/* $NetBSD: n_sqrt.S,v 1.1 1995/10/10 23:40:29 ragge Exp $ */ /* * Copyright (c) 1985, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)sqrt.s 8.1 (Berkeley) 6/4/93 */ /* * double sqrt(arg) revised August 15,1982 * double arg; * if(arg<0.0) { _errno = EDOM; return(); } * if arg is a reserved operand it is returned as it is * W. Kahan's magic square root * coded by Heidi Stettner and revised by Emile LeBlanc 8/18/82 * * entry points:_d_sqrt address of double arg is on the stack * _sqrt double arg is on the stack */ .text .align 1 .globl _sqrt .globl _d_sqrt .globl libm$dsqrt_r5 .set EDOM,33 _d_sqrt: .word 0x003c # save r5,r4,r3,r2 movq *4(ap),r0 jmp dsqrt2 _sqrt: .word 0x003c # save r5,r4,r3,r2 movq 4(ap),r0 dsqrt2: bicw3 $0x807f,r0,r2 # check exponent of input jeql noexp # biased exponent is zero -> 0.0 or reserved bsbb libm$dsqrt_r5 noexp: ret /* **************************** internal procedure */ libm$dsqrt_r5: /* ENTRY POINT FOR cdabs and cdsqrt */ /* returns double square root scaled by */ /* 2^r6 */ movd r0,r4 jleq nonpos # argument is not positive movzwl r4,r2 ashl $-1,r2,r0 addw2 $0x203c,r0 # r0 has magic initial approximation /* * Do two steps of Heron's rule * ((arg/guess) + guess) / 2 = better guess */ divf3 r0,r4,r2 addf2 r2,r0 subw2 $0x80,r0 # divide by two divf3 r0,r4,r2 addf2 r2,r0 subw2 $0x80,r0 # divide by two /* Scale argument and approximation to prevent over/underflow */ bicw3 $0x807f,r4,r1 subw2 $0x4080,r1 # r1 contains scaling factor subw2 r1,r4 movl r0,r2 subw2 r1,r2 /* Cubic step * * b = a + 2*a*(n-a*a)/(n+3*a*a) where b is better approximation, * a is approximation, and n is the original argument. * (let s be scale factor in the following comments) */ clrl r1 clrl r3 muld2 r0,r2 # r2:r3 = a*a/s subd2 r2,r4 # r4:r5 = n/s - a*a/s addw2 $0x100,r2 # r2:r3 = 4*a*a/s addd2 r4,r2 # r2:r3 = n/s + 3*a*a/s muld2 r0,r4 # r4:r5 = a*n/s - a*a*a/s divd2 r2,r4 # r4:r5 = a*(n-a*a)/(n+3*a*a) addw2 $0x80,r4 # r4:r5 = 2*a*(n-a*a)/(n+3*a*a) addd2 r4,r0 # r0:r1 = a + 2*a*(n-a*a)/(n+3*a*a) rsb # DONE! nonpos: jneq negarg ret # argument and root are zero negarg: pushl $EDOM calls $1,_infnan # generate the reserved op fault ret