZE #define NEXTTAB(fr) (fr + init_tabs - (fr % init_tabs)) /* * Assume back_tab (CBT) does not wrap backwards at the left margin, return * a negative value at that point to simplify the loop. */ #define LASTTAB(fr) ((fr > 0) ? ((fr - 1) / init_tabs) * init_tabs : -1) /* Note: we'd like to inline this for speed, but GNU C barfs on the attempt. */ static int relative_move(char *result, int from_y, int from_x, int to_y, int to_x, bool ovw) /* move via local motions (cuu/cuu1/cud/cud1/cub1/cub/cuf1/cuf/vpa/hpa) */ { int n, vcost = 0, hcost = 0; if (result) result[0] = '\0'; if (to_y != from_y) { vcost = INFINITY; if (row_address) { if (result) (void) strcpy(result, tparm(row_address, to_y)); vcost = SP->_vpa_cost; } if (to_y > from_y) { n = (to_y - from_y); if (parm_down_cursor && SP->_cud_cost < vcost) { if (result) (void) strcpy(result, tparm(parm_down_cursor, n)); vcost = SP->_cud_cost; } if (cursor_down && (n * SP->_cud1_cost < vcost)) { if (result) result[0] = '\0'; vcost = repeated_append(0, SP->_cud1_cost, n, result, cursor_down); } } else { /* (to_y < from_y) */ n = (from_y - to_y); if (parm_up_cursor && SP->_cup_cost < vcost) { if (result) (void) strcpy(result, tparm(parm_up_cursor, n)); vcost = SP->_cup_cost; } if (cursor_up && (n * SP->_cuu1_cost < vcost)) { if (result) result[0] = '\0'; vcost = repeated_append(0, SP->_cuu1_cost, n, result, cursor_up); } } if (vcost == INFINITY) return (INFINITY); } if (result) result += strlen(result); if (to_x != from_x) { char str[OPT_SIZE]; hcost = INFINITY; if (column_address) { if (result) (void) strcpy(result, tparm(column_address, to_x)); hcost = SP->_hpa_cost; } if (to_x > from_x) { n = to_x - from_x; if (parm_right_cursor && SP->_cuf_cost < hcost) { if (result) (void) strcpy(result, tparm(parm_right_cursor, n)); hcost = SP->_cuf_cost; } if (cursor_right) { int lhcost = 0; str[0] = '\0'; #if USE_HARD_TABS /* use hard tabs, if we have them, to do as much as possible */ if (init_tabs > 0 && tab) { int nxt, fr; for (fr = from_x; (nxt = NEXTTAB(fr)) <= to_x; fr = nxt) { lhcost = repeated_append(lhcost, SP->_ht_cost, 1, str, tab); if (lhcost == INFINITY) break; } n = to_x - fr; from_x = fr; } #endif /* USE_HARD_TABS */ #if defined(REAL_ATTR) && defined(WANT_CHAR) #ifdef BSD_TPUTS /* * If we're allowing BSD-style padding in tputs, don't generate * a string with a leading digit. Otherwise, that will be * interpreted as a padding value rather than sent to the * screen. */ if (ovw && n > 0 && vcost == 0 && str[0] == '\0' && isdigit(TextOf(WANT_CHAR(to_y, from_x)))) ovw = FALSE; #endif /* * If we have no attribute changes, overwrite is cheaper. * Note: must suppress this by passing in ovw = FALSE whenever * WANT_CHAR would return invalid data. In particular, this * is true between the time a hardware scroll has been done * and the time the structure WANT_CHAR would access has been * updated. */ if (ovw) { int i; for (i = 0; i < n; i++) if ((WANT_CHAR(to_y, from_x + i) & A_ATTRIBUTES) != CURRENT_ATTR) { ovw = FALSE; break; } } if (ovw) { char *sp; int i; sp = str + strlen(str); for (i = 0; i < n; i++) *sp++ = WANT_CHAR(to_y, from_x + i); *sp = '\0'; lhcost += n * SP->_char_padding; } else #endif /* defined(REAL_ATTR) && defined(WANT_CHAR) */ { lhcost = repeated_append(lhcost, SP->_cuf1_cost, n, str, cursor_right); } if (lhcost < hcost) { if (result) (void) strcpy(result, str); hcost = lhcost; } } } else { /* (to_x < from_x) */ n = from_x - to_x; if (parm_left_cursor && SP->_cub_cost < hcost) { if (result) (void) strcpy(result, tparm(parm_left_cursor, n)); hcost = SP->_cub_cost; } if (cursor_left) { int lhcost = 0; str[0] = '\0'; #if USE_HARD_TABS if (init_tabs > 0 && back_tab) { int nxt, fr; for (fr = from_x; (nxt = LASTTAB(fr)) >= to_x; fr = nxt) { lhcost = repeated_append(lhcost, SP->_cbt_cost, 1, str, back_tab); if (lhcost == INFINITY) break; } n = fr - to_x; } #endif /* USE_HARD_TABS */ lhcost = repeated_append(lhcost, SP->_cub1_cost, n, str, cursor_left); if (lhcost < hcost) { if (result) (void) strcpy(result, str); hcost = lhcost; } } } if (hcost == INFINITY) return (INFINITY); } return (vcost + hcost); } #endif /* !NO_OPTIMIZE */ /* * With the machinery set up above, it's conceivable that * onscreen_mvcur could be modified into a recursive function that does * an alpha-beta search of motion space, as though it were a chess * move tree, with the weight function being boolean and the search * depth equated to length of string. However, this would jack up the * computation cost a lot, especially on terminals without a cup * capability constraining the search tree depth. So we settle for * the simpler method below. */ static inline int onscreen_mvcur(int yold, int xold, int ynew, int xnew, bool ovw) /* onscreen move from (yold, xold) to (ynew, xnew) */ { char use[OPT_SIZE], *sp; int tactic = 0, newcost, usecost = INFINITY; int t5_cr_cost; #if defined(MAIN) || defined(NCURSES_TEST) struct timeval before, after; gettimeofday(&before, NULL); #endif /* MAIN */ /* tactic #0: use direct cursor addressing */ sp = tparm(SP->_address_cursor, ynew, xnew); if (sp) { tactic = 0; (void) strcpy(use, sp); usecost = SP->_cup_cost; #if defined(TRACE) || defined(NCURSES_TEST) if (!(_nc_optimize_enable & OPTIMIZE_MVCUR)) goto nonlocal; #endif /* TRACE */ /* * We may be able to tell in advance that the full optimization * will probably not be worth its overhead. Also, don't try to * use local movement if the current attribute is anything but * A_NORMAL...there are just too many ways this can screw up * (like, say, local-movement \n getting mapped to some obscure * character because A_ALTCHARSET is on). */ if (yold == -1 || xold == -1 || NOT_LOCAL(yold, xold, ynew, xnew)) { #if defined(MAIN) || defined(NCURSES_TEST) if (!profiling) { (void) fputs("nonlocal\n", stderr); goto nonlocal; /* always run the optimizer if profiling */ } #else goto nonlocal; #endif /* MAIN */ } } #ifndef NO_OPTIMIZE /* tactic #1: use local movement */ if (yold != -1 && xold != -1 && ((newcost = relative_move(NULL, yold, xold, ynew, xnew, ovw)) != INFINITY) && newcost < usecost) { tactic = 1; usecost = newcost; } /* tactic #2: use carriage-return + local movement */ if (yold != -1 && carriage_return && ((newcost = relative_move(NULL, yold, 0, ynew, xnew, ovw)) != INFINITY) && SP->_cr_cost + newcost < usecost) { tactic = 2; usecost = SP->_cr_cost + newcost; } /* tactic #3: use home-cursor + local movement */ if (cursor_home && ((newcost = relative_move(NULL, 0, 0, ynew, xnew, ovw)) != INFINITY) && SP->_home_cost + newcost < usecost) { tactic = 3; usecost = SP->_home_cost + newcost; } /* tactic #4: use home-down + local movement */ if (cursor_to_ll && ((newcost = relative_move(NULL, screen_lines - 1, 0, ynew, xnew, ovw)) != INFINITY) && SP->_ll_cost + newcost < usecost) { tactic = 4; usecost = SP->_ll_cost + newcost; } /* * tactic #5: use left margin for wrap to right-hand side, * unless strange wrap behavior indicated by xenl might hose us. */ t5_cr_cost = (xold > 0 ? SP->_cr_cost : 0); if (auto_left_margin && !eat_newline_glitch && yold > 0 && cursor_left && ((newcost = relative_move(NULL, yold - 1, screen_columns - 1, ynew, xnew, ovw)) != INFINITY) && t5_cr_cost + SP->_cub1_cost + newcost < usecost) { tactic = 5; usecost = t5_cr_cost + SP->_cub1_cost + newcost; } /* * These cases are ordered by estimated relative frequency. */ switch (tactic) { case 1: (void) relative_move(use, yold, xold, ynew, xnew, ovw); break; case 2: (void) strcpy(use, carriage_return); (void) relative_move(use + SP->_carriage_return_length, yold, 0, ynew, xnew, ovw); break; case 3: (void) strcpy(use, cursor_home); (void) relative_move(use + SP->_cursor_home_length, 0, 0, ynew, xnew, ovw); break; case 4: (void) strcpy(use, cursor_to_ll); (void) relative_move(use + SP->_cursor_to_ll_length, screen_lines - 1, 0, ynew, xnew, ovw); break; case 5: use[0] = '\0'; if (xold > 0) (void) strcat(use, carriage_return); (void) strcat(use, cursor_left); (void) relative_move(use + strlen(use), yold - 1, screen_columns - 1, ynew, xnew, ovw); break; } #endif /* !NO_OPTIMIZE */ #if defined(MAIN) || defined(NCURSES_TEST) gettimeofday(&after, NULL); diff = after.tv_usec - before.tv_usec + (after.tv_sec - before.tv_sec) * 1000000; if (!profiling) (void) fprintf(stderr, "onscreen: %d msec, %f 28.8Kbps char-equivalents\n", (int) diff, diff / 288); #endif /* MAIN */ nonlocal: if (usecost != INFINITY) { TPUTS_TRACE("mvcur"); tputs(use, 1, _nc_outch); return (OK); } else return (ERR); } int mvcur(int yold, int xold, int ynew, int xnew) /* optimized cursor move from (yold, xold) to (ynew, xnew) */ { TR(TRACE_MOVE, ("mvcur(%d,%d,%d,%d) called", yold, xold, ynew, xnew)); if (yold == ynew && xold == xnew) return (OK); /* * Most work here is rounding for terminal boundaries getting the * column position implied by wraparound or the lack thereof and * rolling up the screen to get ynew on the screen. */ if (xnew >= screen_columns) { ynew += xnew / screen_columns; xnew %= screen_columns; } if (xold >= screen_columns) { int l; l = (xold + 1) / screen_columns; yold += l; if (yold >= screen_lines) l -= (yold - screen_lines - 1); while (l > 0) { if (newline) { TPUTS_TRACE("newline"); tputs(newline, 0, _nc_outch); } else putchar('\n'); l--; if (xold > 0) { if (carriage_return) { TPUTS_TRACE("carriage_return"); tputs(carriage_return, 0, _nc_outch); } else putchar('\r'); xold = 0; } } } if (yold > screen_lines - 1) yold = screen_lines - 1; if (ynew > screen_lines - 1) ynew = screen_lines - 1; /* destination location is on screen now */ return (onscreen_mvcur(yold, xold, ynew, xnew, TRUE)); } #if defined(TRACE) || defined(NCURSES_TEST) int _nc_optimize_enable = OPTIMIZE_ALL; #endif #if defined(MAIN) || defined(NCURSES_TEST) /**************************************************************************** * * Movement optimizer test code * ****************************************************************************/ #include #include const char *_nc_progname = "mvcur"; static unsigned long xmits; /* these override lib_tputs.c */ int tputs(const char *string, int affcnt GCC_UNUSED, int (*outc) (int) GCC_UNUSED) /* stub tputs() that dumps sequences in a visible form */ { if (profiling) xmits += strlen(string); else (void) fputs(_nc_visbuf(string), stdout); return (OK); } int putp(const char *string) { return (tputs(string, 1, _nc_outch)); } int _nc_outch(int ch) { putc(ch, stdout); return OK; } char PC = 0; /* used by termcap library */ speed_t ospeed = 0; /* used by termcap library */ int _nc_nulls_sent = 0; /* used by 'tack' program */ int delay_output(int ms GCC_UNUSED) { return OK; } static char tname[MAX_ALIAS]; static void load_term(void) { (void) setupterm(tname, STDOUT_FILENO, NULL); } static int roll(int n) { int i, j; i = (RAND_MAX / n) * n; while ((j = rand()) >= i) continue; return (j % n); } int main(int argc GCC_UNUSED, char *argv[]GCC_UNUSED) { (void) strcpy(tname, termname()); load_term(); _nc_setupscreen(lines, columns, stdout); baudrate(); _nc_mvcur_init(); NC_BUFFERED(FALSE); (void) puts("The mvcur tester. Type ? for help"); fputs("smcup:", stdout); putchar('\n'); for (;;) { int fy, fx, ty, tx, n, i; char buf[BUFSIZ], capname[BUFSIZ]; (void) fputs("> ", stdout); (void) fgets(buf, sizeof(buf), stdin); if (buf[0] == '?') { (void) puts("? -- display this help message"); (void) puts("fy fx ty tx -- (4 numbers) display (fy,fx)->(ty,tx) move"); (void) puts("s[croll] n t b m -- display scrolling sequence"); (void) printf("r[eload] -- reload terminal info for %s\n", termname()); (void) puts("l[oad] -- load terminal info for type "); (void) puts("d[elete] -- delete named capability"); (void) puts("i[nspect] -- display terminal capabilities"); (void) puts("c[ost] -- dump cursor-optimization cost table"); (void) puts("o[optimize] -- toggle movement optimization"); (void) puts("t[orture] -- torture-test with random moves"); (void) puts("q[uit] -- quit the program"); } else if (sscanf(buf, "%d %d %d %d", &fy, &fx, &ty, &tx) == 4) { struct timeval before, after; putchar('"'); gettimeofday(&before, NULL); mvcur(fy, fx, ty, tx); gettimeofday(&after, NULL); printf("\" (%ld msec)\n", (long) (after.tv_usec - before.tv_usec + (after.tv_sec - before.tv_sec) * 1000000)); } else if (sscanf(buf, "s %d %d %d %d", &fy, &fx, &ty, &tx) == 4) { struct timeval before, after; putchar('"'); gettimeofday(&before, NULL); _nc_scrolln(fy, fx, ty, tx); gettimeofday(&after, NULL); printf("\" (%ld msec)\n", (long) (after.tv_usec - before.tv_usec + (after.tv_sec - before.tv_sec) * 1000000)); } else if (buf[0] == 'r') { (void) strcpy(tname, termname()); load_term(); } else if (sscanf(buf, "l %s", tname) == 1) { load_term(); } else if (sscanf(buf, "d %s", capname) == 1) { struct name_table_entry const *np = _nc_find_entry(capname, _nc_info_hash_table); if (np == NULL) (void) printf("No such capability as \"%s\"\n", capname); else { switch (np->nte_type) { case BOOLEAN: cur_term->type.Booleans[np->nte_index] = FALSE; (void) printf("Boolean capability `%s' (%d) turned off.\n", np->nte_name, np->nte_index); break; case NUMBER: cur_term->type.Numbers[np->nte_index] = ABSENT_NUMERIC; (void) printf("Number capability `%s' (%d) set to -1.\n", np->nte_name, np->nte_index); break; case STRING: cur_term->type.Strings[np->nte_index] = ABSENT_STRING; (void) printf("String capability `%s' (%d) deleted.\n", np->nte_name, np->nte_index); break; } } } else if (buf[0] == 'i') { dump_init((char *) NULL, F_TERMINFO, S_TERMINFO, 70, 0, FALSE); dump_entry(&cur_term->type, FALSE, TRUE, 0); putchar('\n'); } else if (buf[0] == 'o') { if (_nc_optimize_enable & OPTIMIZE_MVCUR) { _nc_optimize_enable &= ~OPTIMIZE_MVCUR; (void) puts("Optimization is now off."); } else { _nc_optimize_enable |= OPTIMIZE_MVCUR; (void) puts("Optimization is now on."); } } /* * You can use the `t' test to profile and tune the movement * optimizer. Use iteration values in three digits or more. * At above 5000 iterations the profile timing averages are stable * to within a millisecond or three. * * The `overhead' field of the report will help you pick a * COMPUTE_OVERHEAD figure appropriate for your processor and * expected line speed. The `total estimated time' is * computation time plus a character-transmission time * estimate computed from the number of transmits and the baud * rate. * * Use this together with the `o' command to get a read on the * optimizer's effectiveness. Compare the total estimated times * for `t' runs of the same length in both optimized and un-optimized * modes. As long as the optimized times are less, the optimizer * is winning. */ else if (sscanf(buf, "t %d", &n) == 1) { float cumtime = 0, perchar; int speeds[] = {2400, 9600, 14400, 19200, 28800, 38400, 0}; srand((unsigned) (getpid() + time((time_t *) 0))); profiling = TRUE; xmits = 0; for (i = 0; i < n; i++) { /* * This does a move test between two random locations, * Random moves probably short-change the optimizer, * which will work better on the short moves probably * typical of doupdate()'s usage pattern. Still, * until we have better data... */ #ifdef FIND_COREDUMP int from_y = roll(lines); int to_y = roll(lines); int from_x = roll(columns); int to_x = roll(columns); printf("(%d,%d) -> (%d,%d)\n", from_y, from_x, to_y, to_x); mvcur(from_y, from_x, to_y, to_x); #else mvcur(roll(lines), roll(columns), roll(lines), roll(columns)); #endif /* FIND_COREDUMP */ if (diff) cumtime += diff; } profiling = FALSE; /* * Average milliseconds per character optimization time. * This is the key figure to watch when tuning the optimizer. */ perchar = cumtime / n; (void) printf("%d moves (%ld chars) in %d msec, %f msec each:\n", n, xmits, (int) cumtime, perchar); for (i = 0; speeds[i]; i++) { /* * Total estimated time for the moves, computation and * transmission both. Transmission time is an estimate * assuming 9 bits/char, 8 bits + 1 stop bit. */ float totalest = cumtime + xmits * 9 * 1e6 / speeds[i]; /* * Per-character optimization overhead in character transmits * at the current speed. Round this to the nearest integer * to figure COMPUTE_OVERHEAD for the speed. */ float overhead = speeds[i] * perchar / 1e6; (void) printf("%6d bps: %3.2f char-xmits overhead; total estimated time %15.2f\n", speeds[i], overhead, totalest); } } else if (buf[0] == 'c') { (void) printf("char padding: %d\n", SP->_char_padding); (void) printf("cr cost: %d\n", SP->_cr_cost); (void) printf("cup cost: %d\n", SP->_cup_cost); (void) printf("home cost: %d\n", SP->_home_cost); (void) printf("ll cost: %d\n", SP->_ll_cost); #if USE_HARD_TABS (void) printf("ht cost: %d\n", SP->_ht_cost); (void) printf("cbt cost: %d\n", SP->_cbt_cost); #endif /* USE_HARD_TABS */ (void) printf("cub1 cost: %d\n", SP->_cub1_cost); (void) printf("cuf1 cost: %d\n", SP->_cuf1_cost); (void) printf("cud1 cost: %d\n", SP->_cud1_cost); (void) printf("cuu1 cost: %d\n", SP->_cuu1_cost); (void) printf("cub cost: %d\n", SP->_cub_cost); (void) printf("cuf cost: %d\n", SP->_cuf_cost); (void) printf("cud cost: %d\n", SP->_cud_cost); (void) printf("cuu cost: %d\n", SP->_cuu_cost); (void) printf("hpa cost: %d\n", SP->_hpa_cost); (void) printf("vpa cost: %d\n", SP->_vpa_cost); } else if (buf[0] == 'x' || buf[0] == 'q') break; else (void) puts("Invalid command."); } (void) fputs("rmcup:", stdout); _nc_mvcur_wrap(); putchar('\n'); return (0); } #endif /* MAIN */ /* lib_mvcur.c ends here */