/* $OpenBSD: n_exp.c,v 1.12 2016/09/12 19:47:02 guenther Exp $ */ /* * Copyright (c) 1985, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* EXP(X) * RETURN THE EXPONENTIAL OF X * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS) * CODED IN C BY K.C. NG, 1/19/85; * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86. * * Required system supported functions: * scalbn(x,n) * copysign(x,y) * isfinite(x) * * Method: * 1. Argument Reduction: given the input x, find r and integer k such * that * x = k*ln2 + r, |r| <= 0.5*ln2 . * r will be represented as r := z+c for better accuracy. * * 2. Compute exp(r) by * * exp(r) = 1 + r + r*R1/(2-R1), * where * R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))). * * 3. exp(x) = 2^k * exp(r) . * * Special cases: * exp(INF) is INF, exp(NaN) is NaN; * exp(-INF)= 0; * for finite argument, only exp(0)=1 is exact. * * Accuracy: * exp(x) returns the exponential of x nearly rounded. In a test run * with 1,156,000 random arguments on a VAX, the maximum observed * error was 0.869 ulps (units in the last place). * * Constants: * The hexadecimal values are the intended ones for the following constants. * The decimal values may be used, provided that the compiler will convert * from decimal to binary accurately enough to produce the hexadecimal values * shown. */ #include "math.h" #include "mathimpl.h" static const double ln2hi = 6.9314718055829871446E-1; static const double ln2lo = 1.6465949582897081279E-12; static const double lnhuge = 9.4961163736712506989E1; static const double lntiny = -9.5654310917272452386E1; static const double invln2 = 1.4426950408889634148E0; static const double p1 = 1.6666666666666602251E-1; static const double p2 = -2.7777777777015591216E-3; static const double p3 = 6.6137563214379341918E-5; static const double p4 = -1.6533902205465250480E-6; static const double p5 = 4.1381367970572387085E-8; double exp(double x) { double z, hi, lo, c; int k; if (isnan(x)) return (x); if( x <= lnhuge ) { if( x >= lntiny ) { /* argument reduction : x --> x - k*ln2 */ k=invln2*x+copysign(0.5,x); /* k=NINT(x/ln2) */ /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */ hi=x-k*ln2hi; x=hi-(lo=k*ln2lo); /* return 2^k*[1+x+x*c/(2+c)] */ z=x*x; c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5)))); return scalbn(1.0+(hi-(lo-(x*c)/(2.0-c))),k); } /* end of x > lntiny */ else /* exp(-big#) underflows to zero */ if(isfinite(x)) return(scalbn(1.0,-5000)); /* exp(-INF) is zero */ else return(0.0); } /* end of x < lnhuge */ else /* exp(INF) is INF, exp(+big#) overflows to INF */ return( isfinite(x) ? scalbn(1.0,5000) : x); } DEF_STD(exp); /* returns exp(r = x + c) for |c| < |x| with no overlap. */ double __exp__D(double x, double c) { double z, hi, lo; int k; if (isnan(x)) return (x); if ( x <= lnhuge ) { if ( x >= lntiny ) { /* argument reduction : x --> x - k*ln2 */ z = invln2*x; k = z + copysign(.5, x); /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */ hi=(x-k*ln2hi); /* Exact. */ x= hi - (lo = k*ln2lo-c); /* return 2^k*[1+x+x*c/(2+c)] */ z=x*x; c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5)))); c = (x*c)/(2.0-c); return scalbn(1.+(hi-(lo - c)), k); } /* end of x > lntiny */ else /* exp(-big#) underflows to zero */ if(isfinite(x)) return(scalbn(1.0,-5000)); /* exp(-INF) is zero */ else return(0.0); } /* end of x < lnhuge */ else /* exp(INF) is INF, exp(+big#) overflows to INF */ return( isfinite(x) ? scalbn(1.0,5000) : x); }