/* $OpenBSD: n_log__L.c,v 1.6 2008/06/21 08:26:19 martynas Exp $ */ /* $NetBSD: n_log__L.c,v 1.1 1995/10/10 23:37:01 ragge Exp $ */ /* * Copyright (c) 1985, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef lint static char sccsid[] = "@(#)log__L.c 8.1 (Berkeley) 6/4/93"; #endif /* not lint */ /* log__L(Z) * LOG(1+X) - 2S X * RETURN --------------- WHERE Z = S*S, S = ------- , 0 <= Z <= .0294... * S 2 + X * * DOUBLE PRECISION (VAX D FORMAT 56 bits or IEEE DOUBLE 53 BITS) * KERNEL FUNCTION FOR LOG; TO BE USED IN LOG1P, LOG, AND POW FUNCTIONS * CODED IN C BY K.C. NG, 1/19/85; * REVISED BY K.C. Ng, 2/3/85, 4/16/85. * * Method : * 1. Polynomial approximation: let s = x/(2+x). * Based on log(1+x) = log(1+s) - log(1-s) * = 2s + 2/3 s**3 + 2/5 s**5 + ....., * * (log(1+x) - 2s)/s is computed by * * z*(L1 + z*(L2 + z*(... (L7 + z*L8)...))) * * where z=s*s. (See the listing below for Lk's values.) The * coefficients are obtained by a special Remez algorithm. * * Accuracy: * Assuming no rounding error, the maximum magnitude of the approximation * error (absolute) is 2**(-58.49) for IEEE double, and 2**(-63.63) * for VAX D format. * * Constants: * The hexadecimal values are the intended ones for the following constants. * The decimal values may be used, provided that the compiler will convert * from decimal to binary accurately enough to produce the hexadecimal values * shown. */ #include "math.h" #include "mathimpl.h" vc(L1, 6.6666666666666703212E-1 ,aaaa,402a,aac5,aaaa, 0, .AAAAAAAAAAAAC5) vc(L2, 3.9999999999970461961E-1 ,cccc,3fcc,2684,cccc, -1, .CCCCCCCCCC2684) vc(L3, 2.8571428579395698188E-1 ,4924,3f92,5782,92f8, -1, .92492492F85782) vc(L4, 2.2222221233634724402E-1 ,8e38,3f63,af2c,39b7, -2, .E38E3839B7AF2C) vc(L5, 1.8181879517064680057E-1 ,2eb4,3f3a,655e,cc39, -2, .BA2EB4CC39655E) vc(L6, 1.5382888777946145467E-1 ,8551,3f1d,781d,e8c5, -2, .9D8551E8C5781D) vc(L7, 1.3338356561139403517E-1 ,95b3,3f08,cd92,907f, -2, .8895B3907FCD92) vc(L8, 1.2500000000000000000E-1 ,0000,3f00,0000,0000, -2, .80000000000000) ic(L1, 6.6666666666667340202E-1, -1, 1.5555555555592) ic(L2, 3.9999999999416702146E-1, -2, 1.999999997FF24) ic(L3, 2.8571428742008753154E-1, -2, 1.24924941E07B4) ic(L4, 2.2222198607186277597E-1, -3, 1.C71C52150BEA6) ic(L5, 1.8183562745289935658E-1, -3, 1.74663CC94342F) ic(L6, 1.5314087275331442206E-1, -3, 1.39A1EC014045B) ic(L7, 1.4795612545334174692E-1, -3, 1.2F039F0085122) #ifdef vccast #define L1 vccast(L1) #define L2 vccast(L2) #define L3 vccast(L3) #define L4 vccast(L4) #define L5 vccast(L5) #define L6 vccast(L6) #define L7 vccast(L7) #define L8 vccast(L8) #endif double __log__L(double z) { #if defined(__vax__) return(z*(L1+z*(L2+z*(L3+z*(L4+z*(L5+z*(L6+z*(L7+z*L8)))))))); #else /* defined(__vax__) */ return(z*(L1+z*(L2+z*(L3+z*(L4+z*(L5+z*(L6+z*L7))))))); #endif /* defined(__vax__) */ }