/*- * Copyright (c) 2006-2011 Joseph Koshy * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include "_libelf.h" ELFTC_VCSID("$Id: libelf_convert.m4,v 1.2 2019/03/19 02:31:35 jsg Exp $"); /* WARNING: GENERATED FROM __file__. */ divert(-1) # Generate conversion routines for converting between in-memory and # file representations of Elf data structures. # # These conversions use the type information defined in `elf_types.m4'. include(SRCDIR`/elf_types.m4') # For the purposes of generating conversion code, ELF types may be # classified according to the following characteristics: # # 1. Whether the ELF type can be directly mapped to an integral C # language type. For example, the ELF_T_WORD type maps directly to # a 'uint32_t', but ELF_T_GNUHASH lacks a matching C type. # # 2. Whether the type has word size dependent variants. For example, # ELT_T_EHDR is represented using C types Elf32_Ehdr and El64_Ehdr, # and the ELF_T_ADDR and ELF_T_OFF types have integral C types that # can be 32- or 64- bit wide. # # 3. Whether the ELF types has a fixed representation or not. For # example, the ELF_T_SYM type has a fixed size file representation, # some types like ELF_T_NOTE and ELF_T_GNUHASH use a variable size # representation. # # We use m4 macros to generate conversion code for ELF types that have # a fixed size representation. Conversion functions for the remaining # types are coded by hand. # #* Handling File and Memory Representations # # `In-memory' representations of an Elf data structure use natural # alignments and native byte ordering. This allows pointer arithmetic # and casting to work as expected. On the other hand, the `file' # representation of an ELF data structure could possibly be packed # tighter than its `in-memory' representation, and could be of a # differing byte order. Reading ELF objects that are members of `ar' # archives present an additional complication: `ar' pads file data to # even addresses, so file data structures in an archive member # residing inside an `ar' archive could be at misaligned memory # addresses when brought into memory. # # In summary, casting the `char *' pointers that point to memory # representations (i.e., source pointers for the *_tof() functions and # the destination pointers for the *_tom() functions), is safe, as # these pointers should be correctly aligned for the memory type # already. However, pointers to file representations have to be # treated as being potentially unaligned and no casting can be done. # NOCVT(TYPE) -- Do not generate the cvt[] structure entry for TYPE define(`NOCVT',`define(`NOCVT_'$1,1)') # NOFUNC(TYPE) -- Do not generate a conversion function for TYPE define(`NOFUNC',`define(`NOFUNC_'$1,1)') # IGNORE(TYPE) -- Completely ignore the type. define(`IGNORE',`NOCVT($1)NOFUNC($1)') # Mark ELF types that should not be processed by the M4 macros below. # Types for which we use functions with non-standard names. IGNORE(`BYTE') # Uses a wrapper around memcpy(). IGNORE(`NOTE') # Not a fixed size type. # Types for which we supply hand-coded functions. NOFUNC(`GNUHASH') # A type with complex internal structure. NOFUNC(`VDEF') # See MAKE_VERSION_CONVERTERS below. NOFUNC(`VNEED') # .. # Unimplemented types. IGNORE(`MOVEP') # ELF types that don't exist in a 32-bit world. NOFUNC(`XWORD32') NOFUNC(`SXWORD32') # `Primitive' ELF types are those that are an alias for an integral # type. As they have no internal structure, they can be copied using # a `memcpy()', and byteswapped in straightforward way. # # Mark all ELF types that directly map to integral C types. define(`PRIM_ADDR', 1) define(`PRIM_BYTE', 1) define(`PRIM_HALF', 1) define(`PRIM_LWORD', 1) define(`PRIM_OFF', 1) define(`PRIM_SWORD', 1) define(`PRIM_SXWORD', 1) define(`PRIM_WORD', 1) define(`PRIM_XWORD', 1) # Note the primitive types that are size-dependent. define(`SIZEDEP_ADDR', 1) define(`SIZEDEP_OFF', 1) # Generate conversion functions for primitive types. # # Macro use: MAKEPRIMFUNCS(ELFTYPE,CTYPE,TYPESIZE,SYMSIZE) # `$1': Name of the ELF type. # `$2': C structure name suffix. # `$3': ELF class specifier for types, one of [`32', `64']. # `$4': Additional ELF class specifier, one of [`', `32', `64']. # # Generates a pair of conversion functions. define(`MAKEPRIMFUNCS',` static int _libelf_cvt_$1$4_tof(unsigned char *dst, size_t dsz, unsigned char *src, size_t count, int byteswap) { Elf$3_$2 t, *s = (Elf$3_$2 *) (uintptr_t) src; size_t c; (void) dsz; if (!byteswap) { (void) memcpy(dst, src, count * sizeof(*s)); return (1); } for (c = 0; c < count; c++) { t = *s++; SWAP_$1$4(t); WRITE_$1$4(dst,t); } return (1); } static int _libelf_cvt_$1$4_tom(unsigned char *dst, size_t dsz, unsigned char *src, size_t count, int byteswap) { Elf$3_$2 t, *d = (Elf$3_$2 *) (uintptr_t) dst; size_t c; if (dsz < count * sizeof(Elf$3_$2)) return (0); if (!byteswap) { (void) memcpy(dst, src, count * sizeof(*d)); return (1); } for (c = 0; c < count; c++) { READ_$1$4(src,t); SWAP_$1$4(t); *d++ = t; } return (1); } ') # # Handling composite ELF types # # SWAP_FIELD(FIELDNAME,ELFTYPE) -- Generate code to swap one field. define(`SWAP_FIELD', `ifdef(`SIZEDEP_'$2, `SWAP_$2'SZ()`(t.$1); ', `SWAP_$2(t.$1); ')') # SWAP_MEMBERS(STRUCT) -- Iterate over a structure definition. define(`SWAP_MEMBERS', `ifelse($#,1,`/**/', `SWAP_FIELD($1)SWAP_MEMBERS(shift($@))')') # SWAP_STRUCT(CTYPE,SIZE) -- Generate code to swap an ELF structure. define(`SWAP_STRUCT', `pushdef(`SZ',$2)/* Swap an Elf$2_$1 */ SWAP_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')') # WRITE_FIELD(ELFTYPE,FIELDNAME) -- Generate code to write one field. define(`WRITE_FIELD', `ifdef(`SIZEDEP_'$2, `WRITE_$2'SZ()`(dst,t.$1); ', `WRITE_$2(dst,t.$1); ')') # WRITE_MEMBERS(ELFTYPELIST) -- Iterate over a structure definition. define(`WRITE_MEMBERS', `ifelse($#,1,`/**/', `WRITE_FIELD($1)WRITE_MEMBERS(shift($@))')') # WRITE_STRUCT(CTYPE,SIZE) -- Generate code to write out an ELF structure. define(`WRITE_STRUCT', `pushdef(`SZ',$2)/* Write an Elf$2_$1 */ WRITE_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')') # READ_FIELD(ELFTYPE,CTYPE) -- Generate code to read one field. define(`READ_FIELD', `ifdef(`SIZEDEP_'$2, `READ_$2'SZ()`(s,t.$1); ', `READ_$2(s,t.$1); ')') # READ_MEMBERS(ELFTYPELIST) -- Iterate over a structure definition. define(`READ_MEMBERS', `ifelse($#,1,`/**/', `READ_FIELD($1)READ_MEMBERS(shift($@))')') # READ_STRUCT(CTYPE,SIZE) -- Generate code to read an ELF structure. define(`READ_STRUCT', `pushdef(`SZ',$2)/* Read an Elf$2_$1 */ READ_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')') # MAKECOMPFUNCS -- Generate converters for composite ELF structures. # # When converting data to file representation, the source pointer will # be naturally aligned for a data structure's in-memory # representation. When converting data to memory, the destination # pointer will be similarly aligned. # # For in-place conversions, when converting to file representations, # the source buffer is large enough to hold `file' data. When # converting from file to memory, we need to be careful to work # `backwards', to avoid overwriting unconverted data. # # Macro use: # `$1': Name of the ELF type. # `$2': C structure name suffix. # `$3': ELF class specifier, one of [`', `32', `64'] define(`MAKECOMPFUNCS', `ifdef(`NOFUNC_'$1$3,`',` static int _libelf_cvt_$1$3_tof(unsigned char *dst, size_t dsz, unsigned char *src, size_t count, int byteswap) { Elf$3_$2 t, *s; size_t c; (void) dsz; s = (Elf$3_$2 *) (uintptr_t) src; for (c = 0; c < count; c++) { t = *s++; if (byteswap) { SWAP_STRUCT($2,$3) } WRITE_STRUCT($2,$3) } return (1); } static int _libelf_cvt_$1$3_tom(unsigned char *dst, size_t dsz, unsigned char *src, size_t count, int byteswap) { Elf$3_$2 t, *d; unsigned char *s,*s0; size_t fsz; fsz = elf$3_fsize(ELF_T_$1, (size_t) 1, EV_CURRENT); d = ((Elf$3_$2 *) (uintptr_t) dst) + (count - 1); s0 = src + (count - 1) * fsz; if (dsz < count * sizeof(Elf$3_$2)) return (0); while (count--) { s = s0; READ_STRUCT($2,$3) if (byteswap) { SWAP_STRUCT($2,$3) } *d-- = t; s0 -= fsz; } return (1); } ')') # MAKE_TYPE_CONVERTER(ELFTYPE,CTYPE) # # Make type convertor functions from the type definition # of the ELF type: # - Skip convertors marked as `NOFUNC'. # - Invoke `MAKEPRIMFUNCS' or `MAKECOMPFUNCS' as appropriate. define(`MAKE_TYPE_CONVERTER', `ifdef(`NOFUNC_'$1,`', `ifdef(`PRIM_'$1, `ifdef(`SIZEDEP_'$1, `MAKEPRIMFUNCS($1,$2,32,32)dnl MAKEPRIMFUNCS($1,$2,64,64)', `MAKEPRIMFUNCS($1,$2,64)')', `MAKECOMPFUNCS($1,$2,32)dnl MAKECOMPFUNCS($1,$2,64)')')') # MAKE_TYPE_CONVERTERS(ELFTYPELIST) -- Generate conversion functions. define(`MAKE_TYPE_CONVERTERS', `ifelse($#,1,`', `MAKE_TYPE_CONVERTER($1)MAKE_TYPE_CONVERTERS(shift($@))')') # # Macros to generate entries for the table of convertors. # # CONV(ELFTYPE,SIZE,DIRECTION) # # Generate the name of a convertor function. define(`CONV', `ifdef(`NOFUNC_'$1$2, `.$3$2 = NULL', `ifdef(`PRIM_'$1, `ifdef(`SIZEDEP_'$1, `.$3$2 = _libelf_cvt_$1$2_$3', `.$3$2 = _libelf_cvt_$1_$3')', `.$3$2 = _libelf_cvt_$1$2_$3')')') # CONVERTER_NAME(ELFTYPE) # # Generate the contents of one `struct cvt' instance. define(`CONVERTER_NAME', `ifdef(`NOCVT_'$1,`', ` [ELF_T_$1] = { CONV($1,32,tof), CONV($1,32,tom), CONV($1,64,tof), CONV($1,64,tom) }, ')') # CONVERTER_NAMES(ELFTYPELIST) # # Generate the `struct cvt[]' array. define(`CONVERTER_NAMES', `ifelse($#,1,`', `CONVERTER_NAME($1)CONVERTER_NAMES(shift($@))')') # # Handling ELF version sections. # # _FSZ(FIELD,BASETYPE) - return the file size for a field. define(`_FSZ', `ifelse($2,`HALF',2, $2,`WORD',4)') # FSZ(STRUCT) - determine the file size of a structure. define(`FSZ', `ifelse($#,1,0, `eval(_FSZ($1) + FSZ(shift($@)))')') # MAKE_VERSION_CONVERTERS(TYPE,BASE,AUX,PFX) -- Generate conversion # functions for versioning structures. define(`MAKE_VERSION_CONVERTERS', `MAKE_VERSION_CONVERTER($1,$2,$3,$4,32) MAKE_VERSION_CONVERTER($1,$2,$3,$4,64)') # MAKE_VERSION_CONVERTOR(TYPE,CBASE,CAUX,PFX,SIZE) -- Generate a # conversion function. define(`MAKE_VERSION_CONVERTER',` static int _libelf_cvt_$1$5_tof(unsigned char *dst, size_t dsz, unsigned char *src, size_t count, int byteswap) { Elf$5_$2 t; Elf$5_$3 a; const size_t verfsz = FSZ(Elf$5_$2_DEF); const size_t auxfsz = FSZ(Elf$5_$3_DEF); const size_t vermsz = sizeof(Elf$5_$2); const size_t auxmsz = sizeof(Elf$5_$3); unsigned char * const dstend = dst + dsz; unsigned char * const srcend = src + count; unsigned char *dtmp, *dstaux, *srcaux; Elf$5_Word aux, anext, cnt, vnext; for (dtmp = dst, vnext = ~0U; vnext != 0 && dtmp + verfsz <= dstend && src + vermsz <= srcend; dtmp += vnext, src += vnext) { /* Read in an Elf$5_$2 structure. */ t = *((Elf$5_$2 *) (uintptr_t) src); aux = t.$4_aux; cnt = t.$4_cnt; vnext = t.$4_next; if (byteswap) { SWAP_STRUCT($2, $5) } dst = dtmp; WRITE_STRUCT($2, $5) if (aux < verfsz) return (0); /* Process AUX entries. */ for (anext = ~0U, dstaux = dtmp + aux, srcaux = src + aux; cnt != 0 && anext != 0 && dstaux + auxfsz <= dstend && srcaux + auxmsz <= srcend; dstaux += anext, srcaux += anext, cnt--) { /* Read in an Elf$5_$3 structure. */ a = *((Elf$5_$3 *) (uintptr_t) srcaux); anext = a.$4a_next; if (byteswap) { pushdef(`t',`a')SWAP_STRUCT($3, $5)popdef(`t') } dst = dstaux; pushdef(`t',`a')WRITE_STRUCT($3, $5)popdef(`t') } if (anext || cnt) return (0); } if (vnext) return (0); return (1); } static int _libelf_cvt_$1$5_tom(unsigned char *dst, size_t dsz, unsigned char *src, size_t count, int byteswap) { Elf$5_$2 t, *dp; Elf$5_$3 a, *ap; const size_t verfsz = FSZ(Elf$5_$2_DEF); const size_t auxfsz = FSZ(Elf$5_$3_DEF); const size_t vermsz = sizeof(Elf$5_$2); const size_t auxmsz = sizeof(Elf$5_$3); unsigned char * const dstend = dst + dsz; unsigned char * const srcend = src + count; unsigned char *dstaux, *s, *srcaux, *stmp; Elf$5_Word aux, anext, cnt, vnext; for (stmp = src, vnext = ~0U; vnext != 0 && stmp + verfsz <= srcend && dst + vermsz <= dstend; stmp += vnext, dst += vnext) { /* Read in a $1 structure. */ s = stmp; READ_STRUCT($2, $5) if (byteswap) { SWAP_STRUCT($2, $5) } dp = (Elf$5_$2 *) (uintptr_t) dst; *dp = t; aux = t.$4_aux; cnt = t.$4_cnt; vnext = t.$4_next; if (aux < vermsz) return (0); /* Process AUX entries. */ for (anext = ~0U, dstaux = dst + aux, srcaux = stmp + aux; cnt != 0 && anext != 0 && dstaux + auxmsz <= dstend && srcaux + auxfsz <= srcend; dstaux += anext, srcaux += anext, cnt--) { s = srcaux; pushdef(`t',`a')READ_STRUCT($3, $5)popdef(`t') if (byteswap) { pushdef(`t',`a')SWAP_STRUCT($3, $5)popdef(`t') } anext = a.$4a_next; ap = ((Elf$5_$3 *) (uintptr_t) dstaux); *ap = a; } if (anext || cnt) return (0); } if (vnext) return (0); return (1); }') divert(0) /* * C macros to byte swap integral quantities. */ #define SWAP_BYTE(X) do { (void) (X); } while (0) #define SWAP_IDENT(X) do { (void) (X); } while (0) #define SWAP_HALF(X) do { \ uint16_t _x = (uint16_t) (X); \ uint32_t _t = _x & 0xFFU; \ _t <<= 8U; _x >>= 8U; _t |= _x & 0xFFU; \ (X) = (uint16_t) _t; \ } while (0) #define _SWAP_WORD(X, T) do { \ uint32_t _x = (uint32_t) (X); \ uint32_t _t = _x & 0xFF; \ _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ (X) = (T) _t; \ } while (0) #define SWAP_ADDR32(X) _SWAP_WORD(X, Elf32_Addr) #define SWAP_OFF32(X) _SWAP_WORD(X, Elf32_Off) #define SWAP_SWORD(X) _SWAP_WORD(X, Elf32_Sword) #define SWAP_WORD(X) _SWAP_WORD(X, Elf32_Word) #define _SWAP_WORD64(X, T) do { \ uint64_t _x = (uint64_t) (X); \ uint64_t _t = _x & 0xFF; \ _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ (X) = (T) _t; \ } while (0) #define SWAP_ADDR64(X) _SWAP_WORD64(X, Elf64_Addr) #define SWAP_LWORD(X) _SWAP_WORD64(X, Elf64_Lword) #define SWAP_OFF64(X) _SWAP_WORD64(X, Elf64_Off) #define SWAP_SXWORD(X) _SWAP_WORD64(X, Elf64_Sxword) #define SWAP_XWORD(X) _SWAP_WORD64(X, Elf64_Xword) /* * C macros to write out various integral values. * * Note: * - The destination pointer could be unaligned. * - Values are written out in native byte order. * - The destination pointer is incremented after the write. */ #define WRITE_BYTE(P,X) do { \ unsigned char *const _p = (unsigned char *) (P); \ _p[0] = (unsigned char) (X); \ (P) = _p + 1; \ } while (0) #define WRITE_HALF(P,X) do { \ uint16_t _t = (X); \ unsigned char *const _p = (unsigned char *) (P); \ const unsigned char *const _q = (unsigned char *) &_t; \ _p[0] = _q[0]; \ _p[1] = _q[1]; \ (P) = _p + 2; \ } while (0) #define WRITE_WORD(P,X) do { \ uint32_t _t = (uint32_t) (X); \ unsigned char *const _p = (unsigned char *) (P); \ const unsigned char *const _q = (unsigned char *) &_t; \ _p[0] = _q[0]; \ _p[1] = _q[1]; \ _p[2] = _q[2]; \ _p[3] = _q[3]; \ (P) = _p + 4; \ } while (0) #define WRITE_ADDR32(P,X) WRITE_WORD(P,X) #define WRITE_OFF32(P,X) WRITE_WORD(P,X) #define WRITE_SWORD(P,X) WRITE_WORD(P,X) #define WRITE_WORD64(P,X) do { \ uint64_t _t = (uint64_t) (X); \ unsigned char *const _p = (unsigned char *) (P); \ const unsigned char *const _q = (unsigned char *) &_t; \ _p[0] = _q[0]; \ _p[1] = _q[1]; \ _p[2] = _q[2]; \ _p[3] = _q[3]; \ _p[4] = _q[4]; \ _p[5] = _q[5]; \ _p[6] = _q[6]; \ _p[7] = _q[7]; \ (P) = _p + 8; \ } while (0) #define WRITE_ADDR64(P,X) WRITE_WORD64(P,X) #define WRITE_LWORD(P,X) WRITE_WORD64(P,X) #define WRITE_OFF64(P,X) WRITE_WORD64(P,X) #define WRITE_SXWORD(P,X) WRITE_WORD64(P,X) #define WRITE_XWORD(P,X) WRITE_WORD64(P,X) #define WRITE_IDENT(P,X) do { \ (void) memcpy((P), (X), sizeof((X))); \ (P) = (P) + EI_NIDENT; \ } while (0) /* * C macros to read in various integral values. * * Note: * - The source pointer could be unaligned. * - Values are read in native byte order. * - The source pointer is incremented appropriately. */ #define READ_BYTE(P,X) do { \ const unsigned char *const _p = \ (const unsigned char *) (P); \ (X) = _p[0]; \ (P) = (P) + 1; \ } while (0) #define READ_HALF(P,X) do { \ uint16_t _t; \ unsigned char *const _q = (unsigned char *) &_t; \ const unsigned char *const _p = \ (const unsigned char *) (P); \ _q[0] = _p[0]; \ _q[1] = _p[1]; \ (P) = (P) + 2; \ (X) = _t; \ } while (0) #define _READ_WORD(P,X,T) do { \ uint32_t _t; \ unsigned char *const _q = (unsigned char *) &_t; \ const unsigned char *const _p = \ (const unsigned char *) (P); \ _q[0] = _p[0]; \ _q[1] = _p[1]; \ _q[2] = _p[2]; \ _q[3] = _p[3]; \ (P) = (P) + 4; \ (X) = (T) _t; \ } while (0) #define READ_ADDR32(P,X) _READ_WORD(P, X, Elf32_Addr) #define READ_OFF32(P,X) _READ_WORD(P, X, Elf32_Off) #define READ_SWORD(P,X) _READ_WORD(P, X, Elf32_Sword) #define READ_WORD(P,X) _READ_WORD(P, X, Elf32_Word) #define _READ_WORD64(P,X,T) do { \ uint64_t _t; \ unsigned char *const _q = (unsigned char *) &_t; \ const unsigned char *const _p = \ (const unsigned char *) (P); \ _q[0] = _p[0]; \ _q[1] = _p[1]; \ _q[2] = _p[2]; \ _q[3] = _p[3]; \ _q[4] = _p[4]; \ _q[5] = _p[5]; \ _q[6] = _p[6]; \ _q[7] = _p[7]; \ (P) = (P) + 8; \ (X) = (T) _t; \ } while (0) #define READ_ADDR64(P,X) _READ_WORD64(P, X, Elf64_Addr) #define READ_LWORD(P,X) _READ_WORD64(P, X, Elf64_Lword) #define READ_OFF64(P,X) _READ_WORD64(P, X, Elf64_Off) #define READ_SXWORD(P,X) _READ_WORD64(P, X, Elf64_Sxword) #define READ_XWORD(P,X) _READ_WORD64(P, X, Elf64_Xword) #define READ_IDENT(P,X) do { \ (void) memcpy((X), (P), sizeof((X))); \ (P) = (P) + EI_NIDENT; \ } while (0) #define ROUNDUP2(V,N) (V) = ((((V) + (N) - 1)) & ~((N) - 1)) /*[*/ MAKE_TYPE_CONVERTERS(ELF_TYPE_LIST) MAKE_VERSION_CONVERTERS(VDEF,Verdef,Verdaux,vd) MAKE_VERSION_CONVERTERS(VNEED,Verneed,Vernaux,vn) /*]*/ /* * Sections of type ELF_T_BYTE are never byteswapped, consequently a * simple memcpy suffices for both directions of conversion. */ static int _libelf_cvt_BYTE_tox(unsigned char *dst, size_t dsz, unsigned char *src, size_t count, int byteswap) { (void) byteswap; if (dsz < count) return (0); if (dst != src) (void) memcpy(dst, src, count); return (1); } /* * Sections of type ELF_T_GNUHASH start with a header containing 4 32-bit * words. Bloom filter data comes next, followed by hash buckets and the * hash chain. * * Bloom filter words are 64 bit wide on ELFCLASS64 objects and are 32 bit * wide on ELFCLASS32 objects. The other objects in this section are 32 * bits wide. * * Argument `srcsz' denotes the number of bytes to be converted. In the * 32-bit case we need to translate `srcsz' to a count of 32-bit words. */ static int _libelf_cvt_GNUHASH32_tom(unsigned char *dst, size_t dsz, unsigned char *src, size_t srcsz, int byteswap) { return (_libelf_cvt_WORD_tom(dst, dsz, src, srcsz / sizeof(uint32_t), byteswap)); } static int _libelf_cvt_GNUHASH32_tof(unsigned char *dst, size_t dsz, unsigned char *src, size_t srcsz, int byteswap) { return (_libelf_cvt_WORD_tof(dst, dsz, src, srcsz / sizeof(uint32_t), byteswap)); } static int _libelf_cvt_GNUHASH64_tom(unsigned char *dst, size_t dsz, unsigned char *src, size_t srcsz, int byteswap) { size_t sz; uint64_t t64, *bloom64; Elf_GNU_Hash_Header *gh; uint32_t n, nbuckets, nchains, maskwords, shift2, symndx, t32; uint32_t *buckets, *chains; sz = 4 * sizeof(uint32_t); /* File header is 4 words long. */ if (dsz < sizeof(Elf_GNU_Hash_Header) || srcsz < sz) return (0); /* Read in the section header and byteswap if needed. */ READ_WORD(src, nbuckets); READ_WORD(src, symndx); READ_WORD(src, maskwords); READ_WORD(src, shift2); srcsz -= sz; if (byteswap) { SWAP_WORD(nbuckets); SWAP_WORD(symndx); SWAP_WORD(maskwords); SWAP_WORD(shift2); } /* Check source buffer and destination buffer sizes. */ sz = nbuckets * sizeof(uint32_t) + maskwords * sizeof(uint64_t); if (srcsz < sz || dsz < sz + sizeof(Elf_GNU_Hash_Header)) return (0); gh = (Elf_GNU_Hash_Header *) (uintptr_t) dst; gh->gh_nbuckets = nbuckets; gh->gh_symndx = symndx; gh->gh_maskwords = maskwords; gh->gh_shift2 = shift2; dsz -= sizeof(Elf_GNU_Hash_Header); dst += sizeof(Elf_GNU_Hash_Header); bloom64 = (uint64_t *) (uintptr_t) dst; /* Copy bloom filter data. */ for (n = 0; n < maskwords; n++) { READ_XWORD(src, t64); if (byteswap) SWAP_XWORD(t64); bloom64[n] = t64; } /* The hash buckets follows the bloom filter. */ dst += maskwords * sizeof(uint64_t); buckets = (uint32_t *) (uintptr_t) dst; for (n = 0; n < nbuckets; n++) { READ_WORD(src, t32); if (byteswap) SWAP_WORD(t32); buckets[n] = t32; } dst += nbuckets * sizeof(uint32_t); /* The hash chain follows the hash buckets. */ dsz -= sz; srcsz -= sz; if (dsz < srcsz) /* Destination lacks space. */ return (0); nchains = (uint32_t) (srcsz / sizeof(uint32_t)); chains = (uint32_t *) (uintptr_t) dst; for (n = 0; n < nchains; n++) { READ_WORD(src, t32); if (byteswap) SWAP_WORD(t32); *chains++ = t32; } return (1); } static int _libelf_cvt_GNUHASH64_tof(unsigned char *dst, size_t dsz, unsigned char *src, size_t srcsz, int byteswap) { uint32_t *s32; size_t sz, hdrsz; uint64_t *s64, t64; Elf_GNU_Hash_Header *gh; uint32_t maskwords, n, nbuckets, nchains, t0, t1, t2, t3, t32; hdrsz = 4 * sizeof(uint32_t); /* Header is 4x32 bits. */ if (dsz < hdrsz || srcsz < sizeof(Elf_GNU_Hash_Header)) return (0); gh = (Elf_GNU_Hash_Header *) (uintptr_t) src; t0 = nbuckets = gh->gh_nbuckets; t1 = gh->gh_symndx; t2 = maskwords = gh->gh_maskwords; t3 = gh->gh_shift2; src += sizeof(Elf_GNU_Hash_Header); srcsz -= sizeof(Elf_GNU_Hash_Header); dsz -= hdrsz; sz = gh->gh_nbuckets * sizeof(uint32_t) + gh->gh_maskwords * sizeof(uint64_t); if (srcsz < sz || dsz < sz) return (0); /* Write out the header. */ if (byteswap) { SWAP_WORD(t0); SWAP_WORD(t1); SWAP_WORD(t2); SWAP_WORD(t3); } WRITE_WORD(dst, t0); WRITE_WORD(dst, t1); WRITE_WORD(dst, t2); WRITE_WORD(dst, t3); /* Copy the bloom filter and the hash table. */ s64 = (uint64_t *) (uintptr_t) src; for (n = 0; n < maskwords; n++) { t64 = *s64++; if (byteswap) SWAP_XWORD(t64); WRITE_WORD64(dst, t64); } s32 = (uint32_t *) s64; for (n = 0; n < nbuckets; n++) { t32 = *s32++; if (byteswap) SWAP_WORD(t32); WRITE_WORD(dst, t32); } srcsz -= sz; dsz -= sz; /* Copy out the hash chains. */ if (dsz < srcsz) return (0); nchains = (uint32_t) (srcsz / sizeof(uint32_t)); for (n = 0; n < nchains; n++) { t32 = *s32++; if (byteswap) SWAP_WORD(t32); WRITE_WORD(dst, t32); } return (1); } /* * Elf_Note structures comprise a fixed size header followed by variable * length strings. The fixed size header needs to be byte swapped, but * not the strings. * * Argument `count' denotes the total number of bytes to be converted. * The destination buffer needs to be at least `count' bytes in size. */ static int _libelf_cvt_NOTE_tom(unsigned char *dst, size_t dsz, unsigned char *src, size_t count, int byteswap) { uint32_t namesz, descsz, type; Elf_Note *en; size_t sz, hdrsz; if (dsz < count) /* Destination buffer is too small. */ return (0); hdrsz = 3 * sizeof(uint32_t); if (count < hdrsz) /* Source too small. */ return (0); if (!byteswap) { (void) memcpy(dst, src, count); return (1); } /* Process all notes in the section. */ while (count > hdrsz) { /* Read the note header. */ READ_WORD(src, namesz); READ_WORD(src, descsz); READ_WORD(src, type); /* Translate. */ SWAP_WORD(namesz); SWAP_WORD(descsz); SWAP_WORD(type); /* Copy out the translated note header. */ en = (Elf_Note *) (uintptr_t) dst; en->namesz = namesz; en->descsz = descsz; en->type = type; dsz -= sizeof(Elf_Note); dst += sizeof(Elf_Note); count -= hdrsz; ROUNDUP2(namesz, 4U); ROUNDUP2(descsz, 4U); sz = namesz + descsz; if (count < sz || dsz < sz) /* Buffers are too small. */ return (0); (void) memcpy(dst, src, sz); src += sz; dst += sz; count -= sz; dsz -= sz; } return (1); } static int _libelf_cvt_NOTE_tof(unsigned char *dst, size_t dsz, unsigned char *src, size_t count, int byteswap) { uint32_t namesz, descsz, type; Elf_Note *en; size_t sz; if (dsz < count) return (0); if (!byteswap) { (void) memcpy(dst, src, count); return (1); } while (count > sizeof(Elf_Note)) { en = (Elf_Note *) (uintptr_t) src; namesz = en->namesz; descsz = en->descsz; type = en->type; sz = namesz; ROUNDUP2(sz, 4U); sz += descsz; ROUNDUP2(sz, 4U); SWAP_WORD(namesz); SWAP_WORD(descsz); SWAP_WORD(type); WRITE_WORD(dst, namesz); WRITE_WORD(dst, descsz); WRITE_WORD(dst, type); src += sizeof(Elf_Note); count -= sizeof(Elf_Note); if (count < sz) sz = count; (void) memcpy(dst, src, sz); src += sz; dst += sz; count -= sz; } return (1); } struct converters { int (*tof32)(unsigned char *dst, size_t dsz, unsigned char *src, size_t cnt, int byteswap); int (*tom32)(unsigned char *dst, size_t dsz, unsigned char *src, size_t cnt, int byteswap); int (*tof64)(unsigned char *dst, size_t dsz, unsigned char *src, size_t cnt, int byteswap); int (*tom64)(unsigned char *dst, size_t dsz, unsigned char *src, size_t cnt, int byteswap); }; static struct converters cvt[ELF_T_NUM] = { /*[*/ CONVERTER_NAMES(ELF_TYPE_LIST) /*]*/ /* * Types that need hand-coded converters follow. */ [ELF_T_BYTE] = { .tof32 = _libelf_cvt_BYTE_tox, .tom32 = _libelf_cvt_BYTE_tox, .tof64 = _libelf_cvt_BYTE_tox, .tom64 = _libelf_cvt_BYTE_tox }, [ELF_T_NOTE] = { .tof32 = _libelf_cvt_NOTE_tof, .tom32 = _libelf_cvt_NOTE_tom, .tof64 = _libelf_cvt_NOTE_tof, .tom64 = _libelf_cvt_NOTE_tom } }; /* * Return a translator function for the specified ELF section type, conversion * direction, ELF class and ELF machine. */ _libelf_translator_function * _libelf_get_translator(Elf_Type t, int direction, int elfclass, int elfmachine) { assert(elfclass == ELFCLASS32 || elfclass == ELFCLASS64); assert(direction == ELF_TOFILE || direction == ELF_TOMEMORY); assert(t >= ELF_T_FIRST && t <= ELF_T_LAST); /* TODO: Handle MIPS64 REL{,A} sections (ticket #559). */ (void) elfmachine; return ((elfclass == ELFCLASS32) ? (direction == ELF_TOFILE ? cvt[t].tof32 : cvt[t].tom32) : (direction == ELF_TOFILE ? cvt[t].tof64 : cvt[t].tom64)); }