/* $OpenBSD: t1_enc.c,v 1.65 2014/07/09 11:25:42 jsing Exp $ */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2005 Nokia. All rights reserved. * * The portions of the attached software ("Contribution") is developed by * Nokia Corporation and is licensed pursuant to the OpenSSL open source * license. * * The Contribution, originally written by Mika Kousa and Pasi Eronen of * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites * support (see RFC 4279) to OpenSSL. * * No patent licenses or other rights except those expressly stated in * the OpenSSL open source license shall be deemed granted or received * expressly, by implication, estoppel, or otherwise. * * No assurances are provided by Nokia that the Contribution does not * infringe the patent or other intellectual property rights of any third * party or that the license provides you with all the necessary rights * to make use of the Contribution. * * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR * OTHERWISE. */ #include #include "ssl_locl.h" #ifndef OPENSSL_NO_COMP #include #endif #include #include #include #include /* seed1 through seed5 are virtually concatenated */ static int tls1_P_hash(const EVP_MD *md, const unsigned char *sec, int sec_len, const void *seed1, int seed1_len, const void *seed2, int seed2_len, const void *seed3, int seed3_len, const void *seed4, int seed4_len, const void *seed5, int seed5_len, unsigned char *out, int olen) { int chunk; size_t j; EVP_MD_CTX ctx, ctx_tmp; EVP_PKEY *mac_key; unsigned char A1[EVP_MAX_MD_SIZE]; size_t A1_len; int ret = 0; chunk = EVP_MD_size(md); OPENSSL_assert(chunk >= 0); EVP_MD_CTX_init(&ctx); EVP_MD_CTX_init(&ctx_tmp); mac_key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, sec, sec_len); if (!mac_key) goto err; if (!EVP_DigestSignInit(&ctx, NULL, md, NULL, mac_key)) goto err; if (!EVP_DigestSignInit(&ctx_tmp, NULL, md, NULL, mac_key)) goto err; if (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len)) goto err; if (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len)) goto err; if (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len)) goto err; if (seed4 && !EVP_DigestSignUpdate(&ctx, seed4, seed4_len)) goto err; if (seed5 && !EVP_DigestSignUpdate(&ctx, seed5, seed5_len)) goto err; if (!EVP_DigestSignFinal(&ctx, A1, &A1_len)) goto err; for (;;) { /* Reinit mac contexts */ if (!EVP_DigestSignInit(&ctx, NULL, md, NULL, mac_key)) goto err; if (!EVP_DigestSignInit(&ctx_tmp, NULL, md, NULL, mac_key)) goto err; if (!EVP_DigestSignUpdate(&ctx, A1, A1_len)) goto err; if (!EVP_DigestSignUpdate(&ctx_tmp, A1, A1_len)) goto err; if (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len)) goto err; if (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len)) goto err; if (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len)) goto err; if (seed4 && !EVP_DigestSignUpdate(&ctx, seed4, seed4_len)) goto err; if (seed5 && !EVP_DigestSignUpdate(&ctx, seed5, seed5_len)) goto err; if (olen > chunk) { if (!EVP_DigestSignFinal(&ctx, out, &j)) goto err; out += j; olen -= j; /* calc the next A1 value */ if (!EVP_DigestSignFinal(&ctx_tmp, A1, &A1_len)) goto err; } else { /* last one */ if (!EVP_DigestSignFinal(&ctx, A1, &A1_len)) goto err; memcpy(out, A1, olen); break; } } ret = 1; err: EVP_PKEY_free(mac_key); EVP_MD_CTX_cleanup(&ctx); EVP_MD_CTX_cleanup(&ctx_tmp); OPENSSL_cleanse(A1, sizeof(A1)); return ret; } /* seed1 through seed5 are virtually concatenated */ static int tls1_PRF(long digest_mask, const void *seed1, int seed1_len, const void *seed2, int seed2_len, const void *seed3, int seed3_len, const void *seed4, int seed4_len, const void *seed5, int seed5_len, const unsigned char *sec, int slen, unsigned char *out1, unsigned char *out2, int olen) { int len, i, idx, count; const unsigned char *S1; long m; const EVP_MD *md; int ret = 0; /* Count number of digests and partition sec evenly */ count = 0; for (idx = 0; ssl_get_handshake_digest(idx, &m, &md); idx++) { if ((m << TLS1_PRF_DGST_SHIFT) & digest_mask) count++; } if (count == 0) { SSLerr(SSL_F_TLS1_PRF, SSL_R_SSL_HANDSHAKE_FAILURE); goto err; } len = slen / count; if (count == 1) slen = 0; S1 = sec; memset(out1, 0, olen); for (idx = 0; ssl_get_handshake_digest(idx, &m, &md); idx++) { if ((m << TLS1_PRF_DGST_SHIFT) & digest_mask) { if (!md) { SSLerr(SSL_F_TLS1_PRF, SSL_R_UNSUPPORTED_DIGEST_TYPE); goto err; } if (!tls1_P_hash(md , S1, len + (slen&1), seed1, seed1_len, seed2, seed2_len, seed3, seed3_len, seed4, seed4_len, seed5, seed5_len, out2, olen)) goto err; S1 += len; for (i = 0; i < olen; i++) { out1[i] ^= out2[i]; } } } ret = 1; err: return ret; } static int tls1_generate_key_block(SSL *s, unsigned char *km, unsigned char *tmp, int num) { int ret; ret = tls1_PRF(ssl_get_algorithm2(s), TLS_MD_KEY_EXPANSION_CONST, TLS_MD_KEY_EXPANSION_CONST_SIZE, s->s3->server_random, SSL3_RANDOM_SIZE, s->s3->client_random, SSL3_RANDOM_SIZE, NULL, 0, NULL, 0, s->session->master_key, s->session->master_key_length, km, tmp, num); return ret; } /* * tls1_aead_ctx_init allocates aead_ctx, if needed. It returns 1 on success * and 0 on failure. */ static int tls1_aead_ctx_init(SSL_AEAD_CTX **aead_ctx) { if (*aead_ctx != NULL) { EVP_AEAD_CTX_cleanup(&(*aead_ctx)->ctx); return (1); } *aead_ctx = malloc(sizeof(SSL_AEAD_CTX)); if (*aead_ctx == NULL) { SSLerr(SSL_F_TLS1_AEAD_CTX_INIT, ERR_R_MALLOC_FAILURE); return (0); } return (1); } static int tls1_change_cipher_state_aead(SSL *s, char is_read, const unsigned char *key, unsigned key_len, const unsigned char *iv, unsigned iv_len) { const EVP_AEAD *aead = s->s3->tmp.new_aead; SSL_AEAD_CTX *aead_ctx; if (is_read) { if (!tls1_aead_ctx_init(&s->aead_read_ctx)) return 0; aead_ctx = s->aead_read_ctx; } else { if (!tls1_aead_ctx_init(&s->aead_write_ctx)) return 0; aead_ctx = s->aead_write_ctx; } if (!EVP_AEAD_CTX_init(&aead_ctx->ctx, aead, key, key_len, EVP_AEAD_DEFAULT_TAG_LENGTH, NULL)) return (0); if (iv_len > sizeof(aead_ctx->fixed_nonce)) { SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE_AEAD, ERR_R_INTERNAL_ERROR); return (0); } memcpy(aead_ctx->fixed_nonce, iv, iv_len); aead_ctx->fixed_nonce_len = iv_len; aead_ctx->variable_nonce_len = 8; /* always the case, currently. */ aead_ctx->variable_nonce_in_record = (s->s3->tmp.new_cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_IN_RECORD) != 0; if (aead_ctx->variable_nonce_len + aead_ctx->fixed_nonce_len != EVP_AEAD_nonce_length(aead)) { SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE_AEAD, ERR_R_INTERNAL_ERROR); return (0); } aead_ctx->tag_len = EVP_AEAD_max_overhead(aead); return (1); } /* * tls1_change_cipher_state_cipher performs the work needed to switch cipher * states when using EVP_CIPHER. The argument is_read is true iff this function * is being called due to reading, as opposed to writing, a ChangeCipherSpec * message. In order to support export ciphersuites, use_client_keys indicates * whether the key material provided is in the "client write" direction. */ static int tls1_change_cipher_state_cipher(SSL *s, char is_read, char use_client_keys, const unsigned char *mac_secret, unsigned int mac_secret_size, const unsigned char *key, unsigned int key_len, const unsigned char *iv, unsigned int iv_len) { EVP_CIPHER_CTX *cipher_ctx; const EVP_CIPHER *cipher; EVP_MD_CTX *mac_ctx; const EVP_MD *mac; int mac_type; cipher = s->s3->tmp.new_sym_enc; mac = s->s3->tmp.new_hash; mac_type = s->s3->tmp.new_mac_pkey_type; if (is_read) { if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC) s->mac_flags |= SSL_MAC_FLAG_READ_MAC_STREAM; else s->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_STREAM; EVP_CIPHER_CTX_free(s->enc_read_ctx); s->enc_read_ctx = NULL; EVP_MD_CTX_destroy(s->read_hash); s->read_hash = NULL; if ((cipher_ctx = EVP_CIPHER_CTX_new()) == NULL) goto err; s->enc_read_ctx = cipher_ctx; if ((mac_ctx = EVP_MD_CTX_create()) == NULL) goto err; s->read_hash = mac_ctx; } else { if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC) s->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_STREAM; else s->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_STREAM; /* * DTLS fragments retain a pointer to the compression, cipher * and hash contexts, so that it can restore state in order * to perform retransmissions. As such, we cannot free write * contexts that are used for DTLS - these are instead freed * by DTLS when its frees a ChangeCipherSpec fragment. */ if (!SSL_IS_DTLS(s)) { EVP_CIPHER_CTX_free(s->enc_write_ctx); s->enc_write_ctx = NULL; EVP_MD_CTX_destroy(s->write_hash); s->write_hash = NULL; } if ((cipher_ctx = EVP_CIPHER_CTX_new()) == NULL) goto err; s->enc_write_ctx = cipher_ctx; if ((mac_ctx = EVP_MD_CTX_create()) == NULL) goto err; s->write_hash = mac_ctx; } if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE) { EVP_CipherInit_ex(cipher_ctx, cipher, NULL, key, NULL, !is_read); EVP_CIPHER_CTX_ctrl(cipher_ctx, EVP_CTRL_GCM_SET_IV_FIXED, iv_len, (unsigned char *)iv); } else EVP_CipherInit_ex(cipher_ctx, cipher, NULL, key, iv, !is_read); if (!(EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)) { EVP_PKEY *mac_key = EVP_PKEY_new_mac_key(mac_type, NULL, mac_secret, mac_secret_size); if (mac_key == NULL) goto err; EVP_DigestSignInit(mac_ctx, NULL, mac, NULL, mac_key); EVP_PKEY_free(mac_key); } else if (mac_secret_size > 0) { /* Needed for "composite" AEADs, such as RC4-HMAC-MD5 */ EVP_CIPHER_CTX_ctrl(cipher_ctx, EVP_CTRL_AEAD_SET_MAC_KEY, mac_secret_size, (unsigned char *)mac_secret); } return (1); err: SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE_CIPHER, ERR_R_MALLOC_FAILURE); return (0); } int tls1_change_cipher_state(SSL *s, int which) { const unsigned char *client_write_mac_secret, *server_write_mac_secret; const unsigned char *client_write_key, *server_write_key; const unsigned char *client_write_iv, *server_write_iv; const unsigned char *mac_secret, *key, *iv; int mac_secret_size, key_len, iv_len; unsigned char *key_block, *seq; const EVP_CIPHER *cipher; const EVP_AEAD *aead; char is_read, use_client_keys; #ifndef OPENSSL_NO_COMP const SSL_COMP *comp; #endif cipher = s->s3->tmp.new_sym_enc; aead = s->s3->tmp.new_aead; /* * is_read is true if we have just read a ChangeCipherSpec message, * that is we need to update the read cipherspec. Otherwise we have * just written one. */ is_read = (which & SSL3_CC_READ) != 0; /* * use_client_keys is true if we wish to use the keys for the "client * write" direction. This is the case if we're a client sending a * ChangeCipherSpec, or a server reading a client's ChangeCipherSpec. */ use_client_keys = ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) || (which == SSL3_CHANGE_CIPHER_SERVER_READ)); #ifndef OPENSSL_NO_COMP comp = s->s3->tmp.new_compression; if (is_read) { if (s->expand != NULL) { COMP_CTX_free(s->expand); s->expand = NULL; } if (comp != NULL) { s->expand = COMP_CTX_new(comp->method); if (s->expand == NULL) { SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, SSL_R_COMPRESSION_LIBRARY_ERROR); goto err2; } if (s->s3->rrec.comp == NULL) s->s3->rrec.comp = malloc(SSL3_RT_MAX_ENCRYPTED_LENGTH); if (s->s3->rrec.comp == NULL) goto err; } } else { if (s->compress != NULL) { COMP_CTX_free(s->compress); s->compress = NULL; } if (comp != NULL) { s->compress = COMP_CTX_new(comp->method); if (s->compress == NULL) { SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, SSL_R_COMPRESSION_LIBRARY_ERROR); goto err2; } } } #endif /* * Reset sequence number to zero - for DTLS this is handled in * dtls1_reset_seq_numbers(). */ if (!SSL_IS_DTLS(s)) { seq = is_read ? s->s3->read_sequence : s->s3->write_sequence; memset(seq, 0, SSL3_SEQUENCE_SIZE); } if (aead != NULL) { key_len = EVP_AEAD_key_length(aead); iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(s->s3->tmp.new_cipher); } else { key_len = EVP_CIPHER_key_length(cipher); iv_len = EVP_CIPHER_iv_length(cipher); /* If GCM mode only part of IV comes from PRF. */ if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE) iv_len = EVP_GCM_TLS_FIXED_IV_LEN; } mac_secret_size = s->s3->tmp.new_mac_secret_size; key_block = s->s3->tmp.key_block; client_write_mac_secret = key_block; key_block += mac_secret_size; server_write_mac_secret = key_block; key_block += mac_secret_size; client_write_key = key_block; key_block += key_len; server_write_key = key_block; key_block += key_len; client_write_iv = key_block; key_block += iv_len; server_write_iv = key_block; key_block += iv_len; if (use_client_keys) { mac_secret = client_write_mac_secret; key = client_write_key; iv = client_write_iv; } else { mac_secret = server_write_mac_secret; key = server_write_key; iv = server_write_iv; } if (key_block - s->s3->tmp.key_block != s->s3->tmp.key_block_length) { SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); goto err2; } if (is_read) { memcpy(s->s3->read_mac_secret, mac_secret, mac_secret_size); s->s3->read_mac_secret_size = mac_secret_size; } else { memcpy(s->s3->write_mac_secret, mac_secret, mac_secret_size); s->s3->write_mac_secret_size = mac_secret_size; } if (aead != NULL) { return tls1_change_cipher_state_aead(s, is_read, key, key_len, iv, iv_len); } return tls1_change_cipher_state_cipher(s, is_read, use_client_keys, mac_secret, mac_secret_size, key, key_len, iv, iv_len); err: SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE); err2: return (0); } int tls1_setup_key_block(SSL *s) { unsigned char *key_block, *tmp_block = NULL; int mac_type = NID_undef, mac_secret_size = 0; int key_block_len, key_len, iv_len; const EVP_CIPHER *cipher = NULL; const EVP_AEAD *aead = NULL; const EVP_MD *mac = NULL; SSL_COMP *comp; int ret = 0; if (s->s3->tmp.key_block_length != 0) return (1); if (!ssl_cipher_get_comp(s->session, &comp)) { SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, SSL_R_CIPHER_COMPRESSION_UNAVAILABLE); return (0); } if (s->session->cipher && (s->session->cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_AEAD)) { if (!ssl_cipher_get_evp_aead(s->session, &aead)) { SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, SSL_R_CIPHER_OR_HASH_UNAVAILABLE); return (0); } key_len = EVP_AEAD_key_length(aead); iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(s->session->cipher); } else { if (!ssl_cipher_get_evp(s->session, &cipher, &mac, &mac_type, &mac_secret_size)) { SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, SSL_R_CIPHER_OR_HASH_UNAVAILABLE); return (0); } key_len = EVP_CIPHER_key_length(cipher); iv_len = EVP_CIPHER_iv_length(cipher); /* If GCM mode only part of IV comes from PRF. */ if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE) iv_len = EVP_GCM_TLS_FIXED_IV_LEN; } s->s3->tmp.new_aead = aead; s->s3->tmp.new_sym_enc = cipher; s->s3->tmp.new_hash = mac; s->s3->tmp.new_mac_pkey_type = mac_type; s->s3->tmp.new_mac_secret_size = mac_secret_size; key_block_len = (mac_secret_size + key_len + iv_len) * 2; ssl3_cleanup_key_block(s); if ((key_block = malloc(key_block_len)) == NULL) { SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, ERR_R_MALLOC_FAILURE); goto err; } s->s3->tmp.key_block_length = key_block_len; s->s3->tmp.key_block = key_block; if ((tmp_block = malloc(key_block_len)) == NULL) { SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, ERR_R_MALLOC_FAILURE); goto err; } if (!tls1_generate_key_block(s, key_block, tmp_block, key_block_len)) goto err; if (!(s->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS) && s->method->version <= TLS1_VERSION) { /* * Enable vulnerability countermeasure for CBC ciphers with * known-IV problem (http://www.openssl.org/~bodo/tls-cbc.txt) */ s->s3->need_empty_fragments = 1; if (s->session->cipher != NULL) { if (s->session->cipher->algorithm_enc == SSL_eNULL) s->s3->need_empty_fragments = 0; #ifndef OPENSSL_NO_RC4 if (s->session->cipher->algorithm_enc == SSL_RC4) s->s3->need_empty_fragments = 0; #endif } } ret = 1; err: if (tmp_block) { OPENSSL_cleanse(tmp_block, key_block_len); free(tmp_block); } return (ret); } /* tls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively. * * Returns: * 0: (in non-constant time) if the record is publically invalid (i.e. too * short etc). * 1: if the record's padding is valid / the encryption was successful. * -1: if the record's padding/AEAD-authenticator is invalid or, if sending, * an internal error occured. */ int tls1_enc(SSL *s, int send) { const SSL_AEAD_CTX *aead; const EVP_CIPHER *enc; EVP_CIPHER_CTX *ds; SSL3_RECORD *rec; unsigned char *seq; unsigned long l; int bs, i, j, k, pad = 0, ret, mac_size = 0; if (send) { aead = s->aead_write_ctx; rec = &s->s3->wrec; seq = s->s3->write_sequence; } else { aead = s->aead_read_ctx; rec = &s->s3->rrec; seq = s->s3->read_sequence; } if (aead) { unsigned char ad[13], *in, *out, nonce[16]; unsigned nonce_used; ssize_t n; if (SSL_IS_DTLS(s)) { dtls1_build_sequence_number(ad, seq, send ? s->d1->w_epoch : s->d1->r_epoch); } else { memcpy(ad, seq, SSL3_SEQUENCE_SIZE); ssl3_record_sequence_increment(seq); } ad[8] = rec->type; ad[9] = (unsigned char)(s->version >> 8); ad[10] = (unsigned char)(s->version); if (aead->fixed_nonce_len + aead->variable_nonce_len > sizeof(nonce) || aead->variable_nonce_len > 8) return -1; /* internal error - should never happen. */ memcpy(nonce, aead->fixed_nonce, aead->fixed_nonce_len); nonce_used = aead->fixed_nonce_len; if (send) { size_t len = rec->length; size_t eivlen = 0; in = rec->input; out = rec->data; /* * When sending we use the sequence number as the * variable part of the nonce. */ if (aead->variable_nonce_len > 8) return -1; memcpy(nonce + nonce_used, ad, aead->variable_nonce_len); nonce_used += aead->variable_nonce_len; /* * In do_ssl3_write, rec->input is moved forward by * variable_nonce_len in order to leave space for the * variable nonce. Thus we can copy the sequence number * bytes into place without overwriting any of the * plaintext. */ if (aead->variable_nonce_in_record) { memcpy(out, ad, aead->variable_nonce_len); len -= aead->variable_nonce_len; eivlen = aead->variable_nonce_len; } ad[11] = len >> 8; ad[12] = len & 0xff; if (!EVP_AEAD_CTX_seal(&aead->ctx, out + eivlen, &n, len + aead->tag_len, nonce, nonce_used, in + eivlen, len, ad, sizeof(ad))) return -1; if (n >= 0 && aead->variable_nonce_in_record) n += aead->variable_nonce_len; } else { /* receive */ size_t len = rec->length; if (rec->data != rec->input) return -1; /* internal error - should never happen. */ out = in = rec->input; if (len < aead->variable_nonce_len) return 0; memcpy(nonce + nonce_used, aead->variable_nonce_in_record ? in : ad, aead->variable_nonce_len); nonce_used += aead->variable_nonce_len; if (aead->variable_nonce_in_record) { in += aead->variable_nonce_len; len -= aead->variable_nonce_len; out += aead->variable_nonce_len; } if (len < aead->tag_len) return 0; len -= aead->tag_len; ad[11] = len >> 8; ad[12] = len & 0xff; if (!EVP_AEAD_CTX_open(&aead->ctx, out, &n, len, nonce, nonce_used, in, len + aead->tag_len, ad, sizeof(ad))) return -1; rec->data = rec->input = out; } if (n == -1) return -1; rec->length = n; return 1; } if (send) { if (EVP_MD_CTX_md(s->write_hash)) { int n = EVP_MD_CTX_size(s->write_hash); OPENSSL_assert(n >= 0); } ds = s->enc_write_ctx; if (s->enc_write_ctx == NULL) enc = NULL; else { int ivlen = 0; enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx); if (SSL_USE_EXPLICIT_IV(s) && EVP_CIPHER_mode(enc) == EVP_CIPH_CBC_MODE) ivlen = EVP_CIPHER_iv_length(enc); if (ivlen > 1) { if (rec->data != rec->input) /* we can't write into the input stream: * Can this ever happen?? (steve) */ fprintf(stderr, "%s:%d: rec->data != rec->input\n", __FILE__, __LINE__); else if (RAND_bytes(rec->input, ivlen) <= 0) return -1; } } } else { if (EVP_MD_CTX_md(s->read_hash)) { int n = EVP_MD_CTX_size(s->read_hash); OPENSSL_assert(n >= 0); } ds = s->enc_read_ctx; if (s->enc_read_ctx == NULL) enc = NULL; else enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx); } if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) { memmove(rec->data, rec->input, rec->length); rec->input = rec->data; ret = 1; } else { l = rec->length; bs = EVP_CIPHER_block_size(ds->cipher); if (EVP_CIPHER_flags(ds->cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) { unsigned char buf[13]; if (SSL_IS_DTLS(s)) { dtls1_build_sequence_number(buf, seq, send ? s->d1->w_epoch : s->d1->r_epoch); } else { memcpy(buf, seq, SSL3_SEQUENCE_SIZE); ssl3_record_sequence_increment(seq); } buf[8] = rec->type; buf[9] = (unsigned char)(s->version >> 8); buf[10] = (unsigned char)(s->version); buf[11] = rec->length >> 8; buf[12] = rec->length & 0xff; pad = EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_AEAD_TLS1_AAD, 13, buf); if (send) { l += pad; rec->length += pad; } } else if ((bs != 1) && send) { i = bs - ((int)l % bs); /* Add weird padding of upto 256 bytes */ /* we need to add 'i' padding bytes of value j */ j = i - 1; if (s->options & SSL_OP_TLS_BLOCK_PADDING_BUG) { if (s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) j++; } for (k = (int)l; k < (int)(l + i); k++) rec->input[k] = j; l += i; rec->length += i; } if (!send) { if (l == 0 || l % bs != 0) return 0; } i = EVP_Cipher(ds, rec->data, rec->input, l); if ((EVP_CIPHER_flags(ds->cipher) & EVP_CIPH_FLAG_CUSTOM_CIPHER) ? (i < 0) : (i == 0)) return -1; /* AEAD can fail to verify MAC */ if (EVP_CIPHER_mode(enc) == EVP_CIPH_GCM_MODE && !send) { rec->data += EVP_GCM_TLS_EXPLICIT_IV_LEN; rec->input += EVP_GCM_TLS_EXPLICIT_IV_LEN; rec->length -= EVP_GCM_TLS_EXPLICIT_IV_LEN; } ret = 1; if (EVP_MD_CTX_md(s->read_hash) != NULL) mac_size = EVP_MD_CTX_size(s->read_hash); if ((bs != 1) && !send) ret = tls1_cbc_remove_padding(s, rec, bs, mac_size); if (pad && !send) rec->length -= pad; } return ret; } int tls1_cert_verify_mac(SSL *s, int md_nid, unsigned char *out) { EVP_MD_CTX ctx, *d = NULL; unsigned int ret; int i; if (s->s3->handshake_buffer) if (!ssl3_digest_cached_records(s)) return 0; for (i = 0; i < SSL_MAX_DIGEST; i++) { if (s->s3->handshake_dgst[i] && EVP_MD_CTX_type(s->s3->handshake_dgst[i]) == md_nid) { d = s->s3->handshake_dgst[i]; break; } } if (d == NULL) { SSLerr(SSL_F_TLS1_CERT_VERIFY_MAC, SSL_R_NO_REQUIRED_DIGEST); return 0; } EVP_MD_CTX_init(&ctx); if (!EVP_MD_CTX_copy_ex(&ctx, d)) return 0; EVP_DigestFinal_ex(&ctx, out, &ret); EVP_MD_CTX_cleanup(&ctx); return ((int)ret); } int tls1_final_finish_mac(SSL *s, const char *str, int slen, unsigned char *out) { unsigned int i; EVP_MD_CTX ctx; unsigned char buf[2*EVP_MAX_MD_SIZE]; unsigned char *q, buf2[12]; int idx; long mask; int err = 0; const EVP_MD *md; q = buf; if (s->s3->handshake_buffer) if (!ssl3_digest_cached_records(s)) return 0; EVP_MD_CTX_init(&ctx); for (idx = 0; ssl_get_handshake_digest(idx, &mask, &md); idx++) { if (ssl_get_algorithm2(s) & mask) { int hashsize = EVP_MD_size(md); EVP_MD_CTX *hdgst = s->s3->handshake_dgst[idx]; if (!hdgst || hashsize < 0 || hashsize > (int)(sizeof buf - (size_t)(q - buf))) { /* internal error: 'buf' is too small for this cipersuite! */ err = 1; } else { if (!EVP_MD_CTX_copy_ex(&ctx, hdgst) || !EVP_DigestFinal_ex(&ctx, q, &i) || (i != (unsigned int)hashsize)) err = 1; q += hashsize; } } } if (!tls1_PRF(ssl_get_algorithm2(s), str, slen, buf, (int)(q - buf), NULL, 0, NULL, 0, NULL, 0, s->session->master_key, s->session->master_key_length, out, buf2, sizeof buf2)) err = 1; EVP_MD_CTX_cleanup(&ctx); if (err) return 0; else return sizeof buf2; } int tls1_mac(SSL *ssl, unsigned char *md, int send) { SSL3_RECORD *rec; unsigned char *seq; EVP_MD_CTX *hash; size_t md_size, orig_len; EVP_MD_CTX hmac, *mac_ctx; unsigned char header[13]; int stream_mac = (send ? (ssl->mac_flags & SSL_MAC_FLAG_WRITE_MAC_STREAM) : (ssl->mac_flags & SSL_MAC_FLAG_READ_MAC_STREAM)); int t; if (send) { rec = &(ssl->s3->wrec); seq = &(ssl->s3->write_sequence[0]); hash = ssl->write_hash; } else { rec = &(ssl->s3->rrec); seq = &(ssl->s3->read_sequence[0]); hash = ssl->read_hash; } t = EVP_MD_CTX_size(hash); OPENSSL_assert(t >= 0); md_size = t; /* I should fix this up TLS TLS TLS TLS TLS XXXXXXXX */ if (stream_mac) { mac_ctx = hash; } else { if (!EVP_MD_CTX_copy(&hmac, hash)) return -1; mac_ctx = &hmac; } if (SSL_IS_DTLS(ssl)) dtls1_build_sequence_number(header, seq, send ? ssl->d1->w_epoch : ssl->d1->r_epoch); else memcpy(header, seq, SSL3_SEQUENCE_SIZE); /* kludge: tls1_cbc_remove_padding passes padding length in rec->type */ orig_len = rec->length + md_size + ((unsigned int)rec->type >> 8); rec->type &= 0xff; header[8] = rec->type; header[9] = (unsigned char)(ssl->version >> 8); header[10] = (unsigned char)(ssl->version); header[11] = (rec->length) >> 8; header[12] = (rec->length) & 0xff; if (!send && EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE && ssl3_cbc_record_digest_supported(mac_ctx)) { /* This is a CBC-encrypted record. We must avoid leaking any * timing-side channel information about how many blocks of * data we are hashing because that gives an attacker a * timing-oracle. */ ssl3_cbc_digest_record(mac_ctx, md, &md_size, header, rec->input, rec->length + md_size, orig_len, ssl->s3->read_mac_secret, ssl->s3->read_mac_secret_size, 0 /* not SSLv3 */); } else { EVP_DigestSignUpdate(mac_ctx, header, sizeof(header)); EVP_DigestSignUpdate(mac_ctx, rec->input, rec->length); t = EVP_DigestSignFinal(mac_ctx, md, &md_size); OPENSSL_assert(t > 0); } if (!stream_mac) EVP_MD_CTX_cleanup(&hmac); if (!SSL_IS_DTLS(ssl)) ssl3_record_sequence_increment(seq); return (md_size); } int tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p, int len) { unsigned char buff[SSL_MAX_MASTER_KEY_LENGTH]; const void *co = NULL, *so = NULL; int col = 0, sol = 0; tls1_PRF(ssl_get_algorithm2(s), TLS_MD_MASTER_SECRET_CONST, TLS_MD_MASTER_SECRET_CONST_SIZE, s->s3->client_random, SSL3_RANDOM_SIZE, co, col, s->s3->server_random, SSL3_RANDOM_SIZE, so, sol, p, len, s->session->master_key, buff, sizeof buff); return (SSL3_MASTER_SECRET_SIZE); } int tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen, const char *label, size_t llen, const unsigned char *context, size_t contextlen, int use_context) { unsigned char *buff; unsigned char *val = NULL; size_t vallen, currentvalpos; int rv; buff = malloc(olen); if (buff == NULL) goto err2; /* construct PRF arguments * we construct the PRF argument ourself rather than passing separate * values into the TLS PRF to ensure that the concatenation of values * does not create a prohibited label. */ vallen = llen + SSL3_RANDOM_SIZE * 2; if (use_context) { vallen += 2 + contextlen; } val = malloc(vallen); if (val == NULL) goto err2; currentvalpos = 0; memcpy(val + currentvalpos, (unsigned char *) label, llen); currentvalpos += llen; memcpy(val + currentvalpos, s->s3->client_random, SSL3_RANDOM_SIZE); currentvalpos += SSL3_RANDOM_SIZE; memcpy(val + currentvalpos, s->s3->server_random, SSL3_RANDOM_SIZE); currentvalpos += SSL3_RANDOM_SIZE; if (use_context) { val[currentvalpos] = (contextlen >> 8) & 0xff; currentvalpos++; val[currentvalpos] = contextlen & 0xff; currentvalpos++; if ((contextlen > 0) || (context != NULL)) { memcpy(val + currentvalpos, context, contextlen); } } /* disallow prohibited labels * note that SSL3_RANDOM_SIZE > max(prohibited label len) = * 15, so size of val > max(prohibited label len) = 15 and the * comparisons won't have buffer overflow */ if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0) goto err1; if (memcmp(val, TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE) == 0) goto err1; if (memcmp(val, TLS_MD_MASTER_SECRET_CONST, TLS_MD_MASTER_SECRET_CONST_SIZE) == 0) goto err1; if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST, TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0) goto err1; rv = tls1_PRF(ssl_get_algorithm2(s), val, vallen, NULL, 0, NULL, 0, NULL, 0, NULL, 0, s->session->master_key, s->session->master_key_length, out, buff, olen); goto ret; err1: SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL, SSL_R_TLS_ILLEGAL_EXPORTER_LABEL); rv = 0; goto ret; err2: SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL, ERR_R_MALLOC_FAILURE); rv = 0; ret: free(buff); free(val); return (rv); } int tls1_alert_code(int code) { switch (code) { case SSL_AD_CLOSE_NOTIFY: return (SSL3_AD_CLOSE_NOTIFY); case SSL_AD_UNEXPECTED_MESSAGE: return (SSL3_AD_UNEXPECTED_MESSAGE); case SSL_AD_BAD_RECORD_MAC: return (SSL3_AD_BAD_RECORD_MAC); case SSL_AD_DECRYPTION_FAILED: return (TLS1_AD_DECRYPTION_FAILED); case SSL_AD_RECORD_OVERFLOW: return (TLS1_AD_RECORD_OVERFLOW); case SSL_AD_DECOMPRESSION_FAILURE: return (SSL3_AD_DECOMPRESSION_FAILURE); case SSL_AD_HANDSHAKE_FAILURE: return (SSL3_AD_HANDSHAKE_FAILURE); case SSL_AD_NO_CERTIFICATE: return (-1); case SSL_AD_BAD_CERTIFICATE: return (SSL3_AD_BAD_CERTIFICATE); case SSL_AD_UNSUPPORTED_CERTIFICATE: return (SSL3_AD_UNSUPPORTED_CERTIFICATE); case SSL_AD_CERTIFICATE_REVOKED: return (SSL3_AD_CERTIFICATE_REVOKED); case SSL_AD_CERTIFICATE_EXPIRED: return (SSL3_AD_CERTIFICATE_EXPIRED); case SSL_AD_CERTIFICATE_UNKNOWN: return (SSL3_AD_CERTIFICATE_UNKNOWN); case SSL_AD_ILLEGAL_PARAMETER: return (SSL3_AD_ILLEGAL_PARAMETER); case SSL_AD_UNKNOWN_CA: return (TLS1_AD_UNKNOWN_CA); case SSL_AD_ACCESS_DENIED: return (TLS1_AD_ACCESS_DENIED); case SSL_AD_DECODE_ERROR: return (TLS1_AD_DECODE_ERROR); case SSL_AD_DECRYPT_ERROR: return (TLS1_AD_DECRYPT_ERROR); case SSL_AD_EXPORT_RESTRICTION: return (TLS1_AD_EXPORT_RESTRICTION); case SSL_AD_PROTOCOL_VERSION: return (TLS1_AD_PROTOCOL_VERSION); case SSL_AD_INSUFFICIENT_SECURITY: return (TLS1_AD_INSUFFICIENT_SECURITY); case SSL_AD_INTERNAL_ERROR: return (TLS1_AD_INTERNAL_ERROR); case SSL_AD_USER_CANCELLED: return (TLS1_AD_USER_CANCELLED); case SSL_AD_NO_RENEGOTIATION: return (TLS1_AD_NO_RENEGOTIATION); case SSL_AD_UNSUPPORTED_EXTENSION: return (TLS1_AD_UNSUPPORTED_EXTENSION); case SSL_AD_CERTIFICATE_UNOBTAINABLE: return (TLS1_AD_CERTIFICATE_UNOBTAINABLE); case SSL_AD_UNRECOGNIZED_NAME: return (TLS1_AD_UNRECOGNIZED_NAME); case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE: return (TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE); case SSL_AD_BAD_CERTIFICATE_HASH_VALUE: return (TLS1_AD_BAD_CERTIFICATE_HASH_VALUE); case SSL_AD_UNKNOWN_PSK_IDENTITY: return (TLS1_AD_UNKNOWN_PSK_IDENTITY); default: return (-1); } }