/* $OpenBSD: debug.c,v 1.5 2007/03/19 13:27:47 pedro Exp $ */ /* * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz * Copyright (c) 1980, 1989, 1993 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgment: * This product includes software developed by the University of * California, Berkeley and its contributors, as well as Christoph * Herrmann and Thomas-Henning von Kamptz. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $TSHeader: src/sbin/growfs/debug.c,v 1.3 2000/12/12 19:31:00 tomsoft Exp $ * $FreeBSD: src/sbin/growfs/debug.c,v 1.7 2002/09/25 04:06:36 mike Exp $ * */ #ifndef lint static const char rcsid[] = "$OpenBSD: debug.c,v 1.5 2007/03/19 13:27:47 pedro Exp $"; #endif /* not lint */ /* ********************************************************** INCLUDES ***** */ #include <sys/param.h> #include <limits.h> #include <stdio.h> #include <ufs/ufs/dinode.h> #include <ufs/ffs/fs.h> #include "debug.h" #ifdef FS_DEBUG /* *********************************************************** GLOBALS ***** */ static FILE *dbg_log=NULL; static unsigned int indent=0; /* * prototypes not done here, as they come with debug.h */ /* ********************************************************** dbg_open ***** */ /* * Open the filehandle where all debug output has to go. */ void dbg_open(const char *fn) { if (strcmp(fn, "-") == 0) dbg_log=fopen("/dev/stdout", "a"); else dbg_log=fopen(fn, "a"); return; } /* ********************************************************* dbg_close ***** */ /* * Close the filehandle where all debug output went to. */ void dbg_close(void) { if(dbg_log) { fclose(dbg_log); dbg_log=NULL; } return; } /* ****************************************************** dbg_dump_hex ***** */ /* * Dump out a full file system block in hex. */ void dbg_dump_hex(struct fs *sb, const char *comment, unsigned char *mem) { int i, j, k; if(!dbg_log) { return; } fprintf(dbg_log, "===== START HEXDUMP =====\n"); fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)mem, comment); indent++; for (i=0; i<sb->fs_bsize; i+=24) { for (j=0; j<3; j++) { for (k=0; k<8; k++) { fprintf(dbg_log, "%02x ", *mem++); } fprintf(dbg_log, " "); } fprintf(dbg_log, "\n"); } indent--; fprintf(dbg_log, "===== END HEXDUMP =====\n"); return; } /* ******************************************************* dbg_dump_fs ***** */ /* * Dump the superblock. */ void dbg_dump_fs(struct fs *sb, const char *comment) { #ifdef FSMAXSNAP int j; #endif /* FSMAXSNAP */ if(!dbg_log) { return; } fprintf(dbg_log, "===== START SUPERBLOCK =====\n"); fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)sb, comment); indent++; fprintf(dbg_log, "sblkno ufs_daddr_t 0x%08x\n", sb->fs_sblkno); fprintf(dbg_log, "cblkno ufs_daddr_t 0x%08x\n", sb->fs_cblkno); fprintf(dbg_log, "iblkno ufs_daddr_t 0x%08x\n", sb->fs_iblkno); fprintf(dbg_log, "dblkno ufs_daddr_t 0x%08x\n", sb->fs_dblkno); fprintf(dbg_log, "cgoffset int32_t 0x%08x\n", sb->fs_cgoffset); fprintf(dbg_log, "cgmask int32_t 0x%08x\n", sb->fs_cgmask); fprintf(dbg_log, "time time_t %10u\n", (unsigned int)sb->fs_ffs1_time); fprintf(dbg_log, "size int32_t 0x%08x\n", sb->fs_ffs1_size); fprintf(dbg_log, "dsize int32_t 0x%08x\n", sb->fs_ffs1_dsize); fprintf(dbg_log, "ncg int32_t 0x%08x\n", sb->fs_ncg); fprintf(dbg_log, "bsize int32_t 0x%08x\n", sb->fs_bsize); fprintf(dbg_log, "fsize int32_t 0x%08x\n", sb->fs_fsize); fprintf(dbg_log, "frag int32_t 0x%08x\n", sb->fs_frag); fprintf(dbg_log, "minfree int32_t 0x%08x\n", sb->fs_minfree); fprintf(dbg_log, "rotdelay int32_t 0x%08x\n", sb->fs_rotdelay); fprintf(dbg_log, "rps int32_t 0x%08x\n", sb->fs_rps); fprintf(dbg_log, "bmask int32_t 0x%08x\n", sb->fs_bmask); fprintf(dbg_log, "fmask int32_t 0x%08x\n", sb->fs_fmask); fprintf(dbg_log, "bshift int32_t 0x%08x\n", sb->fs_bshift); fprintf(dbg_log, "fshift int32_t 0x%08x\n", sb->fs_fshift); fprintf(dbg_log, "maxcontig int32_t 0x%08x\n", sb->fs_maxcontig); fprintf(dbg_log, "maxbpg int32_t 0x%08x\n", sb->fs_maxbpg); fprintf(dbg_log, "fragshift int32_t 0x%08x\n", sb->fs_fragshift); fprintf(dbg_log, "fsbtodb int32_t 0x%08x\n", sb->fs_fsbtodb); fprintf(dbg_log, "sbsize int32_t 0x%08x\n", sb->fs_sbsize); fprintf(dbg_log, "csmask int32_t 0x%08x\n", sb->fs_csmask); fprintf(dbg_log, "csshift int32_t 0x%08x\n", sb->fs_csshift); fprintf(dbg_log, "nindir int32_t 0x%08x\n", sb->fs_nindir); fprintf(dbg_log, "inopb int32_t 0x%08x\n", sb->fs_inopb); fprintf(dbg_log, "nspf int32_t 0x%08x\n", sb->fs_nspf); fprintf(dbg_log, "optim int32_t 0x%08x\n", sb->fs_optim); fprintf(dbg_log, "npsect int32_t 0x%08x\n", sb->fs_npsect); fprintf(dbg_log, "interleave int32_t 0x%08x\n", sb->fs_interleave); fprintf(dbg_log, "trackskew int32_t 0x%08x\n", sb->fs_trackskew); fprintf(dbg_log, "id int32_t[2] %08x %08x\n", sb->fs_id[0], sb->fs_id[1]); fprintf(dbg_log, "csaddr ufs_daddr_t 0x%08x\n", sb->fs_ffs1_csaddr); fprintf(dbg_log, "cssize int32_t 0x%08x\n", sb->fs_cssize); fprintf(dbg_log, "cgsize int32_t 0x%08x\n", sb->fs_cgsize); fprintf(dbg_log, "ntrak int32_t 0x%08x\n", sb->fs_ntrak); fprintf(dbg_log, "nsect int32_t 0x%08x\n", sb->fs_nsect); fprintf(dbg_log, "spc int32_t 0x%08x\n", sb->fs_spc); fprintf(dbg_log, "ncyl int32_t 0x%08x\n", sb->fs_ncyl); fprintf(dbg_log, "cpg int32_t 0x%08x\n", sb->fs_cpg); fprintf(dbg_log, "ipg int32_t 0x%08x\n", sb->fs_ipg); fprintf(dbg_log, "fpg int32_t 0x%08x\n", sb->fs_fpg); dbg_dump_csum("internal cstotal", &sb->fs_ffs1_cstotal); fprintf(dbg_log, "fmod int8_t 0x%02x\n", sb->fs_fmod); fprintf(dbg_log, "clean int8_t 0x%02x\n", sb->fs_clean); fprintf(dbg_log, "ronly int8_t 0x%02x\n", sb->fs_ronly); fprintf(dbg_log, "flags int8_t 0x%02x\n", sb->fs_ffs1_flags); fprintf(dbg_log, "fsmnt u_char[MAXMNTLEN] \"%s\"\n", sb->fs_fsmnt); fprintf(dbg_log, "cgrotor int32_t 0x%08x\n", sb->fs_cgrotor); /* * struct csum[MAXCSBUFS] - is only maintained in memory */ /* fprintf(dbg_log, " int32_t\n", sb->*fs_maxcluster);*/ fprintf(dbg_log, "cpc int32_t 0x%08x\n", sb->fs_cpc); /* * int16_t fs_opostbl[16][8] - is dumped when used in dbg_dump_sptbl */ #ifdef FSMAXSNAP for(j=0; j<FSMAXSNAP; j++) { fprintf(dbg_log, "snapinum int32_t[%2d] 0x%08x\n", j, sb->fs_snapinum[j]); if(!sb->fs_snapinum[j]) { /* list is dense */ break; } } #endif /* FSMAXSNAP */ fprintf(dbg_log, "contigsumsize int32_t 0x%08x\n", sb->fs_contigsumsize); fprintf(dbg_log, "maxsymlinklen int32_t 0x%08x\n", sb->fs_maxsymlinklen); fprintf(dbg_log, "inodefmt int32_t 0x%08x\n", sb->fs_inodefmt); fprintf(dbg_log, "maxfilesize u_int64_t 0x%08x%08x\n", ((unsigned int *)&(sb->fs_maxfilesize))[1], ((unsigned int *)&(sb->fs_maxfilesize))[0]); fprintf(dbg_log, "qbmask int64_t 0x%08x%08x\n", ((unsigned int *)&(sb->fs_qbmask))[1], ((unsigned int *)&(sb->fs_qbmask))[0]); fprintf(dbg_log, "qfmask int64_t 0x%08x%08x\n", ((unsigned int *)&(sb->fs_qfmask))[1], ((unsigned int *)&(sb->fs_qfmask))[0]); fprintf(dbg_log, "state int32_t 0x%08x\n", sb->fs_state); fprintf(dbg_log, "postblformat int32_t 0x%08x\n", sb->fs_postblformat); fprintf(dbg_log, "nrpos int32_t 0x%08x\n", sb->fs_nrpos); fprintf(dbg_log, "postbloff int32_t 0x%08x\n", sb->fs_postbloff); fprintf(dbg_log, "rotbloff int32_t 0x%08x\n", sb->fs_rotbloff); fprintf(dbg_log, "magic int32_t 0x%08x\n", sb->fs_magic); indent--; fprintf(dbg_log, "===== END SUPERBLOCK =====\n"); return; } /* ******************************************************* dbg_dump_cg ***** */ /* * Dump a cylinder group. */ void dbg_dump_cg(const char *comment, struct cg *cgr) { int j; if(!dbg_log) { return; } fprintf(dbg_log, "===== START CYLINDER GROUP =====\n"); fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)cgr, comment); indent++; fprintf(dbg_log, "magic int32_t 0x%08x\n", cgr->cg_magic); fprintf(dbg_log, "time time_t %10u\n", (unsigned int) cgr->cg_time); fprintf(dbg_log, "cgx int32_t 0x%08x\n", cgr->cg_cgx); fprintf(dbg_log, "ncyl int16_t 0x%04x\n", cgr->cg_ncyl); fprintf(dbg_log, "niblk int16_t 0x%04x\n", cgr->cg_niblk); fprintf(dbg_log, "ndblk int32_t 0x%08x\n", cgr->cg_ndblk); dbg_dump_csum("internal cs", &cgr->cg_cs); fprintf(dbg_log, "rotor int32_t 0x%08x\n", cgr->cg_rotor); fprintf(dbg_log, "frotor int32_t 0x%08x\n", cgr->cg_frotor); fprintf(dbg_log, "irotor int32_t 0x%08x\n", cgr->cg_irotor); for(j=0; j<MAXFRAG; j++) { fprintf(dbg_log, "frsum int32_t[%d] 0x%08x\n", j, cgr->cg_frsum[j]); } fprintf(dbg_log, "btotoff int32_t 0x%08x\n", cgr->cg_btotoff); fprintf(dbg_log, "boff int32_t 0x%08x\n", cgr->cg_boff); fprintf(dbg_log, "iusedoff int32_t 0x%08x\n", cgr->cg_iusedoff); fprintf(dbg_log, "freeoff int32_t 0x%08x\n", cgr->cg_freeoff); fprintf(dbg_log, "nextfreeoff int32_t 0x%08x\n", cgr->cg_nextfreeoff); fprintf(dbg_log, "clustersumoff int32_t 0x%08x\n", cgr->cg_clustersumoff); fprintf(dbg_log, "clusterof int32_t 0x%08x\n", cgr->cg_clusteroff); fprintf(dbg_log, "nclusterblks int32_t 0x%08x\n", cgr->cg_nclusterblks); indent--; fprintf(dbg_log, "===== END CYLINDER GROUP =====\n"); return; } /* ***************************************************** dbg_dump_csum ***** */ /* * Dump a cylinder summary. */ void dbg_dump_csum(const char *comment, struct csum *cs) { if(!dbg_log) { return; } fprintf(dbg_log, "===== START CYLINDER SUMMARY =====\n"); fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)cs, comment); indent++; fprintf(dbg_log, "ndir int32_t 0x%08x\n", cs->cs_ndir); fprintf(dbg_log, "nbfree int32_t 0x%08x\n", cs->cs_nbfree); fprintf(dbg_log, "nifree int32_t 0x%08x\n", cs->cs_nifree); fprintf(dbg_log, "nffree int32_t 0x%08x\n", cs->cs_nffree); indent--; fprintf(dbg_log, "===== END CYLINDER SUMMARY =====\n"); return; } /* **************************************************** dbg_dump_inmap ***** */ /* * Dump the inode allocation map in one cylinder group. */ void dbg_dump_inmap(struct fs *sb, const char *comment, struct cg *cgr) { int j,k,l,e; unsigned char *cp; if(!dbg_log) { return; } fprintf(dbg_log, "===== START INODE ALLOCATION MAP =====\n"); fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)cgr, comment); indent++; cp=(unsigned char *)cg_inosused(cgr); e=sb->fs_ipg/8; for(j=0; j<e; j+=32) { fprintf(dbg_log, "%08x: ", j); for(k=0; k<32; k+=8) { if(j+k+8<e) { fprintf(dbg_log, "%02x%02x%02x%02x%02x%02x%02x%02x ", cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]); } else { for(l=0; (l<8)&&(j+k+l<e); l++) { fprintf(dbg_log, "%02x", cp[l]); } } cp+=8; } fprintf(dbg_log, "\n"); } indent--; fprintf(dbg_log, "===== END INODE ALLOCATION MAP =====\n"); return; } /* **************************************************** dbg_dump_frmap ***** */ /* * Dump the fragment allocation map in one cylinder group. */ void dbg_dump_frmap(struct fs *sb, const char *comment, struct cg *cgr) { int j,k,l,e; unsigned char *cp; if(!dbg_log) { return; } fprintf(dbg_log, "===== START FRAGMENT ALLOCATION MAP =====\n"); fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)cgr, comment); indent++; cp=(unsigned char *)cg_blksfree(cgr); e=howmany((sb->fs_cpg * sb->fs_spc / NSPF(sb)), CHAR_BIT); for(j=0; j<e; j+=32) { fprintf(dbg_log, "%08x: ", j); for(k=0; k<32; k+=8) { if(j+k+8<e) { fprintf(dbg_log, "%02x%02x%02x%02x%02x%02x%02x%02x ", cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]); } else { for(l=0; (l<8)&&(j+k+l<e); l++) { fprintf(dbg_log, "%02x", cp[l]); } } cp+=8; } fprintf(dbg_log, "\n"); } indent--; fprintf(dbg_log, "===== END FRAGMENT ALLOCATION MAP =====\n"); return; } /* **************************************************** dbg_dump_clmap ***** */ /* * Dump the cluster allocation map in one cylinder group. */ void dbg_dump_clmap(struct fs *sb, const char *comment, struct cg *cgr) { int j,k,l,e; unsigned char *cp; if(!dbg_log) { return; } fprintf(dbg_log, "===== START CLUSTER ALLOCATION MAP =====\n"); fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)cgr, comment); indent++; cp=(unsigned char *)cg_clustersfree(cgr); e=howmany(sb->fs_cpg * sb->fs_spc / NSPB(sb), CHAR_BIT); for(j=0; j<e; j+=32) { fprintf(dbg_log, "%08x: ", j); for(k=0; k<32; k+=8) { if(j+k+8<e) { fprintf(dbg_log, "%02x%02x%02x%02x%02x%02x%02x%02x ", cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]); } else { for(l=0; (l<8)&&(j+k+l<e); l++) { fprintf(dbg_log, "%02x", cp[l]); } } cp+=8; } fprintf(dbg_log, "\n"); } indent--; fprintf(dbg_log, "===== END CLUSTER ALLOCATION MAP =====\n"); return; } /* **************************************************** dbg_dump_clsum ***** */ /* * Dump the cluster availability summary of one cylinder group. */ void dbg_dump_clsum(struct fs *sb, const char *comment, struct cg *cgr) { int j; int *ip; if(!dbg_log) { return; } fprintf(dbg_log, "===== START CLUSTER SUMMARY =====\n"); fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)cgr, comment); indent++; ip=(int *)cg_clustersum(cgr); for(j=0; j<=sb->fs_contigsumsize; j++) { fprintf(dbg_log, "%02d: %8d\n", j, *ip++); } indent--; fprintf(dbg_log, "===== END CLUSTER SUMMARY =====\n"); return; } /* **************************************************** dbg_dump_sptbl ***** */ /* * Dump the block summary, and the rotational layout table. */ void dbg_dump_sptbl(struct fs *sb, const char *comment, struct cg *cgr) { int j,k; int *ip; if(!dbg_log) { return; } fprintf(dbg_log, "===== START BLOCK SUMMARY AND POSITION TABLE =====\n"); fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)cgr, comment); indent++; ip=(int *)cg_blktot(cgr); for(j=0; j<sb->fs_cpg; j++) { fprintf(dbg_log, "%2d: %5d = ", j, *ip++); for(k=0; k<sb->fs_nrpos; k++) { fprintf(dbg_log, "%4d", cg_blks(sb, cgr, j)[k]); if(k<sb->fs_nrpos-1) { fprintf(dbg_log, " + "); } } fprintf(dbg_log, "\n"); } indent--; fprintf(dbg_log, "===== END BLOCK SUMMARY AND POSITION TABLE =====\n"); return; } /* ****************************************************** dbg_dump_ino ***** */ /* * Dump an inode structure. */ void dbg_dump_ino(struct fs *sb, const char *comment, struct ufs1_dinode *ino) { int ictr; int remaining_blocks; if(!dbg_log) { return; } fprintf(dbg_log, "===== START INODE DUMP =====\n"); fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)ino, comment); indent++; fprintf(dbg_log, "mode u_int16_t 0%o\n", ino->di_mode); fprintf(dbg_log, "nlink int16_t 0x%04x\n", ino->di_nlink); fprintf(dbg_log, "size u_int64_t 0x%08x%08x\n", ((unsigned int *)&(ino->di_size))[1], ((unsigned int *)&(ino->di_size))[0]); fprintf(dbg_log, "atime int32_t 0x%08x\n", ino->di_atime); fprintf(dbg_log, "atimensec int32_t 0x%08x\n", ino->di_atimensec); fprintf(dbg_log, "mtime int32_t 0x%08x\n", ino->di_mtime); fprintf(dbg_log, "mtimensec int32_t 0x%08x\n", ino->di_mtimensec); fprintf(dbg_log, "ctime int32_t 0x%08x\n", ino->di_ctime); fprintf(dbg_log, "ctimensec int32_t 0x%08x\n", ino->di_ctimensec); remaining_blocks=howmany(ino->di_size, sb->fs_bsize); /* XXX ts - +1? */ for(ictr=0; ictr < MIN(NDADDR, remaining_blocks); ictr++) { fprintf(dbg_log, "db ufs_daddr_t[%x] 0x%08x\n", ictr, ino->di_db[ictr]); } remaining_blocks-=NDADDR; if(remaining_blocks>0) { fprintf(dbg_log, "ib ufs_daddr_t[0] 0x%08x\n", ino->di_ib[0]); } remaining_blocks-=howmany(sb->fs_bsize, sizeof(ufs_daddr_t)); if(remaining_blocks>0) { fprintf(dbg_log, "ib ufs_daddr_t[1] 0x%08x\n", ino->di_ib[1]); } #define SQUARE(a) ((a)*(a)) remaining_blocks-=SQUARE(howmany(sb->fs_bsize, sizeof(ufs_daddr_t))); #undef SQUARE if(remaining_blocks>0) { fprintf(dbg_log, "ib ufs_daddr_t[2] 0x%08x\n", ino->di_ib[2]); } fprintf(dbg_log, "flags u_int32_t 0x%08x\n", ino->di_flags); fprintf(dbg_log, "blocks int32_t 0x%08x\n", ino->di_blocks); fprintf(dbg_log, "gen int32_t 0x%08x\n", ino->di_gen); fprintf(dbg_log, "uid u_int32_t 0x%08x\n", ino->di_uid); fprintf(dbg_log, "gid u_int32_t 0x%08x\n", ino->di_gid); indent--; fprintf(dbg_log, "===== END INODE DUMP =====\n"); return; } /* ***************************************************** dbg_dump_iblk ***** */ /* * Dump an indirect block. The iteration to dump a full file has to be * written around. */ void dbg_dump_iblk(struct fs *sb, const char *comment, char *block, size_t length) { unsigned int *mem; int i, j; if(!dbg_log) { return; } fprintf(dbg_log, "===== START INDIRECT BLOCK DUMP =====\n"); fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)block, comment); indent++; mem=(unsigned int *)block; for (i=0; (size_t)i<MIN(howmany(sb->fs_bsize, sizeof(ufs_daddr_t)), length); i+=8) { fprintf(dbg_log, "%04x: ", i); for (j=0; j<8; j++) { if((size_t)(i+j)<length) { fprintf(dbg_log, "%08X ", *mem++); } } fprintf(dbg_log, "\n"); } indent--; fprintf(dbg_log, "===== END INDIRECT BLOCK DUMP =====\n"); return; } #endif /* FS_DEBUG */