/* $OpenBSD: rtld_machine.c,v 1.8 2002/09/01 23:55:01 drahn Exp $ */ /* * Copyright (c) 1999 Dale Rahn * Copyright (c) 2001 Niklas Hallqvist * Copyright (c) 2001 Artur Grabowski * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed under OpenBSD by * Dale Rahn. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #define _DYN_LOADER #include #include #include #include #include #include "syscall.h" #include "archdep.h" #include "resolve.h" void _dl_bcopy(const void *src, void *dest, int size) { const unsigned char *psrc = src; unsigned char *pdest = dest; int i; for (i = 0; i < size; i++) pdest[i] = psrc[i]; } /* * The following table holds for each relocation type: * - the width in bits of the memory location the relocation * applies to (not currently used) * - the number of bits the relocation value must be shifted to the * right (i.e. discard least significant bits) to fit into * the appropriate field in the instruction word. * - flags indicating whether * * the relocation involves a symbol * * the relocation is relative to the current position * * the relocation is for a GOT entry * * the relocation is relative to the load address * */ #define _RF_S 0x80000000 /* Resolve symbol */ #define _RF_A 0x40000000 /* Use addend */ #define _RF_P 0x20000000 /* Location relative */ #define _RF_G 0x10000000 /* GOT offset */ #define _RF_B 0x08000000 /* Load address relative */ #define _RF_SZ(s) (((s) & 0xff) << 8) /* memory target size */ #define _RF_RS(s) ((s) & 0xff) /* right shift */ static int reloc_target_flags[] = { 0, /* NONE */ _RF_S|_RF_A| _RF_SZ(8) | _RF_RS(0), /* RELOC_8 */ _RF_S|_RF_A| _RF_SZ(16) | _RF_RS(0), /* RELOC_16 */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* RELOC_32 */ _RF_S|_RF_A|_RF_P| _RF_SZ(8) | _RF_RS(0), /* DISP_8 */ _RF_S|_RF_A|_RF_P| _RF_SZ(16) | _RF_RS(0), /* DISP_16 */ _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* DISP_32 */ _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_30 */ _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_22 */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HI22 */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 22 */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 13 */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LO10 */ _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT10 */ _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT13 */ _RF_G| _RF_SZ(32) | _RF_RS(10), /* GOT22 */ _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PC10 */ _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC22 */ _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WPLT30 */ _RF_S| _RF_SZ(32) | _RF_RS(0), /* COPY */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* GLOB_DAT */ _RF_S| _RF_SZ(32) | _RF_RS(0), /* JMP_SLOT */ _RF_A| _RF_B| _RF_SZ(32) | _RF_RS(0), /* RELATIVE */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* UA_32 */ /*unknown*/ _RF_SZ(32) | _RF_RS(0), /* PLT32 */ /*unknown*/ _RF_SZ(32) | _RF_RS(0), /* HIPLT22 */ /*unknown*/ _RF_SZ(32) | _RF_RS(0), /* LOPLT10 */ /*unknown*/ _RF_SZ(32) | _RF_RS(0), /* LOPLT10 */ /*unknown*/ _RF_SZ(32) | _RF_RS(0), /* PCPLT22 */ /*unknown*/ _RF_SZ(32) | _RF_RS(0), /* PCPLT32 */ _RF_S|_RF_A|/*unknown*/ _RF_SZ(32) | _RF_RS(0), /* 10 */ _RF_S|_RF_A|/*unknown*/ _RF_SZ(32) | _RF_RS(0), /* 11 */ _RF_S|_RF_A|/*unknown*/ _RF_SZ(32) | _RF_RS(0), /* 64 */ _RF_S|_RF_A|/*unknown*/ _RF_SZ(32) | _RF_RS(0), /* OLO10 */ _RF_S|_RF_A|/*unknown*/ _RF_SZ(32) | _RF_RS(0), /* HH22 */ _RF_S|_RF_A|/*unknown*/ _RF_SZ(32) | _RF_RS(0), /* HM10 */ _RF_S|_RF_A|/*unknown*/ _RF_SZ(32) | _RF_RS(0), /* LM22 */ _RF_S|_RF_A|_RF_P|/*unknown*/ _RF_SZ(32) | _RF_RS(0), /* WDISP16 */ _RF_S|_RF_A|_RF_P|/*unknown*/ _RF_SZ(32) | _RF_RS(0), /* WDISP19 */ /*unknown*/ _RF_SZ(32) | _RF_RS(0), /* GLOB_JMP */ /*unknown*/ _RF_SZ(32) | _RF_RS(0), /* 7 */ /*unknown*/ _RF_SZ(32) | _RF_RS(0), /* 5 */ /*unknown*/ _RF_SZ(32) | _RF_RS(0), /* 6 */ }; #define RELOC_RESOLVE_SYMBOL(t) ((reloc_target_flags[t] & _RF_S) != 0) #define RELOC_PC_RELATIVE(t) ((reloc_target_flags[t] & _RF_P) != 0) #define RELOC_USE_ADDEND(t) ((reloc_target_flags[t] & _RF_A) != 0) #define RELOC_TARGET_SIZE(t) ((reloc_target_flags[t] >> 8) & 0xff) #define RELOC_VALUE_RIGHTSHIFT(t) (reloc_target_flags[t] & 0xff) static int reloc_target_bitmask[] = { #define _BM(x) (~(-(1ULL << (x)))) 0, /* NONE */ _BM(8), _BM(16), _BM(32), /* RELOC_8, _16, _32 */ _BM(8), _BM(16), _BM(32), /* DISP8, DISP16, DISP32 */ _BM(30), _BM(22), /* WDISP30, WDISP22 */ _BM(22), _BM(22), /* HI22, _22 */ _BM(13), _BM(10), /* RELOC_13, _LO10 */ _BM(10), _BM(13), _BM(22), /* GOT10, GOT13, GOT22 */ _BM(10), _BM(22), /* _PC10, _PC22 */ _BM(30), 0, /* _WPLT30, _COPY */ -1, -1, -1, /* _GLOB_DAT, JMP_SLOT, _RELATIVE */ _BM(32), _BM(32), /* _UA32, PLT32 */ _BM(22), _BM(10), /* _HIPLT22, LOPLT10 */ _BM(32), _BM(22), _BM(10), /* _PCPLT32, _PCPLT22, _PCPLT10 */ _BM(10), _BM(11), -1, /* _10, _11, _64 */ _BM(10), _BM(22), /* _OLO10, _HH22 */ _BM(10), _BM(22), /* _HM10, _LM22 */ _BM(16), _BM(19), /* _WDISP16, _WDISP19 */ -1, /* GLOB_JMP */ _BM(7), _BM(5), _BM(6) /* _7, _5, _6 */ #undef _BM }; #define RELOC_VALUE_BITMASK(t) (reloc_target_bitmask[t]) static inline void _dl_reloc_plt(Elf_Addr *where, Elf_Addr value) { /* * At the PLT entry pointed at by `where', we now construct * a direct transfer to the now fully resolved function * address. The resulting code in the jump slot is: * * sethi %hi(roffset), %g1 * sethi %hi(addr), %g1 * jmp %g1+%lo(addr) * * We write the third instruction first, since that leaves the * previous `b,a' at the second word in place. Hence the whole * PLT slot can be atomically change to the new sequence by * writing the `sethi' instruction at word 2. */ #define SETHI 0x03000000 #define JMP 0x81c06000 #define NOP 0x01000000 where[2] = JMP | (value & 0x000003ff); where[1] = SETHI | ((value >> 10) & 0x003fffff); __asm __volatile("iflush %0+8" : : "r" (where)); __asm __volatile("iflush %0+4" : : "r" (where)); /* * iflush requires 5 subsequent cycles to be sure all copies * are flushed from the CPU and the icache. */ __asm __volatile("nop;nop;nop;nop;nop"); } int _dl_md_reloc(elf_object_t *object, int rel, int relasz) { long i; long numrela; long fails = 0; Elf_Addr loff; Elf_RelA *relas; struct load_list *llist; loff = object->load_offs; numrela = object->Dyn.info[relasz] / sizeof(Elf_RelA); relas = (Elf_RelA *)(object->Dyn.info[rel]); if (relas == NULL) return(0); /* * unprotect some segments if we need it. */ if ((rel == DT_REL || rel == DT_RELA)) { for (llist = object->load_list; llist != NULL; llist = llist->next) { if (!(llist->prot & PROT_WRITE)) _dl_mprotect(llist->start, llist->size, llist->prot|PROT_WRITE); } } for (i = 0; i < numrela; i++, relas++) { Elf_Addr *where, ooff; Elf_Word type, value, mask; const Elf_Sym *sym, *this; const char *symn; type = ELF_R_TYPE(relas->r_info); if (type == R_TYPE(NONE)) continue; if (type == R_TYPE(JMP_SLOT) && rel != DT_JMPREL) continue; where = (Elf_Addr *)(relas->r_offset + loff); if (type == R_TYPE(RELATIVE)) { *where += (Elf_Addr)(loff + relas->r_addend); continue; } if (RELOC_USE_ADDEND(type)) value = relas->r_addend; else value = 0; sym = NULL; symn = NULL; if (RELOC_RESOLVE_SYMBOL(type)) { sym = object->dyn.symtab; sym += ELF_R_SYM(relas->r_info); symn = object->dyn.strtab + sym->st_name; if (sym->st_shndx != SHN_UNDEF && ELF_ST_BIND(sym->st_info) == STB_LOCAL) { value += loff; } else { this = NULL; ooff = _dl_find_symbol(symn, _dl_objects, &this, SYM_SEARCH_ALL|SYM_WARNNOTFOUND| ((type == R_TYPE(JMP_SLOT)) ? SYM_PLT : SYM_NOTPLT), sym->st_size); if (this == NULL) { resolve_failed: _dl_printf("%s: %s: can't resolve " "reference '%s'\n", _dl_progname, object->load_name, symn); fails++; continue; } value += (Elf_Addr)(ooff + this->st_value); } } if (type == R_TYPE(COPY)) { void *dstaddr = where; const void *srcaddr; const Elf_Sym *dstsym = sym, *srcsym = NULL; size_t size = dstsym->st_size; Elf_Addr soff; soff = _dl_find_symbol(symn, object->next, &srcsym, SYM_SEARCH_ALL|SYM_WARNNOTFOUND| ((type == R_TYPE(JMP_SLOT)) ? SYM_PLT : SYM_NOTPLT), size); if (srcsym == NULL) goto resolve_failed; srcaddr = (void *)(soff + srcsym->st_value); _dl_bcopy(srcaddr, dstaddr, size); continue; } if (type == R_TYPE(JMP_SLOT)) { _dl_reloc_plt(where, value); continue; } if (RELOC_PC_RELATIVE(type)) value -= (Elf_Addr)where; mask = RELOC_VALUE_BITMASK(type); value >>= RELOC_VALUE_RIGHTSHIFT(type); value &= mask; /* We ignore alignment restrictions here */ *where &= ~mask; *where |= value; } /* reprotect the unprotected segments */ if ((rel == DT_REL || rel == DT_RELA)) { for (llist = object->load_list; llist != NULL; llist = llist->next) { if (!(llist->prot & PROT_WRITE)) _dl_mprotect(llist->start, llist->size, llist->prot); } } return (fails); } /* * Resolve a symbol at run-time. */ Elf_Addr _dl_bind(elf_object_t *object, Elf_Word reloff) { const Elf_Sym *sym, *this; Elf_Addr *addr, ooff; const char *symn; Elf_Addr value; Elf_RelA *rela; rela = (Elf_RelA *)(object->Dyn.info[DT_JMPREL] + reloff); sym = object->dyn.symtab; sym += ELF_R_SYM(rela->r_info); symn = object->dyn.strtab + sym->st_name; addr = (Elf_Addr *)(object->load_offs + rela->r_offset); this = NULL; ooff = _dl_find_symbol(symn, _dl_objects, &this, SYM_SEARCH_ALL|SYM_WARNNOTFOUND|SYM_PLT, 0); if (this == NULL) { _dl_printf("lazy binding failed!\n"); *((int *)0) = 0; /* XXX */ } value = ooff + this->st_value; _dl_reloc_plt(addr, value); return (value); } void _dl_md_reloc_got(elf_object_t *object, int lazy) { Elf_Addr *pltgot; extern void _dl_bind_start(void); /* XXX */ pltgot = (Elf_Addr *)object->Dyn.info[DT_PLTGOT]; if (pltgot != NULL) { /* * PLTGOT is the PLT on the sparc. * The first entry holds the call the dynamic linker. * We construct a `call' sequence that transfers * to `_dl_bind_start()'. * The second entry holds the object identification. * Note: each PLT entry is three words long. */ #define SAVE 0x9de3bfc0 /* i.e. `save %sp,-64,%sp' */ #define CALL 0x40000000 #define NOP 0x01000000 pltgot[0] = SAVE; pltgot[1] = CALL | ((Elf_Addr)&_dl_bind_start - (Elf_Addr)&pltgot[1]) >> 2; pltgot[2] = NOP; pltgot[3] = (Elf_Addr) object; __asm __volatile("iflush %0+8" : : "r" (pltgot)); __asm __volatile("iflush %0+4" : : "r" (pltgot)); __asm __volatile("iflush %0+0" : : "r" (pltgot)); /* * iflush requires 5 subsequent cycles to be sure all copies * are flushed from the CPU and the icache. */ __asm __volatile("nop;nop;nop;nop;nop"); } if (object->obj_type == OBJTYPE_LDR || !lazy || pltgot == NULL) { _dl_md_reloc(object, DT_JMPREL, DT_PLTRELSZ); return; } }