/* $OpenBSD: kvm_sparc.c,v 1.2 1996/05/05 14:57:50 deraadt Exp $ */ /* $NetBSD: kvm_sparc.c,v 1.9 1996/04/01 19:23:03 cgd Exp $ */ /*- * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software developed by the Computer Systems * Engineering group at Lawrence Berkeley Laboratory under DARPA contract * BG 91-66 and contributed to Berkeley. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #if defined(LIBC_SCCS) && !defined(lint) #if 0 static char sccsid[] = "@(#)kvm_sparc.c 8.1 (Berkeley) 6/4/93"; #else static char *rcsid = "$OpenBSD: kvm_sparc.c,v 1.2 1996/05/05 14:57:50 deraadt Exp $"; #endif #endif /* LIBC_SCCS and not lint */ /* * Sparc machine dependent routines for kvm. Hopefully, the forthcoming * vm code will one day obsolete this module. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kvm_private.h" #define MA_SIZE 32 /* XXX */ struct vmstate { struct { int x_seginval; /* [sun4/sun4c] only */ int x_npmemarr; struct memarr x_pmemarr[MA_SIZE]; struct segmap x_segmap_store[NKREG*NSEGRG]; } x; #define seginval x.x_seginval #define npmemarr x.x_npmemarr #define pmemarr x.x_pmemarr #define segmap_store x.x_segmap_store int *pte; /* [sun4/sun4c] only */ }; #define NPMEG(vm) ((vm)->seginval+1) static int cputyp = -1; static int pgshift, nptesg; #define VA_VPG(va) ((cputyp == CPU_SUN4C || cputyp == CPU_SUN4M) \ ? VA_SUN4C_VPG(va) \ : VA_SUN4_VPG(va)) static int _kvm_mustinit __P((kvm_t *)); #if 0 static int getcputyp() { int mib[2]; size_t size; mib[0] = CTL_HW; mib[1] = HW_CLASS; size = sizeof cputyp; if (sysctl(mib, 2, &cputyp, &size, NULL, 0) == -1) return (-1); } #endif static int _kvm_mustinit(kd) kvm_t *kd; { static struct nlist nlist[2] = { # define X_CPUTYP 0 { "_cputyp" }, { NULL }, }; off_t foff; if (cputyp != -1) return 0; for (pgshift = 12; (1 << pgshift) != kd->nbpg; pgshift++) ; nptesg = NBPSG / kd->nbpg; if (kvm_nlist(kd, nlist) != 0) { _kvm_err(kd, kd->program, "cannot find `cputyp' symbol"); return (-1); } /* Assume kernel mappings are all within first memory bank. */ foff = nlist[X_CPUTYP].n_value - KERNBASE; if (lseek(kd->pmfd, foff, 0) == -1 || read(kd->pmfd, &cputyp, sizeof(cputyp)) < 0) { _kvm_err(kd, kd->program, "cannot read `cputyp"); return (-1); } if (cputyp != CPU_SUN4 && cputyp != CPU_SUN4C && cputyp != CPU_SUN4M) return (-1); return (0); } void _kvm_freevtop(kd) kvm_t *kd; { if (kd->vmst != 0) { if (kd->vmst->pte != 0) free(kd->vmst->pte); free(kd->vmst); kd->vmst = 0; } } /* * Translate a kernel virtual address to a physical address using the * mapping information in kd->vm. Returns the result in pa, and returns * the number of bytes that are contiguously available from this * physical address. This routine is used only for crashdumps. */ int _kvm_kvatop(kd, va, pa) kvm_t *kd; u_long va; u_long *pa; { if (_kvm_mustinit(kd) != 0) return (-1); return ((cputyp == CPU_SUN4M) ? _kvm_kvatop4m(kd, va, pa) : _kvm_kvatop44c(kd, va, pa)); } /* * Prepare for translation of kernel virtual addresses into offsets * into crash dump files. We use the MMU specific goop written at the * and of crash dump by pmap_dumpmmu(). * (note: sun4/sun4c 2-level MMU specific) */ int _kvm_initvtop(kd) kvm_t *kd; { if (_kvm_mustinit(kd) != 0) return (-1); return ((cputyp == CPU_SUN4M) ? _kvm_initvtop4m(kd) : _kvm_initvtop44c(kd)); } #define VA_OFF(va) (va & (kd->nbpg - 1)) /* * We use the MMU specific goop written at the end of crash dump * by pmap_dumpmmu(). * (note: sun4 3-level MMU not yet supported) */ int _kvm_initvtop44c(kd) kvm_t *kd; { register struct vmstate *vm; register int i; off_t foff; struct stat st; if ((vm = kd->vmst) == 0) { kd->vmst = vm = (struct vmstate *)_kvm_malloc(kd, sizeof(*vm)); if (vm == 0) return (-1); } if (fstat(kd->pmfd, &st) < 0) return (-1); /* * Read segment table. */ foff = st.st_size - roundup(sizeof(vm->x), kd->nbpg); errno = 0; if (lseek(kd->pmfd, (off_t)foff, 0) == -1 && errno != 0 || read(kd->pmfd, (char *)&vm->x, sizeof(vm->x)) < 0) { _kvm_err(kd, kd->program, "cannot read segment map"); return (-1); } vm->pte = (int *)_kvm_malloc(kd, NPMEG(vm) * nptesg * sizeof(int)); if (vm->pte == 0) { free(kd->vmst); kd->vmst = 0; return (-1); } /* * Read PMEGs. */ foff = st.st_size - roundup(sizeof(vm->x), kd->nbpg) - roundup(NPMEG(vm) * nptesg * sizeof(int), kd->nbpg); errno = 0; if (lseek(kd->pmfd, foff, 0) == -1 && errno != 0 || read(kd->pmfd, (char *)vm->pte, NPMEG(vm) * nptesg * sizeof(int)) < 0) { _kvm_err(kd, kd->program, "cannot read PMEG table"); return (-1); } return (0); } int _kvm_kvatop44c(kd, va, pa) kvm_t *kd; u_long va; u_long *pa; { register int vr, vs, pte, off, nmem; register struct vmstate *vm = kd->vmst; struct regmap *rp; struct segmap *sp; struct memarr *mp; if (va < KERNBASE) goto err; vr = VA_VREG(va); vs = VA_VSEG(va); sp = &vm->segmap_store[(vr-NUREG)*NSEGRG + vs]; if (sp->sg_npte == 0) goto err; if (sp->sg_pmeg == vm->seginval) goto err; pte = vm->pte[sp->sg_pmeg * nptesg + VA_VPG(va)]; if ((pte & PG_V) != 0) { register long p, dumpoff = 0; off = VA_OFF(va); p = (pte & PG_PFNUM) << pgshift; /* Translate (sparse) pfnum to (packed) dump offset */ for (mp = vm->pmemarr, nmem = vm->npmemarr; --nmem >= 0; mp++) { if (mp->addr <= p && p < mp->addr + mp->len) break; dumpoff += mp->len; } if (nmem < 0) goto err; *pa = (dumpoff + p - mp->addr) | off; return (kd->nbpg - off); } err: _kvm_err(kd, 0, "invalid address (%x)", va); return (0); } /* * Prepare for translation of kernel virtual addresses into offsets * into crash dump files. Since the sun4m pagetables are all in memory, * we use nlist to bootstrap the translation tables. This assumes that * the kernel mappings all reside in the first physical memory bank. */ int _kvm_initvtop4m(kd) kvm_t *kd; { register int i; register off_t foff; register struct vmstate *vm; struct stat st; static struct nlist nlist[4] = { # define X_KSEGSTORE 0 { "_kernel_segmap_store" }, # define X_PMEMARR 1 { "_pmemarr" }, # define X_NPMEMARR 2 { "_npmemarr" }, { NULL }, }; if ((vm = kd->vmst) == 0) { kd->vmst = vm = (struct vmstate *)_kvm_malloc(kd, sizeof(*vm)); if (vm == 0) return (-1); } if (kvm_nlist(kd, nlist) != 0) { _kvm_err(kd, kd->program, "cannot read symbols"); return (-1); } /* Assume kernel mappings are all within first memory bank. */ foff = nlist[X_KSEGSTORE].n_value - KERNBASE; if (lseek(kd->pmfd, foff, 0) == -1 || read(kd->pmfd, vm->segmap_store, sizeof(vm->segmap_store)) < 0) { _kvm_err(kd, kd->program, "cannot read segment map"); return (-1); } foff = nlist[X_PMEMARR].n_value - KERNBASE; if (lseek(kd->pmfd, foff, 0) == -1 || read(kd->pmfd, vm->pmemarr, sizeof(vm->pmemarr)) < 0) { _kvm_err(kd, kd->program, "cannot read pmemarr"); return (-1); } foff = nlist[X_NPMEMARR].n_value - KERNBASE; if (lseek(kd->pmfd, foff, 0) == -1 || read(kd->pmfd, &vm->npmemarr, sizeof(vm->npmemarr)) < 0) { _kvm_err(kd, kd->program, "cannot read npmemarr"); return (-1); } return (0); } int _kvm_kvatop4m(kd, va, pa) kvm_t *kd; u_long va; u_long *pa; { register struct vmstate *vm = kd->vmst; register int vr, vs, nmem, off; int pte; off_t foff; struct regmap *rp; struct segmap *sp; struct memarr *mp; if (va < KERNBASE) goto err; vr = VA_VREG(va); vs = VA_VSEG(va); sp = &vm->segmap_store[(vr-NUREG)*NSEGRG + vs]; if (sp->sg_npte == 0) goto err; /* Assume kernel mappings are all within first memory bank. */ foff = (long)&sp->sg_pte[VA_VPG(va)] - KERNBASE; if (lseek(kd->pmfd, foff, 0) == -1 || read(kd->pmfd, (void *)&pte, sizeof(pte)) < 0) { _kvm_err(kd, kd->program, "cannot read pte"); goto err; } if ((pte & SRMMU_TETYPE) == SRMMU_TEPTE) { register long p, dumpoff = 0; off = VA_OFF(va); p = (pte & SRMMU_PPNMASK) << SRMMU_PPNPASHIFT; /* Translate (sparse) pfnum to (packed) dump offset */ for (mp = vm->pmemarr, nmem = vm->npmemarr; --nmem >= 0; mp++) { if (mp->addr <= p && p < mp->addr + mp->len) break; dumpoff += mp->len; } if (nmem < 0) goto err; *pa = (dumpoff + p - mp->addr) | off; return (kd->nbpg - off); } err: _kvm_err(kd, 0, "invalid address (%x)", va); return (0); }