/* $OpenBSD: ancontrol.c,v 1.21 2002/06/09 08:13:04 todd Exp $ */ /* * Copyright (c) 2001 Eric Jackson * * Copyright 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/usr.sbin/ancontrol/ancontrol.c,v 1.1 2000/01/14 20:40:57 wpaul Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if !defined(lint) static const char copyright[] = "@(#) Copyright (c) 1997, 1998, 1999\ Bill Paul. All rights reserved."; static const char rcsid[] = "@(#) $FreeBSD: src/usr.sbin/ancontrol/ancontrol.c,v 1.1 2000/01/14 20:40:57 wpaul Exp $"; #endif #define an_printbool(val) printf(val? "[ On ]" : "[ Off ]") void an_getval(struct an_req *); void an_setval(struct an_req *); void an_printwords(u_int16_t *, int); void an_printspeeds(u_int8_t*, int); void an_printhex(char *, int); void an_printstr(char *, int); void an_dumpstatus(void); void an_dumpstats(void); void an_dumpconfig(void); void an_dumpcaps(void); void an_dumpssid(void); void an_dumpap(void); void an_setconfig(int, void *); void an_setssid(int, void *); void an_setap(int, void *); void an_setspeed(void *); void an_readkeyinfo(void); #ifdef ANCACHE void an_zerocache(void); void an_readcache(void); #endif void getsock(void); static void usage(void); int main(int, char **); /* flags to trigger dumping information about configs */ #define STAT_DUMPAP 0x01 #define STAT_DUMPCONFIG 0x02 #define STAT_DUMPCAPS 0x04 #define STAT_DUMPSSID 0x08 #define STAT_DUMPSTATUS 0x10 #define STAT_DUMPSTATS 0x20 #define ACT_SET_OPMODE 7 #define ACT_SET_SSID1 8 #define ACT_SET_SSID2 9 #define ACT_SET_SSID3 10 #define ACT_SET_FREQ 11 #define ACT_SET_AP1 12 #define ACT_SET_AP2 13 #define ACT_SET_AP3 14 #define ACT_SET_AP4 15 #define ACT_SET_DRIVERNAME 16 #define ACT_SET_SCANMODE 17 #define ACT_SET_TXRATE 18 #define ACT_SET_RTS_THRESH 19 #define ACT_SET_PWRSAVE 20 #define ACT_SET_DIVERSITY_RX 21 #define ACT_SET_DIVERSITY_TX 22 #define ACT_SET_RTS_RETRYLIM 23 #define ACT_SET_WAKE_DURATION 24 #define ACT_SET_BEACON_PERIOD 25 #define ACT_SET_TXPWR 26 #define ACT_SET_FRAG_THRESH 27 #define ACT_SET_NETJOIN 28 #define ACT_SET_MYNAME 29 #define ACT_SET_MAC 30 #define ACT_ENABLE_WEP 33 #define ACT_SET_KEY_TYPE 34 #define ACT_SET_KEYS 35 #define ACT_ENABLE_TX_KEY 36 #ifdef ANCACHE #define ACT_DUMPCACHE 31 #define ACT_ZEROCACHE 32 #define OPTIONS "a:b:c:d:e:f:j:k:l:m:n:o:p:r:s:t:v:w:ACIK:NQSTW:Z" #else #define OPTIONS "a:b:c:d:e:f:j:k:l:m:n:o:p:r:s:t:v:w:ACIK:NSTW:" #endif /* ANCACHE */ int s; /* Global socket for ioctl's */ struct ifreq ifr; /* Global ifreq */ void getsock() { if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0) errx(1, "socket"); } void an_getval(areq) struct an_req *areq; { ifr.ifr_data = (caddr_t)areq; if (ioctl(s, SIOCGAIRONET, &ifr) == -1) err(1, "SIOCGAIRONET"); return; } void an_setval(areq) struct an_req *areq; { ifr.ifr_data = (caddr_t)areq; if (ioctl(s, SIOCSAIRONET, &ifr) == -1) err(1, "SIOCSAIRONET"); return; } void an_printstr(str, len) char *str; int len; { int i; for (i = 0; i < len - 1; i++) { if (str[i] == '\0') str[i] = ' '; } printf("[ %.*s ]", len, str); return; } void an_printwords(w, len) u_int16_t *w; int len; { int i; printf("[ "); for (i = 0; i < len; i++) printf("%d ", w[i]); printf("]"); return; } void an_printspeeds(w, len) u_int8_t *w; int len; { int i; printf("[ "); for (i = 0; i < len && w[i]; i++) printf("%2.1fMbps ", w[i] * 0.500); printf("]"); return; } void an_printhex(ptr, len) char *ptr; int len; { int i; printf("[ "); for (i = 0; i < len; i++) { printf("%02x", ptr[i] & 0xFF); if (i < (len - 1)) printf(":"); } printf(" ]"); return; } void an_dumpstatus() { struct an_ltv_status *sts; struct an_req areq; bzero((char *)&areq, sizeof(struct an_req)); areq.an_len = sizeof(areq); areq.an_type = AN_RID_STATUS; an_getval(&areq); sts = (struct an_ltv_status *)&areq; printf("MAC address:\t\t"); an_printhex((char *)&sts->an_macaddr, ETHER_ADDR_LEN); printf("\nOperating mode:\t\t[ "); if (sts->an_opmode & AN_STATUS_OPMODE_CONFIGURED) printf("configured "); if (sts->an_opmode & AN_STATUS_OPMODE_MAC_ENABLED) printf("MAC ON "); if (sts->an_opmode & AN_STATUS_OPMODE_RX_ENABLED) printf("RX ON "); if (sts->an_opmode & AN_STATUS_OPMODE_IN_SYNC) printf("synced "); if (sts->an_opmode & AN_STATUS_OPMODE_ASSOCIATED) printf("associated "); if (sts->an_opmode & AN_STATUS_OPMODE_ERROR) printf("error "); printf("]\n"); printf("Error code:\t\t"); an_printhex((char *)&sts->an_errcode, 1); printf("\nSignal strength:\t[ %d%% ]",sts->an_normalized_rssi); printf("\nSignal quality:\t\t"); an_printhex((char *)&sts->an_cur_signal_quality, 1); printf("\nCurrent SSID:\t\t"); an_printstr((char *)&sts->an_ssid, sts->an_ssidlen); printf("\nCurrent AP name:\t"); an_printstr((char *)&sts->an_ap_name, 16); printf("\nCurrent BSSID:\t\t"); an_printhex((char *)&sts->an_cur_bssid, ETHER_ADDR_LEN); printf("\nBeacon period:\t\t"); an_printwords(&sts->an_beacon_period, 1); printf("\nDTIM period:\t\t"); an_printwords(&sts->an_dtim_period, 1); printf("\nATIM duration:\t\t"); an_printwords(&sts->an_atim_duration, 1); printf("\nHOP period:\t\t"); an_printwords(&sts->an_hop_period, 1); printf("\nChannel set:\t\t"); an_printwords(&sts->an_channel_set, 1); printf("\nCurrent channel:\t"); an_printwords(&sts->an_cur_channel, 1); printf("\nHops to backbone:\t"); an_printwords(&sts->an_hops_to_backbone, 1); printf("\nTotal AP load:\t\t"); an_printwords(&sts->an_ap_total_load, 1); printf("\nOur generated load:\t"); an_printwords(&sts->an_our_generated_load, 1); printf("\nAccumulated ARL:\t"); an_printwords(&sts->an_accumulated_arl, 1); printf("\n"); return; } void an_dumpcaps() { struct an_ltv_caps *caps; struct an_req areq; u_int16_t tmp; bzero((char *)&areq, sizeof(struct an_req)); areq.an_len = sizeof(areq); areq.an_type = AN_RID_CAPABILITIES; an_getval(&areq); caps = (struct an_ltv_caps *)&areq; printf("OUI:\t\t\t"); an_printhex((char *)&caps->an_oui, 3); printf("\nProduct number:\t\t"); an_printwords(&caps->an_prodnum, 1); printf("\nManufacturer name:\t"); an_printstr((char *)&caps->an_manufname, 32); printf("\nProduce name:\t\t"); an_printstr((char *)&caps->an_prodname, 16); printf("\nFirmware version:\t"); an_printstr((char *)&caps->an_prodvers, 1); printf("\nOEM MAC address:\t"); an_printhex((char *)&caps->an_oemaddr, ETHER_ADDR_LEN); printf("\nAironet MAC address:\t"); an_printhex((char *)&caps->an_aironetaddr, ETHER_ADDR_LEN); printf("\nRadio type:\t\t[ "); if (caps->an_radiotype & AN_RADIOTYPE_80211_FH) printf("802.11 FH"); else if (caps->an_radiotype & AN_RADIOTYPE_80211_DS) printf("802.11 DS"); else if (caps->an_radiotype & AN_RADIOTYPE_LM2000_DS) printf("LM2000 DS"); else printf("unknown (%x)", caps->an_radiotype); printf(" ]"); printf("\nRegulatory domain:\t"); an_printwords(&caps->an_regdomain, 1); printf("\nAssigned CallID:\t"); an_printhex((char *)&caps->an_callid, 6); printf("\nSupported speeds:\t"); an_printspeeds(caps->an_rates, 8); printf("\nRX Diversity:\t\t[ "); if (caps->an_rx_diversity == AN_DIVERSITY_ANTENNA_1_ONLY) printf("antenna 1 only"); else if (caps->an_rx_diversity == AN_DIVERSITY_ANTENNA_2_ONLY) printf("antenna 2 only"); else if (caps->an_rx_diversity == AN_DIVERSITY_ANTENNA_1_AND_2) printf("antenna 1 and 2"); printf(" ]"); printf("\nTX Diversity:\t\t[ "); if (caps->an_rx_diversity == AN_DIVERSITY_ANTENNA_1_ONLY) printf("antenna 1 only"); else if (caps->an_rx_diversity == AN_DIVERSITY_ANTENNA_2_ONLY) printf("antenna 2 only"); else if (caps->an_rx_diversity == AN_DIVERSITY_ANTENNA_1_AND_2) printf("antenna 1 and 2"); printf(" ]"); printf("\nSupported power levels:\t"); an_printwords(caps->an_tx_powerlevels, 8); printf("\nHardware revision:\t"); tmp = ntohs(caps->an_hwrev); an_printhex((char *)&tmp, 2); printf("\nSoftware revision:\t"); tmp = ntohs(caps->an_fwrev); an_printhex((char *)&tmp, 2); printf("\nSoftware subrevision:\t"); tmp = ntohs(caps->an_fwsubrev); an_printhex((char *)&tmp, 2); printf("\nInterface revision:\t"); tmp = ntohs(caps->an_ifacerev); an_printhex((char *)&tmp, 2); printf("\nBootblock revision:\t"); tmp = ntohs(caps->an_bootblockrev); an_printhex((char *)&tmp, 2); printf("\n"); return; } void an_dumpstats() { struct an_ltv_stats *stats; struct an_req areq; caddr_t ptr; bzero((char *)&areq, sizeof(struct an_req)); areq.an_len = sizeof(areq); areq.an_type = AN_RID_32BITS_CUM; an_getval(&areq); ptr = (caddr_t)&areq; ptr -= 2; stats = (struct an_ltv_stats *)ptr; printf("RX overruns:\t\t\t\t\t[ %d ]\n", stats->an_rx_overruns); printf("RX PLCP CSUM errors:\t\t\t\t[ %d ]\n", stats->an_rx_plcp_csum_errs); printf("RX PLCP format errors:\t\t\t\t[ %d ]\n", stats->an_rx_plcp_format_errs); printf("RX PLCP length errors:\t\t\t\t[ %d ]\n", stats->an_rx_plcp_len_errs); printf("RX MAC CRC errors:\t\t\t\t[ %d ]\n", stats->an_rx_mac_crc_errs); printf("RX MAC CRC OK:\t\t\t\t\t[ %d ]\n", stats->an_rx_mac_crc_ok); printf("RX WEP errors:\t\t\t\t\t[ %d ]\n", stats->an_rx_wep_errs); printf("RX WEP OK:\t\t\t\t\t[ %d ]\n", stats->an_rx_wep_ok); printf("Long retries:\t\t\t\t\t[ %d ]\n", stats->an_retry_long); printf("Short retries:\t\t\t\t\t[ %d ]\n", stats->an_retry_short); printf("Retries exhausted:\t\t\t\t[ %d ]\n", stats->an_retry_max); printf("Bad ACK:\t\t\t\t\t[ %d ]\n", stats->an_no_ack); printf("Bad CTS:\t\t\t\t\t[ %d ]\n", stats->an_no_cts); printf("RX good ACKs:\t\t\t\t\t[ %d ]\n", stats->an_rx_ack_ok); printf("RX good CTSs:\t\t\t\t\t[ %d ]\n", stats->an_rx_cts_ok); printf("TX good ACKs:\t\t\t\t\t[ %d ]\n", stats->an_tx_ack_ok); printf("TX good RTSs:\t\t\t\t\t[ %d ]\n", stats->an_tx_rts_ok); printf("TX good CTSs:\t\t\t\t\t[ %d ]\n", stats->an_tx_cts_ok); printf("LMAC multicasts transmitted:\t\t\t[ %d ]\n", stats->an_tx_lmac_mcasts); printf("LMAC broadcasts transmitted:\t\t\t[ %d ]\n", stats->an_tx_lmac_bcasts); printf("LMAC unicast frags transmitted:\t\t\t[ %d ]\n", stats->an_tx_lmac_ucast_frags); printf("LMAC unicasts transmitted:\t\t\t[ %d ]\n", stats->an_tx_lmac_ucasts); printf("Beacons transmitted:\t\t\t\t[ %d ]\n", stats->an_tx_beacons); printf("Beacons received:\t\t\t\t[ %d ]\n", stats->an_rx_beacons); printf("Single transmit collisions:\t\t\t[ %d ]\n", stats->an_tx_single_cols); printf("Multiple transmit collisions:\t\t\t[ %d ]\n", stats->an_tx_multi_cols); printf("Transmits without deferrals:\t\t\t[ %d ]\n", stats->an_tx_defers_no); printf("Transmits deferred due to protocol:\t\t[ %d ]\n", stats->an_tx_defers_prot); printf("Transmits deferred due to energy detect:\t\t[ %d ]\n", stats->an_tx_defers_energy); printf("RX duplicate frames/frags:\t\t\t[ %d ]\n", stats->an_rx_dups); printf("RX partial frames:\t\t\t\t[ %d ]\n", stats->an_rx_partial); printf("TX max lifetime exceeded:\t\t\t[ %d ]\n", stats->an_tx_too_old); printf("RX max lifetime exceeded:\t\t\t[ %d ]\n", stats->an_tx_too_old); printf("Sync lost due to too many missed beacons:\t[ %d ]\n", stats->an_lostsync_missed_beacons); printf("Sync lost due to ARL exceeded:\t\t\t[ %d ]\n", stats->an_lostsync_arl_exceeded); printf("Sync lost due to deauthentication:\t\t[ %d ]\n", stats->an_lostsync_deauthed); printf("Sync lost due to disassociation:\t\t[ %d ]\n", stats->an_lostsync_disassociated); printf("Sync lost due to excess change in TSF timing:\t[ %d ]\n", stats->an_lostsync_tsf_timing); printf("Host transmitted multicasts:\t\t\t[ %d ]\n", stats->an_tx_host_mcasts); printf("Host transmitted broadcasts:\t\t\t[ %d ]\n", stats->an_tx_host_bcasts); printf("Host transmitted unicasts:\t\t\t[ %d ]\n", stats->an_tx_host_ucasts); printf("Host transmission failures:\t\t\t[ %d ]\n", stats->an_tx_host_failed); printf("Host received multicasts:\t\t\t[ %d ]\n", stats->an_rx_host_mcasts); printf("Host received broadcasts:\t\t\t[ %d ]\n", stats->an_rx_host_bcasts); printf("Host received unicasts:\t\t\t\t[ %d ]\n", stats->an_rx_host_ucasts); printf("Host receive discards:\t\t\t\t[ %d ]\n", stats->an_rx_host_discarded); printf("HMAC transmitted multicasts:\t\t\t[ %d ]\n", stats->an_tx_hmac_mcasts); printf("HMAC transmitted broadcasts:\t\t\t[ %d ]\n", stats->an_tx_hmac_bcasts); printf("HMAC transmitted unicasts:\t\t\t[ %d ]\n", stats->an_tx_hmac_ucasts); printf("HMAC transmissions failed:\t\t\t[ %d ]\n", stats->an_tx_hmac_failed); printf("HMAC received multicasts:\t\t\t[ %d ]\n", stats->an_rx_hmac_mcasts); printf("HMAC received broadcasts:\t\t\t[ %d ]\n", stats->an_rx_hmac_bcasts); printf("HMAC received unicasts:\t\t\t\t[ %d ]\n", stats->an_rx_hmac_ucasts); printf("HMAC receive discards:\t\t\t\t[ %d ]\n", stats->an_rx_hmac_discarded); printf("HMAC transmits accepted:\t\t\t[ %d ]\n", stats->an_tx_hmac_accepted); printf("SSID mismatches:\t\t\t\t[ %d ]\n", stats->an_ssid_mismatches); printf("Access point mismatches:\t\t\t[ %d ]\n", stats->an_ap_mismatches); printf("Speed mismatches:\t\t\t\t[ %d ]\n", stats->an_rates_mismatches); printf("Authentication rejects:\t\t\t\t[ %d ]\n", stats->an_auth_rejects); printf("Authentication timeouts:\t\t\t[ %d ]\n", stats->an_auth_timeouts); printf("Association rejects:\t\t\t\t[ %d ]\n", stats->an_assoc_rejects); printf("Association timeouts:\t\t\t\t[ %d ]\n", stats->an_assoc_timeouts); printf("Management frames received:\t\t\t[ %d ]\n", stats->an_rx_mgmt_pkts); printf("Management frames transmitted:\t\t\t[ %d ]\n", stats->an_tx_mgmt_pkts); printf("Refresh frames received:\t\t\t[ %d ]\n", stats->an_rx_refresh_pkts), printf("Refresh frames transmitted:\t\t\t[ %d ]\n", stats->an_tx_refresh_pkts), printf("Poll frames received:\t\t\t\t[ %d ]\n", stats->an_rx_poll_pkts); printf("Poll frames transmitted:\t\t\t[ %d ]\n", stats->an_tx_poll_pkts); printf("Host requested sync losses:\t\t\t[ %d ]\n", stats->an_lostsync_hostreq); printf("Host transmitted bytes:\t\t\t\t[ %d ]\n", stats->an_host_tx_bytes); printf("Host received bytes:\t\t\t\t[ %d ]\n", stats->an_host_rx_bytes); printf("Uptime in microseconds:\t\t\t\t[ %d ]\n", stats->an_uptime_usecs); printf("Uptime in seconds:\t\t\t\t[ %d ]\n", stats->an_uptime_secs); printf("Sync lost due to better AP:\t\t\t[ %d ]\n", stats->an_lostsync_better_ap); return; } void an_dumpap() { struct an_ltv_aplist *ap; struct an_req areq; bzero((char *)&areq, sizeof(struct an_req)); areq.an_len = sizeof(areq); areq.an_type = AN_RID_APLIST; an_getval(&areq); ap = (struct an_ltv_aplist *)&areq; printf("Access point 1:\t\t\t"); an_printhex((char *)&ap->an_ap1, ETHER_ADDR_LEN); printf("\nAccess point 2:\t\t\t"); an_printhex((char *)&ap->an_ap2, ETHER_ADDR_LEN); printf("\nAccess point 3:\t\t\t"); an_printhex((char *)&ap->an_ap3, ETHER_ADDR_LEN); printf("\nAccess point 4:\t\t\t"); an_printhex((char *)&ap->an_ap4, ETHER_ADDR_LEN); printf("\n"); return; } void an_dumpssid() { struct an_ltv_ssidlist *ssid; struct an_req areq; bzero((char *)&areq, sizeof(struct an_req)); areq.an_len = sizeof(areq); areq.an_type = AN_RID_SSIDLIST; an_getval(&areq); ssid = (struct an_ltv_ssidlist *)&areq; printf("SSID 1:\t\t\t[ %.*s ]\n", ssid->an_ssid1_len, ssid->an_ssid1); printf("SSID 2:\t\t\t[ %.*s ]\n", ssid->an_ssid2_len, ssid->an_ssid2); printf("SSID 3:\t\t\t[ %.*s ]\n", ssid->an_ssid3_len, ssid->an_ssid3); return; } void an_dumpconfig() { struct an_ltv_genconfig *cfg; struct an_req areq; unsigned char div; bzero((char *)&areq, sizeof(struct an_req)); areq.an_len = sizeof(areq); areq.an_type = AN_RID_ACTUALCFG; an_getval(&areq); cfg = (struct an_ltv_genconfig *)&areq; printf("Operating mode:\t\t\t\t[ "); if ((cfg->an_opmode & 0x7) == AN_OPMODE_IBSS_ADHOC) printf("ad-hoc"); if ((cfg->an_opmode & 0x7) == AN_OPMODE_INFRASTRUCTURE_STATION) printf("infrastructure"); if ((cfg->an_opmode & 0x7) == AN_OPMODE_AP) printf("access point"); if ((cfg->an_opmode & 0x7) == AN_OPMODE_AP_REPEATER) printf("access point repeater"); printf(" ]"); printf("\nReceive mode:\t\t\t\t[ "); if ((cfg->an_rxmode & 0x7) == AN_RXMODE_BC_MC_ADDR) printf("broadcast/multicast/unicast"); if ((cfg->an_rxmode & 0x7) == AN_RXMODE_BC_ADDR) printf("broadcast/unicast"); if ((cfg->an_rxmode & 0x7) == AN_RXMODE_ADDR) printf("unicast"); if ((cfg->an_rxmode & 0x7) == AN_RXMODE_80211_MONITOR_CURBSS) printf("802.11 monitor, current BSSID"); if ((cfg->an_rxmode & 0x7) == AN_RXMODE_80211_MONITOR_ANYBSS) printf("802.11 monitor, any BSSID"); if ((cfg->an_rxmode & 0x7) == AN_RXMODE_LAN_MONITOR_CURBSS) printf("LAN monitor, current BSSID"); printf(" ]"); printf("\nFragment threshold:\t\t\t"); an_printwords(&cfg->an_fragthresh, 1); printf("\nRTS threshold:\t\t\t\t"); an_printwords(&cfg->an_rtsthresh, 1); printf("\nMAC address:\t\t\t\t"); an_printhex((char *)&cfg->an_macaddr, ETHER_ADDR_LEN); printf("\nSupported rates:\t\t\t"); an_printspeeds(cfg->an_rates, 8); printf("\nShort retry limit:\t\t\t"); an_printwords(&cfg->an_shortretry_limit, 1); printf("\nLong retry limit:\t\t\t"); an_printwords(&cfg->an_longretry_limit, 1); printf("\nTX MSDU lifetime:\t\t\t"); an_printwords(&cfg->an_tx_msdu_lifetime, 1); printf("\nRX MSDU lifetime:\t\t\t"); an_printwords(&cfg->an_rx_msdu_lifetime, 1); printf("\nStationary:\t\t\t\t"); an_printbool(cfg->an_stationary); printf("\nOrdering:\t\t\t\t"); an_printbool(cfg->an_ordering); printf("\nDevice type:\t\t\t\t[ "); if (cfg->an_devtype == AN_DEVTYPE_PC4500) printf("PC4500"); else if (cfg->an_devtype == AN_DEVTYPE_PC4800) printf("PC4800"); else printf("unknown (%x)", cfg->an_devtype); printf(" ]"); printf("\nScanning mode:\t\t\t\t[ "); if (cfg->an_scanmode == AN_SCANMODE_ACTIVE) printf("active"); if (cfg->an_scanmode == AN_SCANMODE_PASSIVE) printf("passive"); if (cfg->an_scanmode == AN_SCANMODE_AIRONET_ACTIVE) printf("Aironet active"); printf(" ]"); printf("\nProbe delay:\t\t\t\t"); an_printwords(&cfg->an_probedelay, 1); printf("\nProbe energy timeout:\t\t\t"); an_printwords(&cfg->an_probe_energy_timeout, 1); printf("\nProbe response timeout:\t\t\t"); an_printwords(&cfg->an_probe_response_timeout, 1); printf("\nBeacon listen timeout:\t\t\t"); an_printwords(&cfg->an_beacon_listen_timeout, 1); printf("\nIBSS join network timeout:\t\t"); an_printwords(&cfg->an_ibss_join_net_timeout, 1); printf("\nAuthentication timeout:\t\t\t"); an_printwords(&cfg->an_auth_timeout, 1); printf("\nWEP enabled:\t\t\t\t[ "); if (cfg->an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE) { if (cfg->an_authtype & AN_AUTHTYPE_ALLOW_UNENCRYPTED) printf("mixed cell"); else printf("full"); } else printf("no"); printf(" ]"); printf("\nAuthentication type:\t\t\t[ "); if ((cfg->an_authtype & AN_AUTHTYPE_MASK) == AN_AUTHTYPE_NONE) printf("none"); if ((cfg->an_authtype & AN_AUTHTYPE_MASK) == AN_AUTHTYPE_OPEN) printf("open"); if ((cfg->an_authtype & AN_AUTHTYPE_MASK) == AN_AUTHTYPE_SHAREDKEY) printf("shared key"); printf(" ]"); printf("\nAssociation timeout:\t\t\t"); an_printwords(&cfg->an_assoc_timeout, 1); printf("\nSpecified AP association timeout:\t"); an_printwords(&cfg->an_specified_ap_timeout, 1); printf("\nOffline scan interval:\t\t\t"); an_printwords(&cfg->an_offline_scan_interval, 1); printf("\nOffline scan duration:\t\t\t"); an_printwords(&cfg->an_offline_scan_duration, 1); printf("\nLink loss delay:\t\t\t"); an_printwords(&cfg->an_link_loss_delay, 1); printf("\nMax beacon loss time:\t\t\t"); an_printwords(&cfg->an_max_beacon_lost_time, 1); printf("\nRefresh interval:\t\t\t"); an_printwords(&cfg->an_refresh_interval, 1); printf("\nPower save mode:\t\t\t[ "); if (cfg->an_psave_mode == AN_PSAVE_NONE) printf("none"); if (cfg->an_psave_mode == AN_PSAVE_CAM) printf("constantly awake mode"); if (cfg->an_psave_mode == AN_PSAVE_PSP) printf("PSP"); if (cfg->an_psave_mode == AN_PSAVE_PSP_CAM) printf("PSP-CAM (fast PSP)"); printf(" ]"); printf("\nSleep through DTIMs:\t\t\t"); an_printbool(cfg->an_sleep_for_dtims); printf("\nPower save listen interval:\t\t"); an_printwords(&cfg->an_listen_interval, 1); printf("\nPower save fast listen interval:\t"); an_printwords(&cfg->an_fast_listen_interval, 1); printf("\nPower save listen decay:\t\t"); an_printwords(&cfg->an_listen_decay, 1); printf("\nPower save fast listen decay:\t\t"); an_printwords(&cfg->an_fast_listen_decay, 1); printf("\nAP/ad-hoc Beacon period:\t\t"); an_printwords(&cfg->an_beacon_period, 1); printf("\nAP/ad-hoc ATIM duration:\t\t"); an_printwords(&cfg->an_atim_duration, 1); printf("\nAP/ad-hoc current channel:\t\t"); an_printwords(&cfg->an_ds_channel, 1); printf("\nAP/ad-hoc DTIM period:\t\t\t"); an_printwords(&cfg->an_dtim_period, 1); printf("\nRadio type:\t\t\t\t[ "); if (cfg->an_radiotype & AN_RADIOTYPE_80211_FH) printf("802.11 FH"); else if (cfg->an_radiotype & AN_RADIOTYPE_80211_DS) printf("802.11 DS"); else if (cfg->an_radiotype & AN_RADIOTYPE_LM2000_DS) printf("LM2000 DS"); else printf("unknown (%x)", cfg->an_radiotype); printf(" ]"); printf("\nRX Diversity:\t\t\t\t[ "); div = cfg->an_diversity & 0xFF; if (div == AN_DIVERSITY_ANTENNA_1_ONLY) printf("antenna 1 only"); else if (div == AN_DIVERSITY_ANTENNA_2_ONLY) printf("antenna 2 only"); else if (div == AN_DIVERSITY_ANTENNA_1_AND_2) printf("antenna 1 and 2"); printf(" ]"); printf("\nTX Diversity:\t\t\t\t[ "); div = (cfg->an_diversity >> 8) & 0xFF; if (div == AN_DIVERSITY_ANTENNA_1_ONLY) printf("antenna 1 only"); else if (div == AN_DIVERSITY_ANTENNA_2_ONLY) printf("antenna 2 only"); else if (div == AN_DIVERSITY_ANTENNA_1_AND_2) printf("antenna 1 and 2"); printf(" ]"); printf("\nTransmit power level:\t\t\t"); an_printwords(&cfg->an_tx_power, 1); printf("\nRSS threshold:\t\t\t\t"); an_printwords(&cfg->an_rss_thresh, 1); printf("\nNode name:\t\t\t\t"); an_printstr((char *)&cfg->an_nodename, 16); printf("\nARL threshold:\t\t\t\t"); an_printwords(&cfg->an_arl_thresh, 1); printf("\nARL decay:\t\t\t\t"); an_printwords(&cfg->an_arl_decay, 1); printf("\nARL delay:\t\t\t\t"); an_printwords(&cfg->an_arl_delay, 1); printf("\n"); an_readkeyinfo(); return; } static void usage() { fprintf(stderr, "usage: ancontrol interface [-ACINSTh] [-t 0|1|2|3|4]\n" " [-s 0|1|2|3] [-v 1|2|3|4] [-a AP] [-b beacon period] [-v 0|1]\n" " [-d 1|2|3|4] [-e 0|1|2|3] [-j netjoin timeout] [-v 0|1|2|3|4|5|6|7[\n" " [-k key] [-K 0|1|2] [-l station name] [-m macaddress] [-v 1|2|3]\n" " [-n SSID] [-o 0|1] [-p tx power] [-c channel number]\n" " [-f fragmentation threshold] [-r RTS threshold] [-W 0|1|2]\n"); #ifdef ANCACHE fprintf(stderr, " [-Q] [-Z]\n"); #endif exit(1); } void an_setconfig(act, arg) int act; void *arg; { struct an_ltv_genconfig *cfg; struct an_ltv_caps *caps; struct an_req areq; struct an_req areq_caps; u_int16_t diversity = 0; struct ether_addr *addr; int i; bzero((char *)&areq, sizeof(struct an_req)); bzero((char *)&areq_caps, sizeof(struct an_req)); areq.an_len = sizeof(areq); areq.an_type = AN_RID_GENCONFIG; an_getval(&areq); cfg = (struct an_ltv_genconfig *)&areq; areq_caps.an_len = sizeof(areq); areq_caps.an_type = AN_RID_CAPABILITIES; an_getval(&areq_caps); caps = (struct an_ltv_caps *)&areq_caps; switch(act) { case ACT_SET_OPMODE: cfg->an_opmode = atoi(arg); break; case ACT_SET_FREQ: cfg->an_ds_channel = atoi(arg); break; case ACT_SET_PWRSAVE: cfg->an_psave_mode = atoi(arg); break; case ACT_SET_SCANMODE: cfg->an_scanmode = atoi(arg); break; case ACT_SET_DIVERSITY_RX: case ACT_SET_DIVERSITY_TX: switch(atoi(arg)) { case 0: diversity = AN_DIVERSITY_FACTORY_DEFAULT; break; case 1: diversity = AN_DIVERSITY_ANTENNA_1_ONLY; break; case 2: diversity = AN_DIVERSITY_ANTENNA_2_ONLY; break; case 3: diversity = AN_DIVERSITY_ANTENNA_1_AND_2; break; default: errx(1, "bad diversity setting: %d", diversity); break; } if (atoi(arg) == ACT_SET_DIVERSITY_RX) { cfg->an_diversity &= 0x00FF; cfg->an_diversity |= (diversity << 8); } else { cfg->an_diversity &= 0xFF00; cfg->an_diversity |= diversity; } break; case ACT_SET_TXPWR: for (i = 0; i < 8; i++) { if (caps->an_tx_powerlevels[i] == atoi(arg)) break; } if (i == 8) errx(1, "unsupported power level: %dmW", atoi(arg)); cfg->an_tx_power = atoi(arg); break; case ACT_SET_RTS_THRESH: cfg->an_rtsthresh = atoi(arg); break; case ACT_SET_RTS_RETRYLIM: cfg->an_shortretry_limit = cfg->an_longretry_limit = atoi(arg); break; case ACT_SET_BEACON_PERIOD: cfg->an_beacon_period = atoi(arg); break; case ACT_SET_WAKE_DURATION: cfg->an_atim_duration = atoi(arg); break; case ACT_SET_FRAG_THRESH: cfg->an_fragthresh = atoi(arg); break; case ACT_SET_NETJOIN: cfg->an_ibss_join_net_timeout = atoi(arg); break; case ACT_SET_MYNAME: bzero(cfg->an_nodename, 16); strncpy((char *)&cfg->an_nodename, optarg, 16); break; case ACT_SET_MAC: addr = ether_aton((char *)arg); if (addr == NULL) errx(1, "badly formatted address"); bzero(cfg->an_macaddr, ETHER_ADDR_LEN); bcopy((char *)addr, (char *)&cfg->an_macaddr, ETHER_ADDR_LEN); break; case ACT_ENABLE_WEP: switch(atoi(arg)) { case 0: /* WEP disabled */ cfg->an_authtype &= ~(AN_AUTHTYPE_PRIVACY_IN_USE | AN_AUTHTYPE_ALLOW_UNENCRYPTED); break; case 1: /* WEP enabled */ cfg->an_authtype |= AN_AUTHTYPE_PRIVACY_IN_USE; cfg->an_authtype &= ~AN_AUTHTYPE_ALLOW_UNENCRYPTED; break; case 2: /* WEP optional */ cfg->an_authtype = AN_AUTHTYPE_PRIVACY_IN_USE | AN_AUTHTYPE_ALLOW_UNENCRYPTED; break; } break; case ACT_SET_KEY_TYPE: cfg->an_authtype = (cfg->an_authtype & ~AN_AUTHTYPE_MASK) | atoi(arg); break; default: errx(1, "unknown action"); break; } an_setval(&areq); } void an_setspeed(arg) void *arg; { struct an_req areq; struct an_ltv_caps *caps; u_int16_t speed; bzero((char *)&areq, sizeof(struct an_req)); areq.an_len = sizeof(areq); areq.an_type = AN_RID_CAPABILITIES; an_getval(&areq); caps = (struct an_ltv_caps *)&areq; switch(atoi(arg)) { case 0: speed = 0; break; case 1: speed = AN_RATE_1MBPS; break; case 2: speed = AN_RATE_2MBPS; break; case 3: if (caps->an_rates[2] != AN_RATE_5_5MBPS) errx(1, "5.5Mbps not supported on this card"); speed = AN_RATE_5_5MBPS; break; case 4: if (caps->an_rates[3] != AN_RATE_11MBPS) errx(1, "11Mbps not supported on this card"); speed = AN_RATE_11MBPS; break; default: errx(1, "unsupported speed"); break; } areq.an_len = 6; areq.an_type = AN_RID_TX_SPEED; areq.an_val[0] = speed; an_setval(&areq); } void an_setap(act, arg) int act; void *arg; { struct an_ltv_aplist *ap; struct an_req areq; struct ether_addr *addr; bzero((char *)&areq, sizeof(struct an_req)); areq.an_len = sizeof(areq); areq.an_type = AN_RID_APLIST; an_getval(&areq); ap = (struct an_ltv_aplist *)&areq; addr = ether_aton((char *)arg); if (addr == NULL) errx(1, "badly formatted address"); switch(act) { case ACT_SET_AP1: bzero(ap->an_ap1, ETHER_ADDR_LEN); bcopy((char *)addr, (char *)&ap->an_ap1, ETHER_ADDR_LEN); break; case ACT_SET_AP2: bzero(ap->an_ap2, ETHER_ADDR_LEN); bcopy((char *)addr, (char *)&ap->an_ap2, ETHER_ADDR_LEN); break; case ACT_SET_AP3: bzero(ap->an_ap3, ETHER_ADDR_LEN); bcopy((char *)addr, (char *)&ap->an_ap3, ETHER_ADDR_LEN); break; case ACT_SET_AP4: bzero(ap->an_ap4, ETHER_ADDR_LEN); bcopy((char *)addr, (char *)&ap->an_ap4, ETHER_ADDR_LEN); break; default: errx(1, "unknown action"); break; } an_setval(&areq); } void an_setssid(act, arg) int act; void *arg; { struct an_ltv_ssidlist *ssid; struct an_req areq; bzero((char *)&areq, sizeof(struct an_req)); areq.an_len = sizeof(areq); areq.an_type = AN_RID_SSIDLIST; an_getval(&areq); ssid = (struct an_ltv_ssidlist *)&areq; switch (act) { case ACT_SET_SSID1: bzero(ssid->an_ssid1, sizeof(ssid->an_ssid1)); strlcpy(ssid->an_ssid1, (char *)arg, sizeof(ssid->an_ssid1)); ssid->an_ssid1_len = strlen(ssid->an_ssid1); break; case ACT_SET_SSID2: bzero(ssid->an_ssid2, sizeof(ssid->an_ssid2)); strlcpy(ssid->an_ssid2, (char *)arg, sizeof(ssid->an_ssid2)); ssid->an_ssid2_len = strlen(ssid->an_ssid2); break; case ACT_SET_SSID3: bzero(ssid->an_ssid3, sizeof(ssid->an_ssid3)); strlcpy(ssid->an_ssid3, (char *)arg, sizeof(ssid->an_ssid3)); ssid->an_ssid3_len = strlen(ssid->an_ssid3); break; default: errx(1, "unknown action"); break; } an_setval(&areq); } #ifdef ANCACHE void an_zerocache() { struct an_req areq; bzero((char *)&areq, sizeof(areq)); areq.an_len = 0; areq.an_type = AN_RID_ZERO_CACHE; an_getval(&areq); return; } void an_readcache() { struct an_req areq; int *an_sigitems; struct an_sigcache *sc; char * pt; int i; bzero((char *)&areq, sizeof(areq)); areq.an_len = AN_MAX_DATALEN; areq.an_type = AN_RID_READ_CACHE; an_getval(&areq); an_sigitems = (int *) &areq.an_val; pt = ((char *) &areq.an_val); pt += sizeof(int); sc = (struct an_sigcache *) pt; for (i = 0; i < *an_sigitems; i++) { printf("[%d/%d]:", i+1, *an_sigitems); printf(" %02x:%02x:%02x:%02x:%02x:%02x,", sc->macsrc[0]&0xff, sc->macsrc[1]&0xff, sc->macsrc[2]&0xff, sc->macsrc[3]&0xff, sc->macsrc[4]&0xff, sc->macsrc[5]&0xff); printf(" %d.%d.%d.%d,",((sc->ipsrc >> 0) & 0xff), ((sc->ipsrc >> 8) & 0xff), ((sc->ipsrc >> 16) & 0xff), ((sc->ipsrc >> 24) & 0xff)); printf(" sig: %d\n", sc->signal); sc++; } return; } #endif /* ANCACHE */ int an_hex2int(c) char c; { if (c >= '0' && c <= '9') return (c - '0'); if (c >= 'A' && c <= 'F') return (c - 'A' + 10); if (c >= 'a' && c <= 'f') return (c - 'a' + 10); return (0); } void an_str2key(s, k) char *s; struct an_ltv_key *k; { int n, i; char *p; /* Is this a hex string? */ if ((s[0] = '0' && (s[1] == 'x' || s[1] == 'X'))) { /* Yes, convert to int */ n = 0; p = (char *)&k->key[0]; for (i = 2; i < strlen(s); i += 2) { *p++ = (an_hex2int(s[i]) << 4) + an_hex2int(s[i + 1]); n++; } k->klen = n; } else { /* No, just copy it in */ bcopy(s, k->key, strlen(s)); k->klen = strlen(s); } return; } void an_setkeys(key, keytype) char *key; int keytype; { struct an_req areq; struct an_ltv_key *k; bzero((char *)&areq, sizeof(areq)); k = (struct an_ltv_key *)&areq; if (strlen(key) > 28) err(1, "encryption key must be no more than 18 chars long"); an_str2key(key, k); k->kindex = keytype / 2; if (!(k->klen == 0 || k->klen == 5 || k->klen == 13)) { err(1, "encryption key must be 0, 5 or 13 bytes long"); } /* default mac and only valid one (from manual) 1:0:0:0:0:0 */ k->mac[0] = 1; k->mac[1] = 0; k->mac[2] = 0; k->mac[3] = 0; k->mac[4] = 0; k->mac[5] = 0; areq.an_len = sizeof(struct an_ltv_key); areq.an_type = (keytype & 1) ? AN_RID_WEP_VOLATILE : AN_RID_WEP_PERMANENT; an_setval(&areq); return; } void an_readkeyinfo() { struct an_req areq; struct an_ltv_key *k; int i; bzero((char *)&areq, sizeof(areq)); k = (struct an_ltv_key *)&areq; printf ("\nWEP Key status:\n"); areq.an_type = AN_RID_WEP_VOLATILE; /* read first key */ for (i = 0; i < 4; i++) { areq.an_len = sizeof(struct an_ltv_key); an_getval(&areq); for (; i < k->kindex && i < 4; i++) printf("\tKey %d is unset\n", i); if (i < 4) { switch (k->klen) { case 0: printf("\tKey %d is unset\n", i); break; case 5: printf("\tKey %d is set 40 bits\n", i); break; case 13: printf("\tKey %d is set 128 bits\n", i); break; default: printf("\tKey %d has an unknown size %d\n", i, k->klen); break; } } areq.an_type = AN_RID_WEP_PERMANENT; /* read next key */ } k->kindex = 0xffff; areq.an_len = sizeof(struct an_ltv_key); an_getval(&areq); printf("\tThe active transmit key is %d\n", k->mac[0]); return; } void an_enable_tx_key(arg) char *arg; { struct an_req areq; struct an_ltv_key *k; bzero((char *)&areq, sizeof(areq)); k = (struct an_ltv_key *)&areq; /* * From a Cisco engineer: Write the transmit key * to use in the first MAC, index is FFFF */ k->kindex = 0xFFFF; k->klen = 0; k->mac[0] = atoi(arg); k->mac[1] = 0; k->mac[2] = 0; k->mac[3] = 0; k->mac[4] = 0; k->mac[5] = 0; areq.an_len = sizeof(struct an_ltv_key); areq.an_type = AN_RID_WEP_PERMANENT; an_setval(&areq); return; } int main(argc, argv) int argc; char *argv[]; { int ch; int modifier = 0; int print_stat = 0; /* Grab device name, if one is given. Default to "an0" */ opterr = 0; ch = getopt(argc, argv, "i:"); if (ch == 'i') { strlcpy(ifr.ifr_name, optarg, sizeof(ifr.ifr_name)); } else { if (argc > 1 && argv[1][0] != '-') { strlcpy(ifr.ifr_name, argv[1], sizeof(ifr.ifr_name)); optind = 2; } else { strlcpy(ifr.ifr_name, "an0", sizeof(ifr.ifr_name)); optind = 1; } } opterr = optreset = 1; /* Grab a socket to do our ioctl's */ getsock(); while ((ch = getopt(argc, argv, OPTIONS)) != -1) { switch(ch) { case 'A': print_stat |= STAT_DUMPAP; break; case 'C': print_stat |= STAT_DUMPCONFIG; break; case 'I': print_stat |= STAT_DUMPCAPS; break; case 'K': an_setconfig(ACT_SET_KEY_TYPE, optarg); break; case 'N': print_stat |= STAT_DUMPSSID; break; case 'S': print_stat |= STAT_DUMPSTATUS; break; case 'T': print_stat |= STAT_DUMPSTATS; break; case 'W': an_setconfig(ACT_ENABLE_WEP, optarg); break; #ifdef ANCACHE case 'Q': an_readcache(); break; case 'Z': an_zerocache(); break; #endif /* ANCACHE */ case 'a': switch (modifier) { case 0: case 1: an_setap(ACT_SET_AP1, optarg); break; case 2: an_setap(ACT_SET_AP2, optarg); break; case 3: an_setap(ACT_SET_AP3, optarg); break; case 4: an_setap(ACT_SET_AP4, optarg); break; default: errx(1, "bad modifier %d", modifier); } modifier = 0; break; case 'b': an_setconfig(ACT_SET_BEACON_PERIOD, optarg); break; case 'c': an_setconfig(ACT_SET_FREQ, optarg); break; case 'd': switch (modifier) { case 0: an_setconfig(ACT_SET_DIVERSITY_RX, optarg); break; case 1: an_setconfig(ACT_SET_DIVERSITY_RX, optarg); break; default: errx(1, "must specify RX or TX diversity"); } modifier = 0; break; case 'e': an_enable_tx_key(optarg); break; case 'f': an_setconfig(ACT_SET_FRAG_THRESH, optarg); break; case 'h': usage(); break; case 'j': an_setconfig(ACT_SET_NETJOIN, optarg); break; case 'k': an_setkeys(optarg, modifier); break; case 'l': an_setconfig(ACT_SET_MYNAME, optarg); break; case 'm': an_setconfig(ACT_SET_MAC, optarg); break; case 'n': switch (modifier) { case 0: case 1: an_setssid(ACT_SET_SSID1, optarg); break; case 2: an_setssid(ACT_SET_SSID2, optarg); break; case 3: an_setssid(ACT_SET_SSID3, optarg); break; default: errx(1, "bad modifier %d", modifier); } modifier = 0; break; case 'o': an_setconfig(ACT_SET_OPMODE, optarg); break; case 'p': an_setconfig(ACT_SET_TXPWR, optarg); break; case 'q': an_setconfig(ACT_SET_RTS_RETRYLIM, optarg); break; case 'r': an_setconfig(ACT_SET_RTS_THRESH, optarg); break; case 's': an_setconfig(ACT_SET_PWRSAVE, optarg); break; case 't': an_setspeed(optarg); break; case 'v': modifier = atoi(optarg); break; case 'w': an_setconfig(ACT_SET_WAKE_DURATION, optarg); break; default: usage(); } } /* * Show configuration status first. Do not allow * the showing of and setting of options to be done * on the same command line. */ if (print_stat) { if (print_stat & STAT_DUMPAP) an_dumpap(); if (print_stat & STAT_DUMPCONFIG) an_dumpconfig(); if (print_stat & STAT_DUMPCAPS) an_dumpcaps(); if (print_stat & STAT_DUMPSSID) an_dumpssid(); if (print_stat & STAT_DUMPSTATUS) an_dumpstatus(); if (print_stat & STAT_DUMPSTATS) an_dumpstats(); } /* Close our socket */ if (s) close(s); return (0); }