/* $OpenBSD: fat.c,v 1.3 1996/06/23 14:30:43 deraadt Exp $ */ /* $NetBSD: fat.c,v 1.1.4.1 1996/05/31 18:41:50 jtc Exp $ */ /* * Copyright (C) 1995, 1996 Wolfgang Solfrank * Copyright (c) 1995 Martin Husemann * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Martin Husemann * and Wolfgang Solfrank. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef lint static char rcsid[] = "$OpenBSD: fat.c,v 1.3 1996/06/23 14:30:43 deraadt Exp $"; #endif /* not lint */ #include #include #include #include #include #include "ext.h" /* * Check a cluster number for valid value */ static int checkclnum(boot, fat, cl, next) struct bootblock *boot; int fat; cl_t cl; cl_t *next; { if (!boot->Is16BitFat && *next >= (CLUST_RSRVD&0xfff)) *next |= 0xf000; if (*next == CLUST_FREE) { boot->NumFree++; return FSOK; } if (*next < CLUST_FIRST || (*next >= boot->NumClusters && *next < CLUST_EOFS)) { pwarn("Cluster %d in FAT %d continues with %s cluster number %d\n", cl, fat, *next < CLUST_RSRVD ? "out of range" : "reserved", *next); if (ask(0, "Truncate")) { *next = CLUST_EOF; return FSFATMOD; } return FSERROR; } return FSOK; } /* * Read a FAT and decode it into internal format */ int readfat(fs, boot, no, fp) int fs; struct bootblock *boot; int no; struct fatEntry **fp; { struct fatEntry *fat; u_char *buffer, *p; cl_t cl; off_t off; int size; int ret = FSOK; boot->NumFree = 0; fat = malloc(sizeof(struct fatEntry) * boot->NumClusters); buffer = malloc(boot->FATsecs * boot->BytesPerSec); if (fat == NULL || buffer == NULL) { perror("No space for FAT"); if (fat) free(fat); return FSFATAL; } memset(fat, 0, sizeof(struct fatEntry) * boot->NumClusters); off = boot->ResSectors + no * boot->FATsecs; off *= boot->BytesPerSec; if (lseek(fs, off, SEEK_SET) != off) { perror("Unable to read FAT"); free(buffer); free(fat); return FSFATAL; } if ((size = read(fs, buffer, boot->FATsecs * boot->BytesPerSec)) != boot->FATsecs * boot->BytesPerSec) { if (size < 0) perror("Unable to read FAT"); else pfatal("Short FAT?"); free(buffer); free(fat); return FSFATAL; } /* * Remember start of FAT to allow keeping it in write_fat. */ fat[0].length = buffer[0]|(buffer[1] << 8)|(buffer[2] << 16); if (boot->Is16BitFat) fat[0].length |= buffer[3] << 24; if (buffer[1] != 0xff || buffer[2] != 0xff || (boot->Is16BitFat && buffer[3] != 0xff)) { char *msg = boot->Is16BitFat ? "FAT starts with odd byte sequence (%02x%02x%02x%02x)\n" : "FAT starts with odd byte sequence (%02x%02x%02x)\n"; pwarn(msg, buffer[0], buffer[1], buffer[2], buffer[3]); if (ask(1, "Correct")) { fat[0].length = boot->Media|0xffffff; ret |= FSFATMOD; } } p = buffer + (boot->Is16BitFat ? 4 : 3); for (cl = CLUST_FIRST; cl < boot->NumClusters;) { if (boot->Is16BitFat) { fat[cl].next = p[0] + (p[1] << 8); ret |= checkclnum(boot, no, cl, &fat[cl].next); cl++; p += 2; } else { fat[cl].next = (p[0] + (p[1] << 8)) & 0x0fff; ret |= checkclnum(boot, no, cl, &fat[cl].next); cl++; if (cl >= boot->NumClusters) break; fat[cl].next = ((p[1] >> 4) + (p[2] << 4)) & 0x0fff; ret |= checkclnum(boot, no, cl, &fat[cl].next); cl++; p += 3; } } free(buffer); *fp = fat; return ret; } /* * Get type of reserved cluster */ char * rsrvdcltype(cl) cl_t cl; { if (cl < CLUST_BAD) return "reserved"; if (cl > CLUST_BAD) return "as EOF"; return "bad"; } static int clustdiffer(cl, cp1, cp2, fatnum) cl_t cl; cl_t *cp1; cl_t *cp2; int fatnum; { if (*cp1 >= CLUST_RSRVD) { if (*cp2 >= CLUST_RSRVD) { if ((*cp1 < CLUST_BAD && *cp2 < CLUST_BAD) || (*cp1 > CLUST_BAD && *cp2 > CLUST_BAD)) { pwarn("Cluster %d is marked %s with different indicators, ", cl, rsrvdcltype(*cp1)); if (ask(1, "fix")) { *cp2 = *cp1; return FSFATMOD; } return FSFATAL; } pwarn("Cluster %d is marked %s in FAT 1, %s in FAT %d\n", cl, rsrvdcltype(*cp1), rsrvdcltype(*cp2), fatnum); if (ask(0, "use FAT #1's entry")) { *cp2 = *cp1; return FSFATMOD; } if (ask(0, "use FAT #%d's entry", fatnum)) { *cp1 = *cp2; return FSFATMOD; } return FSFATAL; } pwarn("Cluster %d is marked %s in FAT 1, but continues with cluster %d in FAT %d\n", cl, rsrvdcltype(*cp1), *cp2, fatnum); if (ask(0, "Use continuation from FAT %d", fatnum)) { *cp1 = *cp2; return FSFATMOD; } if (ask(0, "Use mark from FAT 1")) { *cp2 = *cp1; return FSFATMOD; } return FSFATAL; } if (*cp2 >= CLUST_RSRVD) { pwarn("Cluster %d continues with cluster %d in FAT 1, but is marked %s in FAT %d\n", cl, *cp1, rsrvdcltype(*cp2), fatnum); if (ask(0, "Use continuation from FAT 1")) { *cp2 = *cp1; return FSFATMOD; } if (ask(0, "Use mark from FAT %d", fatnum)) { *cp1 = *cp2; return FSFATMOD; } return FSERROR; } pwarn("Cluster %d continues with cluster %d in FAT 1, but with cluster %d in FAT %d\n", cl, *cp1, *cp2, fatnum); if (ask(0, "Use continuation from FAT 1")) { *cp2 = *cp1; return FSFATMOD; } if (ask(0, "Use continuation from FAT %d", fatnum)) { *cp1 = *cp2; return FSFATMOD; } return FSERROR; } /* * Compare two FAT copies in memory. Resolve any conflicts and merge them * into the first one. */ int comparefat(boot, first, second, fatnum) struct bootblock *boot; struct fatEntry *first; struct fatEntry *second; int fatnum; { cl_t cl; int ret = FSOK; if (first[0].next != second[0].next) { pwarn("Media bytes in cluster 1(%02x) and %d(%02x) differ\n", first[0].next, fatnum, second[0].next); if (ask(1, "Use media byte from FAT 1")) { second[0].next = first[0].next; ret |= FSFATMOD; } else if (ask(0, "Use media byte from FAT %d", fatnum)) { first[0].next = second[0].next; ret |= FSFATMOD; } else ret |= FSERROR; } for (cl = CLUST_FIRST; cl < boot->NumClusters; cl++) if (first[cl].next != second[cl].next) ret |= clustdiffer(cl, &first[cl].next, &second[cl].next, fatnum); return ret; } void clearchain(boot, fat, head) struct bootblock *boot; struct fatEntry *fat; cl_t head; { cl_t p, q; for (p = head; p >= CLUST_FIRST && p < boot->NumClusters; p = q) { if (fat[p].head != head) break; q = fat[p].next; fat[p].next = fat[p].head = CLUST_FREE; fat[p].length = 0; } } /* * Check a complete FAT in-memory for crosslinks */ int checkfat(boot, fat) struct bootblock *boot; struct fatEntry *fat; { cl_t head, p, h; u_int len; int ret = 0; int conf; /* * pass 1: figure out the cluster chains. */ for (head = CLUST_FIRST; head < boot->NumClusters; head++) { /* find next untraveled chain */ if (fat[head].head != 0 /* cluster already belongs to some chain*/ || fat[head].next == CLUST_FREE) continue; /* skip it. */ /* follow the chain and mark all clusters on the way */ for (len = 0, p = head; p >= CLUST_FIRST && p < boot->NumClusters; p = fat[p].next) { fat[p].head = head; len++; } /* the head record gets the length */ fat[head].length = len; } /* * pass 2: check for crosslinked chains (we couldn't do this in pass 1 because * we didn't know the real start of the chain then - would have treated partial * chains as interlinked with their main chain) */ for (head = CLUST_FIRST; head < boot->NumClusters; head++) { /* find next untraveled chain */ if (fat[head].head != head) continue; /* follow the chain to its end (hopefully) */ for (p = head; fat[p].next >= CLUST_FIRST && fat[p].next < boot->NumClusters; p = fat[p].next) if (fat[fat[p].next].head != head) break; if (fat[p].next >= CLUST_EOFS) continue; if (fat[p].next == 0) { pwarn("Cluster chain starting at %d ends with free cluster\n", head); if (ask(0, "Clear chain starting at %d", head)) { clearchain(boot, fat, head); ret |= FSFATMOD; } else ret |= FSERROR; continue; } if (fat[p].next >= CLUST_RSRVD) { pwarn("Cluster chain starting at %d ends with cluster marked %s\n", head, rsrvdcltype(fat[p].next)); if (ask(0, "Clear chain starting at %d", head)) { clearchain(boot, fat, head); ret |= FSFATMOD; } else ret |= FSERROR; continue; } if (fat[p].next < CLUST_FIRST || fat[p].next >= boot->NumClusters) { pwarn("Cluster chain starting at %d ends with cluster out of range (%d)\n", head, fat[p].next); if (ask(0, "Clear chain starting at %d", head)) { clearchain(boot, fat, head); ret |= FSFATMOD; } else ret |= FSERROR; } pwarn("Cluster chains starting at %d and %d are linked at cluster %d\n", head, fat[p].head, p); conf = FSERROR; if (ask(0, "Clear chain starting at %d", head)) { clearchain(boot, fat, head); conf = FSFATMOD; } if (ask(0, "Clear chain starting at %d", h = fat[p].head)) { if (conf == FSERROR) { /* * Transfer the common chain to the one not cleared above. */ for (; p >= CLUST_FIRST && p < boot->NumClusters; p = fat[p].next) { if (h != fat[p].head) { /* * Have to reexamine this chain. */ head--; break; } fat[p].head = head; } } clearchain(boot, fat, h); conf |= FSFATMOD; } ret |= conf; } return ret; } /* * Write out FATs encoding them from the internal format */ int writefat(fs, boot, fat) int fs; struct bootblock *boot; struct fatEntry *fat; { u_char *buffer, *p; cl_t cl; int i; u_int32_t fatsz; off_t off; int ret = FSOK; buffer = malloc(fatsz = boot->FATsecs * boot->BytesPerSec); if (buffer == NULL) { perror("No space for FAT"); return FSFATAL; } memset(buffer, 0, fatsz); boot->NumFree = 0; buffer[0] = (u_char)fat[0].length; buffer[1] = (u_char)(fat[0].length >> 8); if (boot->Is16BitFat) buffer[3] = (u_char)(fat[0].length >> 24); for (cl = CLUST_FIRST, p = buffer; cl < boot->NumClusters;) { if (boot->Is16BitFat) { p[0] = (u_char)fat[cl].next; if (fat[cl].next == CLUST_FREE) boot->NumFree++; p[1] = (u_char)(fat[cl++].next >> 8); p += 2; } else { if (fat[cl].next == CLUST_FREE) boot->NumFree++; if (cl + 1 < boot->NumClusters && fat[cl + 1].next == CLUST_FREE) boot->NumFree++; p[0] = (u_char)fat[cl].next; p[1] = (u_char)((fat[cl].next >> 8) & 0xf) |(u_char)(fat[cl+1].next << 4); p[2] = (u_char)(fat[cl++].next >> 8); p += 3; } } for (i = 0; i < boot->FATs; i++) { off = boot->ResSectors + i * boot->FATsecs; off *= boot->BytesPerSec; if (lseek(fs, off, SEEK_SET) != off || write(fs, buffer, fatsz) != fatsz) { perror("Unable to write FAT"); ret = FSFATAL; /* Return immediately? XXX */ } } free(buffer); return ret; } /* * Check a complete in-memory FAT for lost cluster chains */ int checklost(dosfs, boot, fat) int dosfs; struct bootblock *boot; struct fatEntry *fat; { cl_t head; int mod = FSOK; for (head = CLUST_FIRST; head < boot->NumClusters; head++) { /* find next untraveled chain */ if (fat[head].head != head || fat[head].next == CLUST_FREE || (fat[head].next >= CLUST_RSRVD && fat[head].next < CLUST_EOFS) || (fat[head].flags & FAT_USED)) continue; pwarn("Lost cluster chain at cluster 0x%04x\n%d Cluster(s) lost\n", head, fat[head].length); mod |= reconnect(dosfs, boot, fat, head); if (mod & FSFATAL) break; } finishlf(); return mod; }