/* $OpenBSD: parse.c,v 1.5 2004/02/07 13:59:45 henning Exp $ */ /* Common parser code for dhcpd and dhclient. */ /* * Copyright (c) 1995, 1996, 1997, 1998 The Internet Software Consortium. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of The Internet Software Consortium nor the names * of its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE INTERNET SOFTWARE CONSORTIUM AND * CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE INTERNET SOFTWARE CONSORTIUM OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This software has been written for the Internet Software Consortium * by Ted Lemon in cooperation with Vixie * Enterprises. To learn more about the Internet Software Consortium, * see ``http://www.vix.com/isc''. To learn more about Vixie * Enterprises, see ``http://www.vix.com''. */ #include "dhcpd.h" #include "dhctoken.h" /* Skip to the semicolon ending the current statement. If we encounter * braces, the matching closing brace terminates the statement. If we * encounter a right brace but haven't encountered a left brace, return * leaving the brace in the token buffer for the caller. If we see a * semicolon and haven't seen a left brace, return. This lets us skip * over: * * statement; * statement foo bar { } * statement foo bar { statement { } } * statement} * * ...et cetera. */ void skip_to_semi(FILE *cfile) { int token; char *val; int brace_count = 0; do { token = peek_token(&val, cfile); if (token == RBRACE) { if (brace_count) { token = next_token(&val, cfile); if (!--brace_count) return; } else return; } else if (token == LBRACE) { brace_count++; } else if (token == SEMI && !brace_count) { token = next_token(&val, cfile); return; } else if (token == EOL) { /* * EOL only happens when parsing * /etc/resolv.conf, and we treat it like a * semicolon because the resolv.conf file is * line-oriented. */ token = next_token(&val, cfile); return; } token = next_token(&val, cfile); } while (token != EOF); } int parse_semi(FILE *cfile) { int token; char *val; token = next_token(&val, cfile); if (token != SEMI) { parse_warn("semicolon expected."); skip_to_semi(cfile); return (0); } return (1); } /* * string-parameter :== STRING SEMI */ char * parse_string(FILE *cfile) { char *val; int token; char *s; token = next_token(&val, cfile); if (token != STRING) { parse_warn("filename must be a string"); skip_to_semi(cfile); return (NULL); } s = malloc(strlen(val) + 1); if (!s) error("no memory for string %s.", val); strlcpy(s, val, strlen(val) + 1); if (!parse_semi(cfile)) return (NULL); return (s); } /* * hostname :== identifier | hostname DOT identifier */ char * parse_host_name(FILE *cfile) { char *val; int token; int len = 0; char *s; char *t; pair c = NULL; /* Read a dotted hostname... */ do { /* Read a token, which should be an identifier. */ token = next_token(&val, cfile); if (!is_identifier(token) && token != NUMBER) { parse_warn("expecting an identifier in hostname"); skip_to_semi(cfile); return (NULL); } /* Store this identifier... */ if (!(s = malloc(strlen(val) + 1))) error("can't allocate temp space for hostname."); strlcpy(s, val, strlen(val) + 1); c = cons((caddr_t)s, c); len += strlen(s) + 1; /* * Look for a dot; if it's there, keep going, otherwise * we're done. */ token = peek_token(&val, cfile); if (token == DOT) token = next_token(&val, cfile); } while (token == DOT); /* Assemble the hostname together into a string. */ if (!(s = malloc(len))) error("can't allocate space for hostname."); t = s + len; *--t = '\0'; while (c) { pair cdr = c->cdr; int l = strlen((char *)c->car); t -= l; memcpy(t, (char *)c->car, l); /* Free up temp space. */ free(c->car); free(c); c = cdr; if (t != s) *--t = '.'; } return (s); } int parse_ip_addr(FILE *cfile, struct iaddr *addr) { addr->len = 4; if (parse_numeric_aggregate(cfile, addr->iabuf, &addr->len, DOT, 10, 8)) return (1); return (0); } /* * hardware-parameter :== HARDWARE ETHERNET csns SEMI * csns :== NUMBER | csns COLON NUMBER */ void parse_hardware_param(FILE *cfile, struct hardware *hardware) { char *val; int token; int hlen; unsigned char *t; token = next_token(&val, cfile); switch (token) { case ETHERNET: hardware->htype = HTYPE_ETHER; break; case TOKEN_RING: hardware->htype = HTYPE_IEEE802; break; case FDDI: hardware->htype = HTYPE_FDDI; break; default: parse_warn("expecting a network hardware type"); skip_to_semi(cfile); return; } /* * Parse the hardware address information. Technically, it * would make a lot of sense to restrict the length of the data * we'll accept here to the length of a particular hardware * address type. Unfortunately, there are some broken clients * out there that put bogus data in the chaddr buffer, and we * accept that data in the lease file rather than simply failing * on such clients. Yuck. */ hlen = 0; t = parse_numeric_aggregate(cfile, NULL, &hlen, COLON, 16, 8); if (!t) return; if (hlen > sizeof(hardware->haddr)) { free(t); parse_warn("hardware address too long"); } else { hardware->hlen = hlen; memcpy((unsigned char *)&hardware->haddr[0], t, hardware->hlen); if (hlen < sizeof(hardware->haddr)) memset(&hardware->haddr[hlen], 0, sizeof(hardware->haddr) - hlen); free(t); } token = next_token(&val, cfile); if (token != SEMI) { parse_warn("expecting semicolon."); skip_to_semi(cfile); } } /* * lease-time :== NUMBER SEMI */ void parse_lease_time(FILE *cfile, TIME *timep) { char *val; int token; token = next_token(&val, cfile); if (token != NUMBER) { parse_warn("Expecting numeric lease time"); skip_to_semi(cfile); return; } convert_num((unsigned char *)timep, val, 10, 32); /* Unswap the number - convert_num returns stuff in NBO. */ *timep = ntohl(*timep); /* XXX */ parse_semi(cfile); } /* * No BNF for numeric aggregates - that's defined by the caller. What * this function does is to parse a sequence of numbers separated by the * token specified in separator. If max is zero, any number of numbers * will be parsed; otherwise, exactly max numbers are expected. Base * and size tell us how to internalize the numbers once they've been * tokenized. */ unsigned char * parse_numeric_aggregate(FILE *cfile, unsigned char *buf, int *max, int separator, int base, int size) { char *val; int token; unsigned char *bufp = buf, *s = NULL; char *t; int count = 0; pair c = NULL; if (!bufp && *max) { bufp = malloc(*max * size / 8); if (!bufp) error("can't allocate space for numeric aggregate"); } else s = bufp; do { if (count) { token = peek_token(&val, cfile); if (token != separator) { if (!*max) break; if (token != RBRACE && token != LBRACE) token = next_token(&val, cfile); parse_warn("too few numbers."); if (token != SEMI) skip_to_semi(cfile); return (NULL); } token = next_token(&val, cfile); } token = next_token(&val, cfile); if (token == EOF) { parse_warn("unexpected end of file"); break; } /* Allow NUMBER_OR_NAME if base is 16. */ if (token != NUMBER && (base != 16 || token != NUMBER_OR_NAME)) { parse_warn("expecting numeric value."); skip_to_semi(cfile); return (NULL); } /* * If we can, convert the number now; otherwise, build a * linked list of all the numbers. */ if (s) { convert_num(s, val, base, size); s += size / 8; } else { t = malloc(strlen(val) + 1); if (!t) error("no temp space for number."); strlcpy(t, val, strlen(val) + 1); c = cons(t, c); } } while (++count != *max); /* If we had to cons up a list, convert it now. */ if (c) { bufp = malloc(count * size / 8); if (!bufp) error("can't allocate space for numeric aggregate."); s = bufp + count - size / 8; *max = count; } while (c) { pair cdr = c->cdr; convert_num(s, (char *)c->car, base, size); s -= size / 8; /* Free up temp space. */ free(c->car); free(c); c = cdr; } return (bufp); } void convert_num(unsigned char *buf, char *str, int base, int size) { char *ptr = str; int negative = 0; u_int32_t val = 0; int tval; int max; if (*ptr == '-') { negative = 1; ptr++; } /* If base wasn't specified, figure it out from the data. */ if (!base) { if (ptr[0] == '0') { if (ptr[1] == 'x') { base = 16; ptr += 2; } else if (isascii(ptr[1]) && isdigit(ptr[1])) { base = 8; ptr += 1; } else base = 10; } else base = 10; } do { tval = *ptr++; /* XXX assumes ASCII... */ if (tval >= 'a') tval = tval - 'a' + 10; else if (tval >= 'A') tval = tval - 'A' + 10; else if (tval >= '0') tval -= '0'; else { warn("Bogus number: %s.", str); break; } if (tval >= base) { warn("Bogus number: %s: digit %d not in base %d", str, tval, base); break; } val = val * base + tval; } while (*ptr); if (negative) max = (1 << (size - 1)); else max = (1 << (size - 1)) + ((1 << (size - 1)) - 1); if (val > max) { switch (base) { case 8: warn("value %s%o exceeds max (%d) for precision.", negative ? "-" : "", val, max); break; case 16: warn("value %s%x exceeds max (%d) for precision.", negative ? "-" : "", val, max); break; default: warn("value %s%u exceeds max (%d) for precision.", negative ? "-" : "", val, max); break; } } if (negative) switch (size) { case 8: *buf = -(unsigned long)val; break; case 16: putShort(buf, -(unsigned long)val); break; case 32: putLong(buf, -(unsigned long)val); break; default: warn("Unexpected integer size: %d", size); break; } else switch (size) { case 8: *buf = (u_int8_t)val; break; case 16: putUShort(buf, (u_int16_t)val); break; case 32: putULong(buf, val); break; default: warn("Unexpected integer size: %d", size); break; } } /* * date :== NUMBER NUMBER SLASH NUMBER SLASH NUMBER * NUMBER COLON NUMBER COLON NUMBER SEMI * * Dates are always in GMT; first number is day of week; next is * year/month/day; next is hours:minutes:seconds on a 24-hour * clock. */ TIME parse_date(FILE *cfile) { struct tm tm; int guess; char *val; int token; static int months[11] = { 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; /* Day of week... */ token = next_token(&val, cfile); if (token != NUMBER) { parse_warn("numeric day of week expected."); if (token != SEMI) skip_to_semi(cfile); return (NULL); } tm.tm_wday = atoi(val); /* Year... */ token = next_token(&val, cfile); if (token != NUMBER) { parse_warn("numeric year expected."); if (token != SEMI) skip_to_semi(cfile); return (NULL); } tm.tm_year = atoi(val); if (tm.tm_year > 1900) tm.tm_year -= 1900; /* Slash separating year from month... */ token = next_token(&val, cfile); if (token != SLASH) { parse_warn("expected slash separating year from month."); if (token != SEMI) skip_to_semi(cfile); return (NULL); } /* Month... */ token = next_token(&val, cfile); if (token != NUMBER) { parse_warn("numeric month expected."); if (token != SEMI) skip_to_semi(cfile); return (NULL); } tm.tm_mon = atoi(val) - 1; /* Slash separating month from day... */ token = next_token(&val, cfile); if (token != SLASH) { parse_warn("expected slash separating month from day."); if (token != SEMI) skip_to_semi(cfile); return (NULL); } /* Month... */ token = next_token(&val, cfile); if (token != NUMBER) { parse_warn("numeric day of month expected."); if (token != SEMI) skip_to_semi(cfile); return (NULL); } tm.tm_mday = atoi(val); /* Hour... */ token = next_token(&val, cfile); if (token != NUMBER) { parse_warn("numeric hour expected."); if (token != SEMI) skip_to_semi(cfile); return (NULL); } tm.tm_hour = atoi(val); /* Colon separating hour from minute... */ token = next_token(&val, cfile); if (token != COLON) { parse_warn("expected colon separating hour from minute."); if (token != SEMI) skip_to_semi(cfile); return (NULL); } /* Minute... */ token = next_token(&val, cfile); if (token != NUMBER) { parse_warn("numeric minute expected."); if (token != SEMI) skip_to_semi(cfile); return (NULL); } tm.tm_min = atoi(val); /* Colon separating minute from second... */ token = next_token(&val, cfile); if (token != COLON) { parse_warn("expected colon separating hour from minute."); if (token != SEMI) skip_to_semi(cfile); return (NULL); } /* Minute... */ token = next_token(&val, cfile); if (token != NUMBER) { parse_warn("numeric minute expected."); if (token != SEMI) skip_to_semi(cfile); return (NULL); } tm.tm_sec = atoi(val); tm.tm_isdst = 0; /* XXX: We assume that mktime does not use tm_yday. */ tm.tm_yday = 0; /* Make sure the date ends in a semicolon... */ token = next_token(&val, cfile); if (token != SEMI) { parse_warn("semicolon expected."); skip_to_semi(cfile); return (NULL); } /* Guess the time value... */ guess = ((((((365 * (tm.tm_year - 70) + /* Days in years since '70 */ (tm.tm_year - 69) / 4 + /* Leap days since '70 */ (tm.tm_mon /* Days in months this year */ ? months[tm.tm_mon - 1] : 0) + (tm.tm_mon > 1 && /* Leap day this year */ !((tm.tm_year - 72) & 3)) + tm.tm_mday - 1) * 24) + /* Day of month */ tm.tm_hour) * 60) + tm.tm_min) * 60) + tm.tm_sec; /* * This guess could be wrong because of leap seconds or other * weirdness we don't know about that the system does. For * now, we're just going to accept the guess, but at some point * it might be nice to do a successive approximation here to get * an exact value. Even if the error is small, if the server * is restarted frequently (and thus the lease database is * reread), the error could accumulate into something * significant. */ return (guess); }