/* $OpenBSD: n_pow.c,v 1.11 2009/04/05 02:12:43 martynas Exp $ */ /* $NetBSD: n_pow.c,v 1.1 1995/10/10 23:37:02 ragge Exp $ */ /* * Copyright (c) 1985, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef lint static char sccsid[] = "@(#)pow.c 8.1 (Berkeley) 6/4/93"; #endif /* not lint */ /* POW(X,Y) * RETURN X**Y * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) * CODED IN C BY K.C. NG, 1/8/85; * REVISED BY K.C. NG on 7/10/85. * KERNEL pow_P() REPLACED BY P. McILROY 7/22/92. * Required system supported functions: * scalbn(x,n) * logb(x) * copysign(x,y) * finite(x) * remainder(x,y) * * Required kernel functions: * exp__D(a,c) exp(a + c) for |a| << |c| * struct d_double dlog(x) r.a + r.b, |r.b| < |r.a| * * Method * 1. Compute and return log(x) in three pieces: * log(x) = n*ln2 + hi + lo, * where n is an integer. * 2. Perform y*log(x) by simulating muti-precision arithmetic and * return the answer in three pieces: * y*log(x) = m*ln2 + hi + lo, * where m is an integer. * 3. Return x**y = exp(y*log(x)) * = 2^m * ( exp(hi+lo) ). * * Special cases: * (anything) ** 0 is 1 ; * (anything) ** 1 is itself; * (anything) ** NaN is NaN; * NaN ** (anything except 0) is NaN; * +(anything > 1) ** +INF is +INF; * -(anything > 1) ** +INF is NaN; * +-(anything > 1) ** -INF is +0; * +-(anything < 1) ** +INF is +0; * +(anything < 1) ** -INF is +INF; * -(anything < 1) ** -INF is NaN; * +-1 ** +-INF is NaN and signal INVALID; * +0 ** +(anything except 0, NaN) is +0; * -0 ** +(anything except 0, NaN, odd integer) is +0; * +0 ** -(anything except 0, NaN) is +INF and signal DIV-BY-ZERO; * -0 ** -(anything except 0, NaN, odd integer) is +INF with signal; * -0 ** (odd integer) = -( +0 ** (odd integer) ); * +INF ** +(anything except 0,NaN) is +INF; * +INF ** -(anything except 0,NaN) is +0; * -INF ** (odd integer) = -( +INF ** (odd integer) ); * -INF ** (even integer) = ( +INF ** (even integer) ); * -INF ** -(anything except integer,NaN) is NaN with signal; * -(x=anything) ** (k=integer) is (-1)**k * (x ** k); * -(anything except 0) ** (non-integer) is NaN with signal; * * Accuracy: * pow(x,y) returns x**y nearly rounded. In particular, on a SUN, a VAX, * and a Zilog Z8000, * pow(integer,integer) * always returns the correct integer provided it is representable. * In a test run with 100,000 random arguments with 0 < x, y < 20.0 * on a VAX, the maximum observed error was 1.79 ulps (units in the * last place). * * Constants : * The hexadecimal values are the intended ones for the following constants. * The decimal values may be used, provided that the compiler will convert * from decimal to binary accurately enough to produce the hexadecimal values * shown. */ #include #include #include "mathimpl.h" #if defined(__vax__) #define TRUNC(x) x = (double) (float) x #define _IEEE 0 #else #define _IEEE 1 #define endian (((*(int *) &one)) ? 1 : 0) #define TRUNC(x) *(((int *) &x)+endian) &= 0xf8000000 #define infnan(x) 0.0 #endif /* defined(__vax__) */ static const double zero=0.0, one=1.0, two=2.0, negone= -1.0; static double pow_P(double, double); double pow(double x, double y) { double t; if (y==zero) return (one); else if (y==one || isnan(x)) return (x); /* if x is NaN or y=1 */ else if (isnan(y)) /* if y is NaN */ return (y); else if (!finite(y)) /* if y is INF */ if ((t=fabs(x))==one) /* +-1 ** +-INF is NaN */ return (y - y); else if (t>one) return ((y<0)? zero : ((x0)? zero : ((x<0)? y-y : -y)); else if (y==two) return (x*x); else if (y==negone) return (one/x); /* x > 0, x == +0 */ else if (copysign(one, x) == one) return (pow_P(x, y)); /* sign(x)= -1 */ /* if y is an even integer */ else if ( (t=remainder(y,two)) == zero) return (pow_P(-x, y)); /* if y is an odd integer */ else if (copysign(t,one) == one) return (-pow_P(-x, y)); /* Henceforth y is not an integer */ else if (x==zero) /* x is -0 */ return ((y>zero)? -x : one/(-x)); else if (_IEEE) return (zero/zero); else return (infnan(EDOM)); } /* kernel function for x >= 0 */ static double pow_P(double x, double y) { struct Double s, t; double huge = 1e300, tiny = 1e-300; if (x == zero) if (y > zero) return (zero); else if (_IEEE) return (huge*huge); else return (infnan(ERANGE)); if (x == one) return (one); if (!finite(x)) if (y < zero) return (zero); else if (_IEEE) return (huge*huge); else return (infnan(ERANGE)); if (y >= 7e18) /* infinity */ if (x < 1) return(tiny*tiny); else if (_IEEE) return (huge*huge); else return (infnan(ERANGE)); /* Return exp(y*log(x)), using simulated extended */ /* precision for the log and the multiply. */ s = __log__D(x); t.a = y; TRUNC(t.a); t.b = y - t.a; t.b = s.b*y + t.b*s.a; t.a *= s.a; s.a = t.a + t.b; s.b = (t.a - s.a) + t.b; return (__exp__D(s.a, s.b)); }