/* $OpenBSD: growfs.c,v 1.56 2024/02/03 18:51:57 beck Exp $ */ /* * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz * Copyright (c) 1980, 1989, 1993 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgment: * This product includes software developed by the University of * California, Berkeley and its contributors, as well as Christoph * Herrmann and Thomas-Henning von Kamptz. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $ * $FreeBSD: src/sbin/growfs/growfs.c,v 1.25 2006/07/17 20:48:36 stefanf Exp $ * */ #include /* DEV_BSIZE MAXBSIZE setbit isset isclr clrbit */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MINIMUM(a, b) (((a) < (b)) ? (a) : (b)) #define MAXIMUM(a, b) (((a) > (b)) ? (a) : (b)) #define rounddown(x, y) (((x)/(y))*(y)) #define roundup(x, y) ((((x)+((y)-1))/(y))*(y)) static int quiet; /* quiet flag */ static union { struct fs fs; char pad[SBLOCKSIZE]; } fsun1, fsun2; #define sblock fsun1.fs /* the new superblock */ #define osblock fsun2.fs /* the old superblock */ /* * Possible superblock locations ordered from most to least likely. */ static int sblock_try[] = SBLOCKSEARCH; static daddr_t sblockloc; static union { struct cg cg; char pad[MAXBSIZE]; } cgun1, cgun2; #define acg cgun1.cg /* a cylinder cgroup (new) */ #define aocg cgun2.cg /* an old cylinder group */ static char ablk[MAXBSIZE]; /* a block */ static struct csum *fscs; /* cylinder summary */ union dinode { struct ufs1_dinode dp1; struct ufs2_dinode dp2; }; #define DIP(dp, field) \ ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ (uint32_t)(dp)->dp1.field : (dp)->dp2.field) #define DIP_SET(dp, field, val) do { \ if (sblock.fs_magic == FS_UFS1_MAGIC) \ (dp)->dp1.field = (val); \ else \ (dp)->dp2.field = (val); \ } while (0) static daddr_t inoblk; /* inode block address */ static char inobuf[MAXBSIZE]; /* inode block */ ino_t maxino; /* last valid inode */ /* * An array of elements of type struct gfs_bpp describes all blocks to * be relocated in order to free the space needed for the cylinder group * summary for all cylinder groups located in the first cylinder group. */ struct gfs_bpp { daddr_t old; /* old block number */ daddr_t new; /* new block number */ #define GFS_FL_FIRST 1 #define GFS_FL_LAST 2 unsigned int flags; /* special handling required */ int found; /* how many references were updated */ }; static void growfs(int, int, unsigned int); static void rdfs(daddr_t, size_t, void *, int); static void wtfs(daddr_t, size_t, void *, int, unsigned int); static daddr_t alloc(void); static int charsperline(void); static void usage(void); static int isblock(struct fs *, unsigned char *, int); static void clrblock(struct fs *, unsigned char *, int); static void setblock(struct fs *, unsigned char *, int); static void initcg(u_int, time_t, int, unsigned int); static void updjcg(u_int, time_t, int, int, unsigned int); static void updcsloc(time_t, int, int, unsigned int); static struct disklabel *get_disklabel(int); static void return_disklabel(int, struct disklabel *, unsigned int); static union dinode *ginode(ino_t, int, int); static void frag_adjust(daddr_t, int); static int cond_bl_upd(daddr_t *, struct gfs_bpp *, int, int, unsigned int); static void updclst(int); static void updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int); static void indirchk(daddr_t, daddr_t, daddr_t, daddr_t, struct gfs_bpp *, int, int, unsigned int); static void ffs1_sb_update(struct fs *, daddr_t); int colwidth; /* * Here we actually start growing the filesystem. We basically read the * cylinder summary from the first cylinder group as we want to update * this on the fly during our various operations. First we handle the * changes in the former last cylinder group. Afterwards we create all new * cylinder groups. Now we handle the cylinder group containing the * cylinder summary which might result in a relocation of the whole * structure. In the end we write back the updated cylinder summary, the * new superblock, and slightly patched versions of the super block * copies. */ static void growfs(int fsi, int fso, unsigned int Nflag) { int i, j; u_int cg; time_t utime; char tmpbuf[100]; time(&utime); /* * Get the cylinder summary into the memory. */ fscs = calloc(1, (size_t)sblock.fs_cssize); if (fscs == NULL) errx(1, "calloc failed"); for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) { rdfs(fsbtodb(&osblock, osblock.fs_csaddr + numfrags(&osblock, i)), (size_t)MINIMUM(osblock.fs_cssize - i, osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi); } /* * Do all needed changes in the former last cylinder group. */ updjcg(osblock.fs_ncg - 1, utime, fsi, fso, Nflag); /* * Dump out summary information about filesystem. */ #define B2MBFACTOR (1 / (1024.0 * 1024.0)) printf("growfs: %.1fMB (%jd sectors) block size %d, fragment size %d\n", (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, sblock.fs_fsize); printf("\tusing %u cylinder groups of %.2fMB, %d blks, %u inodes.\n", sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); #undef B2MBFACTOR /* * Now build the cylinders group blocks and * then print out indices of cylinder groups. */ if (!quiet) printf("super-block backups (for fsck -b #) at:\n"); i = 0; /* * Iterate for only the new cylinder groups. */ for (cg = osblock.fs_ncg; cg < sblock.fs_ncg; cg++) { initcg(cg, utime, fso, Nflag); if (quiet) continue; j = snprintf(tmpbuf, sizeof(tmpbuf), " %lld%s", fsbtodb(&sblock, cgsblock(&sblock, cg)), cg < (sblock.fs_ncg - 1) ? "," : ""); if (j >= sizeof(tmpbuf)) j = sizeof(tmpbuf) - 1; if (j < 0 || i + j >= colwidth) { printf("\n"); i = 0; } i += j; printf("%s", tmpbuf); fflush(stdout); } if (!quiet) printf("\n"); /* * Do all needed changes in the first cylinder group. * allocate blocks in new location */ updcsloc(utime, fsi, fso, Nflag); /* * Now write the cylinder summary back to disk. */ for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) { wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), (size_t)MINIMUM(sblock.fs_cssize - i, sblock.fs_bsize), (void *)(((char *)fscs) + i), fso, Nflag); } /* * Now write the new superblock back to disk. */ sblock.fs_time = utime; sblock.fs_clean = 0; if (sblock.fs_magic == FS_UFS1_MAGIC) { sblock.fs_ffs1_time = (int32_t)sblock.fs_time; sblock.fs_ffs1_size = (int32_t)sblock.fs_size; sblock.fs_ffs1_dsize = (int32_t)sblock.fs_dsize; sblock.fs_ffs1_csaddr = (int32_t)sblock.fs_csaddr; sblock.fs_ffs1_cstotal.cs_ndir = (int32_t)sblock.fs_cstotal.cs_ndir; sblock.fs_ffs1_cstotal.cs_nbfree = (int32_t)sblock.fs_cstotal.cs_nbfree; sblock.fs_ffs1_cstotal.cs_nifree = (int32_t)sblock.fs_cstotal.cs_nifree; sblock.fs_ffs1_cstotal.cs_nffree = (int32_t)sblock.fs_cstotal.cs_nffree; } wtfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag); /* * Clean up the dynamic fields in our superblock copies. */ sblock.fs_fmod = 0; sblock.fs_clean = 1; sblock.fs_ronly = 0; sblock.fs_cgrotor = 0; sblock.fs_state = 0; memset(&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt)); /* * XXX * The following fields are currently distributed from the superblock * to the copies: * fs_minfree * fs_rotdelay * fs_maxcontig * fs_maxbpg * fs_minfree, * fs_optim * fs_flags regarding SOFTPDATES * * We probably should rather change the summary for the cylinder group * statistics here to the value of what would be in there, if the file * system were created initially with the new size. Therefore we still * need to find an easy way of calculating that. * Possibly we can try to read the first superblock copy and apply the * "diffed" stats between the old and new superblock by still copying * certain parameters onto that. */ /* * Write out the duplicate superblocks. */ for (cg = 0; cg < sblock.fs_ncg; cg++) { wtfs(fsbtodb(&sblock, cgsblock(&sblock, cg)), (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag); } } /* * This creates a new cylinder group structure, for more details please see * the source of newfs(8), as this function is taken over almost unchanged. * As this is never called for the first cylinder group, the special * provisions for that case are removed here. */ static void initcg(u_int cg, time_t utime, int fso, unsigned int Nflag) { static char *iobuf; daddr_t d, dlower, dupper, blkno, start; daddr_t i, cbase, dmax; struct ufs1_dinode *dp1; struct ufs2_dinode *dp2; struct csum *cs; ino_t j; size_t iobufsize; if (sblock.fs_bsize < SBLOCKSIZE) iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; else iobufsize = 4 * sblock.fs_bsize; if (iobuf == NULL && (iobuf = malloc(iobufsize)) == NULL) errx(37, "panic: cannot allocate I/O buffer"); bzero(iobuf, iobufsize); /* * Determine block bounds for cylinder group. * Allow space for super block summary information in first * cylinder group. */ cbase = cgbase(&sblock, cg); dmax = cbase + sblock.fs_fpg; if (dmax > sblock.fs_size) dmax = sblock.fs_size; dlower = cgsblock(&sblock, cg) - cbase; dupper = cgdmin(&sblock, cg) - cbase; if (cg == 0) /* XXX fscs may be relocated */ dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); cs = &fscs[cg]; memset(&acg, 0, sblock.fs_cgsize); acg.cg_ffs2_time = utime; acg.cg_magic = CG_MAGIC; acg.cg_cgx = cg; acg.cg_ffs2_niblk = sblock.fs_ipg; acg.cg_initediblk = MINIMUM(sblock.fs_ipg, 2 * INOPB(&sblock)); acg.cg_ndblk = dmax - cbase; if (sblock.fs_contigsumsize > 0) acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; start = sizeof(struct cg); if (sblock.fs_magic == FS_UFS2_MAGIC) { acg.cg_iusedoff = start; } else { if (cg == sblock.fs_ncg - 1) acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg; else acg.cg_ncyl = sblock.fs_cpg; acg.cg_time = (int32_t)acg.cg_ffs2_time; acg.cg_ffs2_time = 0; acg.cg_niblk = (int16_t)acg.cg_ffs2_niblk; acg.cg_ffs2_niblk = 0; acg.cg_initediblk = 0; acg.cg_btotoff = start; acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t); acg.cg_iusedoff = acg.cg_boff + sblock.fs_cpg * sizeof(u_int16_t); } acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); if (sblock.fs_contigsumsize > 0) { acg.cg_clustersumoff = roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); acg.cg_clustersumoff -= sizeof(u_int32_t); acg.cg_clusteroff = acg.cg_clustersumoff + (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); acg.cg_nextfreeoff = acg.cg_clusteroff + howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); } if (acg.cg_nextfreeoff > sblock.fs_cgsize) { /* * This should never happen as we would have had that panic * already on filesystem creation */ errx(37, "panic: cylinder group too big"); } acg.cg_cs.cs_nifree += sblock.fs_ipg; if (cg == 0) { for (i = 0; i < ROOTINO; i++) { setbit(cg_inosused(&acg), i); acg.cg_cs.cs_nifree--; } } if (cg > 0) { /* * In cg 0, beginning space is reserved * for boot and super blocks. */ for (d = 0; d < dlower; d += sblock.fs_frag) { blkno = d / sblock.fs_frag; setblock(&sblock, cg_blksfree(&acg), blkno); if (sblock.fs_contigsumsize > 0) setbit(cg_clustersfree(&acg), blkno); acg.cg_cs.cs_nbfree++; } sblock.fs_dsize += dlower; } sblock.fs_dsize += acg.cg_ndblk - dupper; if ((i = dupper % sblock.fs_frag)) { acg.cg_frsum[sblock.fs_frag - i]++; for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { setbit(cg_blksfree(&acg), dupper); acg.cg_cs.cs_nffree++; } } for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; d += sblock.fs_frag) { blkno = d / sblock.fs_frag; setblock(&sblock, cg_blksfree(&acg), blkno); if (sblock.fs_contigsumsize > 0) setbit(cg_clustersfree(&acg), blkno); acg.cg_cs.cs_nbfree++; } if (d < acg.cg_ndblk) { acg.cg_frsum[acg.cg_ndblk - d]++; for (; d < acg.cg_ndblk; d++) { setbit(cg_blksfree(&acg), d); acg.cg_cs.cs_nffree++; } } if (sblock.fs_contigsumsize > 0) { int32_t *sump = cg_clustersum(&acg); u_char *mapp = cg_clustersfree(&acg); int map = *mapp++; int bit = 1; int run = 0; for (i = 0; i < acg.cg_nclusterblks; i++) { if ((map & bit) != 0) run++; else if (run != 0) { if (run > sblock.fs_contigsumsize) run = sblock.fs_contigsumsize; sump[run]++; run = 0; } if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) bit <<= 1; else { map = *mapp++; bit = 1; } } if (run != 0) { if (run > sblock.fs_contigsumsize) run = sblock.fs_contigsumsize; sump[run]++; } } sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir; sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree; sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree; sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree; *cs = acg.cg_cs; /* * Write out the duplicate superblock, the cylinder group map * and two blocks worth of inodes in a single write. */ bcopy(&sblock, iobuf, SBLOCKSIZE); start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE; bcopy(&acg, &iobuf[start], sblock.fs_cgsize); start += sblock.fs_bsize; dp1 = (struct ufs1_dinode *)&iobuf[start]; dp2 = (struct ufs2_dinode *)&iobuf[start]; for (i = MINIMUM(sblock.fs_ipg, 2 * INOPB(&sblock)); i != 0; i--) { if (sblock.fs_magic == FS_UFS1_MAGIC) { dp1->di_gen = arc4random(); dp1++; } else { dp2->di_gen = arc4random(); dp2++; } } wtfs(fsbtodb(&sblock, cgsblock(&sblock, cg)), iobufsize, iobuf, fso, Nflag); /* Initialize inodes for FFS1. */ if (sblock.fs_magic == FS_UFS1_MAGIC) { for (i = 2 * sblock.fs_frag; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) { dp1 = (struct ufs1_dinode *)&iobuf[start]; for (j = 0; j < INOPB(&sblock); j++) { dp1->di_gen = arc4random(); dp1++; } wtfs(fsbtodb(&sblock, cgimin(&sblock, cg) + i), (size_t)sblock.fs_bsize, &iobuf[start], fso, Nflag); } } } /* * Here we add or subtract (sign +1/-1) the available fragments in a given * block to or from the fragment statistics. By subtracting before and adding * after an operation on the free frag map we can easy update the fragment * statistic, which seems to be otherwise a rather complex operation. */ static void frag_adjust(daddr_t frag, int sign) { int fragsize; int f; fragsize = 0; /* * Here frag only needs to point to any fragment in the block we want * to examine. */ for (f = rounddown(frag, sblock.fs_frag); f < roundup(frag + 1, sblock.fs_frag); f++) { /* * Count contiguous free fragments. */ if (isset(cg_blksfree(&acg), f)) { fragsize++; } else { if (fragsize && fragsize < sblock.fs_frag) { /* * We found something in between. */ acg.cg_frsum[fragsize] += sign; } fragsize = 0; } } if (fragsize && fragsize < sblock.fs_frag) { /* * We found something. */ acg.cg_frsum[fragsize] += sign; } } /* * Here we conditionally update a pointer to a fragment. We check for all * relocated blocks if any of its fragments is referenced by the current * field, and update the pointer to the respective fragment in our new * block. If we find a reference we write back the block immediately, * as there is no easy way for our general block reading engine to figure * out if a write back operation is needed. */ static int cond_bl_upd(daddr_t *block, struct gfs_bpp *field, int fsi, int fso, unsigned int Nflag) { struct gfs_bpp *f; daddr_t src, dst; int fragnum; void *ibuf; for (f = field; f->old != 0; f++) { src = *block; if (fragstoblks(&sblock, src) != f->old) continue; /* * The fragment is part of the block, so update. */ dst = blkstofrags(&sblock, f->new); fragnum = fragnum(&sblock, src); *block = dst + fragnum; f->found++; /* * Copy the block back immediately. * * XXX If src is from an indirect block we have * to implement copy on write here in case of * active snapshots. */ ibuf = malloc(sblock.fs_bsize); if (!ibuf) errx(1, "malloc failed"); src -= fragnum; rdfs(fsbtodb(&sblock, src), (size_t)sblock.fs_bsize, ibuf, fsi); wtfs(dst, (size_t)sblock.fs_bsize, ibuf, fso, Nflag); free(ibuf); /* * The same block can't be found again in this loop. */ return (1); } return (0); } /* * Here we do all needed work for the former last cylinder group. It has to be * changed in any case, even if the filesystem ended exactly on the end of * this group, as there is some slightly inconsistent handling of the number * of cylinders in the cylinder group. We start again by reading the cylinder * group from disk. If the last block was not fully available, we first handle * the missing fragments, then we handle all new full blocks in that file * system and finally we handle the new last fragmented block in the file * system. We again have to handle the fragment statistics rotational layout * tables and cluster summary during all those operations. */ static void updjcg(u_int cg, time_t utime, int fsi, int fso, unsigned int Nflag) { daddr_t cbase, dmax, dupper; struct csum *cs; int i, k; int j = 0; /* * Read the former last (joining) cylinder group from disk, and make * a copy. */ rdfs(fsbtodb(&osblock, cgtod(&osblock, cg)), (size_t)osblock.fs_cgsize, (void *)&aocg, fsi); memcpy(&cgun1, &cgun2, sizeof(cgun2)); /* * If the cylinder group had already its new final size almost * nothing is to be done ... except: * For some reason the value of cg_ncyl in the last cylinder group has * to be zero instead of fs_cpg. As this is now no longer the last * cylinder group we have to change that value now to fs_cpg. */ if (cgbase(&osblock, cg+1) == osblock.fs_size) { if (sblock.fs_magic == FS_UFS1_MAGIC) acg.cg_ncyl = sblock.fs_cpg; wtfs(fsbtodb(&sblock, cgtod(&sblock, cg)), (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag); return; } /* * Set up some variables needed later. */ cbase = cgbase(&sblock, cg); dmax = cbase + sblock.fs_fpg; if (dmax > sblock.fs_size) dmax = sblock.fs_size; dupper = cgdmin(&sblock, cg) - cbase; if (cg == 0) /* XXX fscs may be relocated */ dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); /* * Set pointer to the cylinder summary for our cylinder group. */ cs = fscs + cg; /* * Touch the cylinder group, update all fields in the cylinder group as * needed, update the free space in the superblock. */ acg.cg_time = utime; if (sblock.fs_magic == FS_UFS1_MAGIC) { if (cg == sblock.fs_ncg - 1) { /* * This is still the last cylinder group. */ acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg; } else { acg.cg_ncyl = sblock.fs_cpg; } } acg.cg_ndblk = dmax - cbase; sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk; if (sblock.fs_contigsumsize > 0) acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; /* * Now we have to update the free fragment bitmap for our new free * space. There again we have to handle the fragmentation and also * the rotational layout tables and the cluster summary. This is * also done per fragment for the first new block if the old file * system end was not on a block boundary, per fragment for the new * last block if the new filesystem end is not on a block boundary, * and per block for all space in between. * * Handle the first new block here if it was partially available * before. */ if (osblock.fs_size % sblock.fs_frag) { if (roundup(osblock.fs_size, sblock.fs_frag) <= sblock.fs_size) { /* * The new space is enough to fill at least this * block */ j = 0; for (i = roundup(osblock.fs_size-cbase, sblock.fs_frag) - 1; i >= osblock.fs_size-cbase; i--) { setbit(cg_blksfree(&acg), i); acg.cg_cs.cs_nffree++; j++; } /* * Check if the fragment just created could join an * already existing fragment at the former end of the * filesystem. */ if (isblock(&sblock, cg_blksfree(&acg), ((osblock.fs_size - cgbase(&sblock, cg))/ sblock.fs_frag))) { /* * The block is now completely available. */ acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--; acg.cg_cs.cs_nbfree++; acg.cg_cs.cs_nffree-=sblock.fs_frag; k = rounddown(osblock.fs_size-cbase, sblock.fs_frag); updclst((osblock.fs_size-cbase)/sblock.fs_frag); } else { /* * Lets rejoin a possible partially growed * fragment. */ k = 0; while (isset(cg_blksfree(&acg), i) && (i >= rounddown(osblock.fs_size - cbase, sblock.fs_frag))) { i--; k++; } if (k) acg.cg_frsum[k]--; acg.cg_frsum[k + j]++; } } else { /* * We only grow by some fragments within this last * block. */ for (i = sblock.fs_size-cbase-1; i >= osblock.fs_size-cbase; i--) { setbit(cg_blksfree(&acg), i); acg.cg_cs.cs_nffree++; j++; } /* * Lets rejoin a possible partially growed fragment. */ k = 0; while (isset(cg_blksfree(&acg), i) && (i >= rounddown(osblock.fs_size - cbase, sblock.fs_frag))) { i--; k++; } if (k) acg.cg_frsum[k]--; acg.cg_frsum[k + j]++; } } /* * Handle all new complete blocks here. */ for (i = roundup(osblock.fs_size - cbase, sblock.fs_frag); i + sblock.fs_frag <= dmax-cbase; /* XXX <= or only < ? */ i += sblock.fs_frag) { j = i / sblock.fs_frag; setblock(&sblock, cg_blksfree(&acg), j); updclst(j); acg.cg_cs.cs_nbfree++; } /* * Handle the last new block if there are stll some new fragments left. * Here we don't have to bother about the cluster summary or the even * the rotational layout table. */ if (i < (dmax - cbase)) { acg.cg_frsum[dmax - cbase - i]++; for (; i < dmax - cbase; i++) { setbit(cg_blksfree(&acg), i); acg.cg_cs.cs_nffree++; } } sblock.fs_cstotal.cs_nffree += (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree); sblock.fs_cstotal.cs_nbfree += (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree); /* * The following statistics are not changed here: * sblock.fs_cstotal.cs_ndir * sblock.fs_cstotal.cs_nifree * As the statistics for this cylinder group are ready, copy it to * the summary information array. */ *cs = acg.cg_cs; /* * Write the updated "joining" cylinder group back to disk. */ wtfs(fsbtodb(&sblock, cgtod(&sblock, cg)), (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag); } /* * Here we update the location of the cylinder summary. We have two possible * ways of growing the cylinder summary. * (1) We can try to grow the summary in the current location, and relocate * possibly used blocks within the current cylinder group. * (2) Alternatively we can relocate the whole cylinder summary to the first * new completely empty cylinder group. Once the cylinder summary is no * longer in the beginning of the first cylinder group you should never * use a version of fsck which is not aware of the possibility to have * this structure in a non standard place. * Option (1) is considered to be less intrusive to the structure of the file- * system. So we try to stick to that whenever possible. If there is not enough * space in the cylinder group containing the cylinder summary we have to use * method (2). In case of active snapshots in the filesystem we probably can * completely avoid implementing copy on write if we stick to method (2) only. */ static void updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag) { struct csum *cs; int ocscg, ncscg; int blocks; daddr_t cbase, dupper, odupper, d, f, g; int ind; u_int cg, inc; struct gfs_bpp *bp; int i, l; int lcs = 0; int block; if (howmany(sblock.fs_cssize, sblock.fs_fsize) == howmany(osblock.fs_cssize, osblock.fs_fsize)) { /* * No new fragment needed. */ return; } ocscg = dtog(&osblock, osblock.fs_csaddr); cs = fscs + ocscg; blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)- howmany(osblock.fs_cssize, osblock.fs_bsize); /* * Read original cylinder group from disk, and make a copy. * XXX If Nflag is set in some very rare cases we now miss * some changes done in updjcg by reading the unmodified * block from disk. */ rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)), (size_t)osblock.fs_cgsize, (void *)&aocg, fsi); memcpy(&cgun1, &cgun2, sizeof(cgun2)); /* * Touch the cylinder group, set up local variables needed later * and update the superblock. */ acg.cg_time = utime; /* * XXX In the case of having active snapshots we may need much more * blocks for the copy on write. We need each block twice, and * also up to 8*3 blocks for indirect blocks for all possible * references. */ if (/*((int)sblock.fs_time & 0x3) > 0 || */ cs->cs_nbfree < blocks) { /* * There is not enough space in the old cylinder group to * relocate all blocks as needed, so we relocate the whole * cylinder group summary to a new group. We try to use the * first complete new cylinder group just created. Within the * cylinder group we align the area immediately after the * cylinder group information location in order to be as * close as possible to the original implementation of ffs. * * First we have to make sure we'll find enough space in the * new cylinder group. If not, then we currently give up. * We start with freeing everything which was used by the * fragments of the old cylinder summary in the current group. * Now we write back the group meta data, read in the needed * meta data from the new cylinder group, and start allocating * within that group. Here we can assume, the group to be * completely empty. Which makes the handling of fragments and * clusters a lot easier. */ if (sblock.fs_ncg-osblock.fs_ncg < 2) errx(2, "panic: not enough space"); /* * Point "d" to the first fragment not used by the cylinder * summary. */ d = osblock.fs_csaddr + (osblock.fs_cssize / osblock.fs_fsize); /* * Set up last cluster size ("lcs") already here. Calculate * the size for the trailing cluster just behind where "d" * points to. */ if (sblock.fs_contigsumsize > 0) { for (block = howmany(d % sblock.fs_fpg, sblock.fs_frag), lcs = 0; lcs < sblock.fs_contigsumsize; block++, lcs++) { if (isclr(cg_clustersfree(&acg), block)) break; } } /* * Point "d" to the last frag used by the cylinder summary. */ d--; if ((d + 1) % sblock.fs_frag) { /* * The end of the cylinder summary is not a complete * block. */ frag_adjust(d % sblock.fs_fpg, -1); for (; (d + 1) % sblock.fs_frag; d--) { setbit(cg_blksfree(&acg), d % sblock.fs_fpg); acg.cg_cs.cs_nffree++; sblock.fs_cstotal.cs_nffree++; } /* * Point "d" to the last fragment of the last * (incomplete) block of the cylinder summary. */ d++; frag_adjust(d % sblock.fs_fpg, 1); if (isblock(&sblock, cg_blksfree(&acg), (d % sblock.fs_fpg) / sblock.fs_frag)) { acg.cg_cs.cs_nffree -= sblock.fs_frag; acg.cg_cs.cs_nbfree++; sblock.fs_cstotal.cs_nffree -= sblock.fs_frag; sblock.fs_cstotal.cs_nbfree++; if (sblock.fs_contigsumsize > 0) { setbit(cg_clustersfree(&acg), (d % sblock.fs_fpg) / sblock.fs_frag); if (lcs < sblock.fs_contigsumsize) { if (lcs) { cg_clustersum(&acg) [lcs]--; } lcs++; cg_clustersum(&acg)[lcs]++; } } } /* * Point "d" to the first fragment of the block before * the last incomplete block. */ d--; } for (d = rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr; d -= sblock.fs_frag) { setblock(&sblock, cg_blksfree(&acg), (d % sblock.fs_fpg) / sblock.fs_frag); acg.cg_cs.cs_nbfree++; sblock.fs_cstotal.cs_nbfree++; if (sblock.fs_contigsumsize > 0) { setbit(cg_clustersfree(&acg), (d % sblock.fs_fpg) / sblock.fs_frag); /* * The last cluster size is already set up. */ if (lcs < sblock.fs_contigsumsize) { if (lcs) { cg_clustersum(&acg)[lcs]--; } lcs++; cg_clustersum(&acg)[lcs]++; } } } *cs = acg.cg_cs; /* * Now write the former cylinder group containing the cylinder * summary back to disk. */ wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag); /* * Find the beginning of the new cylinder group containing the * cylinder summary. */ sblock.fs_csaddr = cgdmin(&sblock, osblock.fs_ncg); ncscg = dtog(&sblock, sblock.fs_csaddr); cs = fscs + ncscg; /* * If Nflag is specified, we would now read random data instead * of an empty cg structure from disk. So we can't simulate that * part for now. */ if (Nflag) return; /* * Read the future cylinder group containing the cylinder * summary from disk, and make a copy. */ rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)), (size_t)sblock.fs_cgsize, &aocg, fsi); memcpy(&cgun1, &cgun2, sizeof(cgun2)); /* * Allocate all complete blocks used by the new cylinder * summary. */ for (d = sblock.fs_csaddr; d + sblock.fs_frag <= sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize); d += sblock.fs_frag) { clrblock(&sblock, cg_blksfree(&acg), (d%sblock.fs_fpg)/sblock.fs_frag); acg.cg_cs.cs_nbfree--; sblock.fs_cstotal.cs_nbfree--; if (sblock.fs_contigsumsize > 0) { clrbit(cg_clustersfree(&acg), (d % sblock.fs_fpg) / sblock.fs_frag); } } /* * Allocate all fragments used by the cylinder summary in the * last block. */ if (d < sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize)) { for (; d - sblock.fs_csaddr < sblock.fs_cssize/sblock.fs_fsize; d++) { clrbit(cg_blksfree(&acg), d%sblock.fs_fpg); acg.cg_cs.cs_nffree--; sblock.fs_cstotal.cs_nffree--; } acg.cg_cs.cs_nbfree--; acg.cg_cs.cs_nffree += sblock.fs_frag; sblock.fs_cstotal.cs_nbfree--; sblock.fs_cstotal.cs_nffree += sblock.fs_frag; if (sblock.fs_contigsumsize > 0) { clrbit(cg_clustersfree(&acg), (d%sblock.fs_fpg) / sblock.fs_frag); } frag_adjust(d % sblock.fs_fpg, 1); } /* * XXX Handle the cluster statistics here in the case this * cylinder group is now almost full, and the remaining * space is less then the maximum cluster size. This is * probably not needed, as you would hardly find a file * system which has only MAXCSBUFS+FS_MAXCONTIG of free * space right behind the cylinder group information in * any new cylinder group. */ /* * Update our statistics in the cylinder summary. */ *cs = acg.cg_cs; /* * Write the new cylinder group containing the cylinder summary * back to disk. */ wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)), (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag); return; } /* * We have got enough of space in the current cylinder group, so we * can relocate just a few blocks, and let the summary information * grow in place where it is right now. */ cbase = cgbase(&osblock, ocscg); /* old and new are equal */ dupper = sblock.fs_csaddr - cbase + howmany(sblock.fs_cssize, sblock.fs_fsize); odupper = osblock.fs_csaddr - cbase + howmany(osblock.fs_cssize, osblock.fs_fsize); sblock.fs_dsize -= dupper-odupper; /* * Allocate the space for the array of blocks to be relocated. */ bp = calloc(((dupper-odupper) / sblock.fs_frag + 2), sizeof(struct gfs_bpp)); if (bp == NULL) errx(1, "calloc failed"); /* * Lock all new frags needed for the cylinder group summary. This is * done per fragment in the first and last block of the new required * area, and per block for all other blocks. * * Handle the first new block here (but only if some fragments where * already used for the cylinder summary). */ ind = 0; frag_adjust(odupper, -1); for (d = odupper; ((d < dupper) && (d % sblock.fs_frag)); d++) { if (isclr(cg_blksfree(&acg), d)) { if (!ind) { bp[ind].old = d / sblock.fs_frag; bp[ind].flags|=GFS_FL_FIRST; if (roundup(d, sblock.fs_frag) >= dupper) bp[ind].flags |= GFS_FL_LAST; ind++; } } else { clrbit(cg_blksfree(&acg), d); acg.cg_cs.cs_nffree--; sblock.fs_cstotal.cs_nffree--; } /* * No cluster handling is needed here, as there was at least * one fragment in use by the cylinder summary in the old * filesystem. * No block - free counter handling here as this block was not * a free block. */ } frag_adjust(odupper, 1); /* * Handle all needed complete blocks here. */ for (; d + sblock.fs_frag <= dupper; d += sblock.fs_frag) { if (!isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) { for (f = d; f < d + sblock.fs_frag; f++) { if (isset(cg_blksfree(&aocg), f)) { acg.cg_cs.cs_nffree--; sblock.fs_cstotal.cs_nffree--; } } clrblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag); bp[ind].old = d / sblock.fs_frag; ind++; } else { clrblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag); acg.cg_cs.cs_nbfree--; sblock.fs_cstotal.cs_nbfree--; if (sblock.fs_contigsumsize > 0) { clrbit(cg_clustersfree(&acg), d / sblock.fs_frag); for (lcs = 0, l = (d / sblock.fs_frag) + 1; lcs < sblock.fs_contigsumsize; l++, lcs++) { if (isclr(cg_clustersfree(&acg), l)) break; } if (lcs < sblock.fs_contigsumsize) { cg_clustersum(&acg)[lcs + 1]--; if (lcs) cg_clustersum(&acg)[lcs]++; } } } /* * No fragment counter handling is needed here, as this finally * doesn't change after the relocation. */ } /* * Handle all fragments needed in the last new affected block. */ if (d < dupper) { frag_adjust(dupper - 1, -1); if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) { acg.cg_cs.cs_nbfree--; sblock.fs_cstotal.cs_nbfree--; acg.cg_cs.cs_nffree+=sblock.fs_frag; sblock.fs_cstotal.cs_nffree+=sblock.fs_frag; if (sblock.fs_contigsumsize > 0) { clrbit(cg_clustersfree(&acg), d / sblock.fs_frag); for (lcs = 0, l = (d / sblock.fs_frag) + 1; lcs < sblock.fs_contigsumsize; l++, lcs++) { if (isclr(cg_clustersfree(&acg), l)) break; } if (lcs < sblock.fs_contigsumsize) { cg_clustersum(&acg)[lcs + 1]--; if (lcs) cg_clustersum(&acg)[lcs]++; } } } for (; d < dupper; d++) { if (isclr(cg_blksfree(&acg), d)) { bp[ind].old = d / sblock.fs_frag; bp[ind].flags |= GFS_FL_LAST; } else { clrbit(cg_blksfree(&acg), d); acg.cg_cs.cs_nffree--; sblock.fs_cstotal.cs_nffree--; } } if (bp[ind].flags & GFS_FL_LAST) /* we have to advance here */ ind++; frag_adjust(dupper - 1, 1); } /* * If we found a block to relocate just do so. */ if (ind) { for (i = 0; i < ind; i++) { if (!bp[i].old) { /* no more blocks listed */ /* * XXX A relative blocknumber should not be * zero, which is not explicitly * guaranteed by our code. */ break; } /* * Allocate a complete block in the same (current) * cylinder group. */ bp[i].new = alloc() / sblock.fs_frag; /* * There is no frag_adjust() needed for the new block * as it will have no fragments yet :-). */ for (f = bp[i].old * sblock.fs_frag, g = bp[i].new * sblock.fs_frag; f < (bp[i].old + 1) * sblock.fs_frag; f++, g++) { if (isset(cg_blksfree(&aocg), f)) { setbit(cg_blksfree(&acg), g); acg.cg_cs.cs_nffree++; sblock.fs_cstotal.cs_nffree++; } } /* * Special handling is required if this was the first * block. We have to consider the fragments which were * used by the cylinder summary in the original block * which re to be free in the copy of our block. We * have to be careful if this first block happens to * be also the last block to be relocated. */ if (bp[i].flags & GFS_FL_FIRST) { for (f = bp[i].old * sblock.fs_frag, g = bp[i].new * sblock.fs_frag; f < odupper; f++, g++) { setbit(cg_blksfree(&acg), g); acg.cg_cs.cs_nffree++; sblock.fs_cstotal.cs_nffree++; } if (!(bp[i].flags & GFS_FL_LAST)) frag_adjust(bp[i].new * sblock.fs_frag, 1); } /* * Special handling is required if this is the last * block to be relocated. */ if (bp[i].flags & GFS_FL_LAST) { frag_adjust(bp[i].new * sblock.fs_frag, 1); frag_adjust(bp[i].old * sblock.fs_frag, -1); for (f = dupper; f < roundup(dupper, sblock.fs_frag); f++) { if (isclr(cg_blksfree(&acg), f)) { setbit(cg_blksfree(&acg), f); acg.cg_cs.cs_nffree++; sblock.fs_cstotal.cs_nffree++; } } frag_adjust(bp[i].old * sblock.fs_frag, 1); } /* * !!! Attach the cylindergroup offset here. */ bp[i].old += cbase / sblock.fs_frag; bp[i].new += cbase / sblock.fs_frag; /* * Copy the content of the block. */ /* * XXX Here we will have to implement a copy on write * in the case we have any active snapshots. */ rdfs(fsbtodb(&sblock, bp[i].old * sblock.fs_frag), (size_t)sblock.fs_bsize, (void *)&ablk, fsi); wtfs(fsbtodb(&sblock, bp[i].new * sblock.fs_frag), (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag); } /* * Now we have to update all references to any fragment which * belongs to any block relocated. We iterate now over all * cylinder groups, within those over all non zero length * inodes. */ for (cg = 0; cg < osblock.fs_ncg; cg++) { for (inc = osblock.fs_ipg - 1; inc > 0; inc--) { updrefs(cg, (ino_t)inc, bp, fsi, fso, Nflag); } } /* * All inodes are checked, now make sure the number of * references found make sense. */ for (i = 0; i < ind; i++) { if (!bp[i].found || (bp[i].found > sblock.fs_frag)) { warnx("error: %jd refs found for block %jd.", (intmax_t)bp[i].found, (intmax_t)bp[i].old); } } } /* * The following statistics are not changed here: * sblock.fs_cstotal.cs_ndir * sblock.fs_cstotal.cs_nifree * The following statistics were already updated on the fly: * sblock.fs_cstotal.cs_nffree * sblock.fs_cstotal.cs_nbfree * As the statistics for this cylinder group are ready, copy it to * the summary information array. */ *cs = acg.cg_cs; /* * Write summary cylinder group back to disk. */ wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag); } /* * Here we read some block(s) from disk. */ static void rdfs(daddr_t bno, size_t size, void *bf, int fsi) { ssize_t n; if (bno < 0) { err(32, "rdfs: attempting to read negative block number"); } if (lseek(fsi, (off_t)bno * DEV_BSIZE, SEEK_SET) == -1) { err(33, "rdfs: seek error: %jd", (intmax_t)bno); } n = read(fsi, bf, size); if (n != (ssize_t)size) { err(34, "rdfs: read error: %jd", (intmax_t)bno); } } /* * Here we write some block(s) to disk. */ static void wtfs(daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag) { ssize_t n; if (Nflag) return; if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) == -1) err(35, "wtfs: seek error: %ld", (long)bno); n = write(fso, bf, size); if (n != (ssize_t)size) err(36, "wtfs: write error: %ld", (long)bno); } /* * Here we allocate a free block in the current cylinder group. It is assumed, * that acg contains the current cylinder group. As we may take a block from * somewhere in the filesystem we have to handle cluster summary here. */ static daddr_t alloc(void) { daddr_t d, blkno; int lcs1, lcs2; int l; int csmin, csmax; int dlower, dupper, dmax; if (acg.cg_magic != CG_MAGIC) { warnx("acg: bad magic number"); return (0); } if (acg.cg_cs.cs_nbfree == 0) { warnx("error: cylinder group ran out of space"); return (0); } /* * We start seeking for free blocks only from the space available after * the end of the new grown cylinder summary. Otherwise we allocate a * block here which we have to relocate a couple of seconds later again * again, and we are not prepared to to this anyway. */ blkno = -1; dlower = cgsblock(&sblock, acg.cg_cgx) - cgbase(&sblock, acg.cg_cgx); dupper = cgdmin(&sblock, acg.cg_cgx) - cgbase(&sblock, acg.cg_cgx); dmax = cgbase(&sblock, acg.cg_cgx) + sblock.fs_fpg; if (dmax > sblock.fs_size) { dmax = sblock.fs_size; } dmax -= cgbase(&sblock, acg.cg_cgx); /* retransform into cg */ csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx); csmax = csmin + howmany(sblock.fs_cssize, sblock.fs_fsize); for (d = 0; (d < dlower && blkno == -1); d += sblock.fs_frag) { if (d >= csmin && d <= csmax) { continue; } if (isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock, d))) { blkno = fragstoblks(&sblock, d);/* Yeah found a block */ break; } } for (d = dupper; (d < dmax && blkno == -1); d += sblock.fs_frag) { if (d >= csmin && d <= csmax) { continue; } if (isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock, d))) { blkno = fragstoblks(&sblock, d);/* Yeah found a block */ break; } } if (blkno == -1) { warnx("internal error: couldn't find promised block in cg"); return (0); } /* * This is needed if the block was found already in the first loop. */ d = blkstofrags(&sblock, blkno); clrblock(&sblock, cg_blksfree(&acg), blkno); if (sblock.fs_contigsumsize > 0) { /* * Handle the cluster allocation bitmap. */ clrbit(cg_clustersfree(&acg), blkno); /* * We possibly have split a cluster here, so we have to do * recalculate the sizes of the remaining cluster halves now, * and use them for updating the cluster summary information. * * Lets start with the blocks before our allocated block ... */ for (lcs1 = 0, l = blkno - 1; lcs1 < sblock.fs_contigsumsize; l--, lcs1++) { if (isclr(cg_clustersfree(&acg), l)) break; } /* * ... and continue with the blocks right after our allocated * block. */ for (lcs2 = 0, l = blkno + 1; lcs2 < sblock.fs_contigsumsize; l++, lcs2++) { if (isclr(cg_clustersfree(&acg), l)) break; } /* * Now update all counters. */ cg_clustersum(&acg)[MINIMUM(lcs1 + lcs2 + 1, sblock.fs_contigsumsize)]--; if (lcs1) cg_clustersum(&acg)[lcs1]++; if (lcs2) cg_clustersum(&acg)[lcs2]++; } /* * Update all statistics based on blocks. */ acg.cg_cs.cs_nbfree--; sblock.fs_cstotal.cs_nbfree--; return (d); } /* * Here we check if all frags of a block are free. For more details again * please see the source of newfs(8), as this function is taken over almost * unchanged. */ static int isblock(struct fs *fs, unsigned char *cp, int h) { unsigned char mask; switch (fs->fs_frag) { case 8: return (cp[h] == 0xff); case 4: mask = 0x0f << ((h & 0x1) << 2); return ((cp[h >> 1] & mask) == mask); case 2: mask = 0x03 << ((h & 0x3) << 1); return ((cp[h >> 2] & mask) == mask); case 1: mask = 0x01 << (h & 0x7); return ((cp[h >> 3] & mask) == mask); default: fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); return (0); } } /* * Here we allocate a complete block in the block map. For more details again * please see the source of newfs(8), as this function is taken over almost * unchanged. */ static void clrblock(struct fs *fs, unsigned char *cp, int h) { switch ((fs)->fs_frag) { case 8: cp[h] = 0; break; case 4: cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); break; case 2: cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); break; case 1: cp[h >> 3] &= ~(0x01 << (h & 0x7)); break; default: warnx("clrblock bad fs_frag %d", fs->fs_frag); break; } } /* * Here we free a complete block in the free block map. For more details again * please see the source of newfs(8), as this function is taken over almost * unchanged. */ static void setblock(struct fs *fs, unsigned char *cp, int h) { switch (fs->fs_frag) { case 8: cp[h] = 0xff; break; case 4: cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); break; case 2: cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); break; case 1: cp[h >> 3] |= (0x01 << (h & 0x7)); break; default: warnx("setblock bad fs_frag %d", fs->fs_frag); break; } } /* * This function provides access to an individual inode. We find out in which * block the requested inode is located, read it from disk if needed, and * return the pointer into that block. We maintain a cache of one block to * not read the same block again and again if we iterate linearly over all * inodes. */ static union dinode * ginode(ino_t inumber, int fsi, int cg) { static ino_t startinum = 0; /* first inode in cached block */ /* * The inumber passed in is relative to the cg, so use it here to see * if the inode has been allocated yet. */ if (isclr(cg_inosused(&aocg), inumber)) { return NULL; } /* * Now make the inumber relative to the entire inode space so it can * be sanity checked. */ inumber += (cg * sblock.fs_ipg); if (inumber < ROOTINO) { return NULL; } if (inumber > maxino) errx(8, "bad inode number %llu to ginode", (unsigned long long)inumber); if (startinum == 0 || inumber < startinum || inumber >= startinum + INOPB(&sblock)) { inoblk = fsbtodb(&sblock, ino_to_fsba(&sblock, inumber)); rdfs(inoblk, (size_t)sblock.fs_bsize, inobuf, fsi); startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock); } if (sblock.fs_magic == FS_UFS1_MAGIC) return (union dinode *)((uintptr_t)inobuf + (inumber % INOPB(&sblock)) * sizeof(struct ufs1_dinode)); return (union dinode *)((uintptr_t)inobuf + (inumber % INOPB(&sblock)) * sizeof(struct ufs2_dinode)); } /* * Figure out how many lines our current terminal has. For more details again * please see the source of newfs(8), as this function is taken over almost * unchanged. */ static int charsperline(void) { int columns; char *cp; struct winsize ws; columns = 0; if ((cp = getenv("COLUMNS")) != NULL) columns = strtonum(cp, 1, INT_MAX, NULL); if (columns == 0 && ioctl(STDOUT_FILENO, TIOCGWINSZ, &ws) == 0 && ws.ws_col > 0) columns = ws.ws_col; if (columns == 0) columns = 80; return columns; } /* * growfs(8) is a utility which allows to increase the size of an existing * ufs filesystem. Currently this can only be done on unmounted file system. * It recognizes some command line options to specify the new desired size, * and it does some basic checkings. The old filesystem size is determined * and after some more checks like we can really access the new last block * on the disk etc. we calculate the new parameters for the superblock. After * having done this we just call growfs() which will do the work. Before * we finish the only thing left is to update the disklabel. * We still have to provide support for snapshots. Therefore we first have to * understand what data structures are always replicated in the snapshot on * creation, for all other blocks we touch during our procedure, we have to * keep the old blocks unchanged somewhere available for the snapshots. If we * are lucky, then we only have to handle our blocks to be relocated in that * way. * Also we have to consider in what order we actually update the critical * data structures of the filesystem to make sure, that in case of a disaster * fsck(8) is still able to restore any lost data. * The foreseen last step then will be to provide for growing even mounted * file systems. There we have to extend the mount() system call to provide * userland access to the filesystem locking facility. */ int main(int argc, char **argv) { char *device, *lastsector; int ch; long long size = 0; unsigned int Nflag = 0; int ExpertFlag = 0; struct stat st; struct disklabel *lp; struct partition *pp; int i, fsi, fso; char reply[5]; const char *errstr; #ifdef FSMAXSNAP int j; #endif /* FSMAXSNAP */ while ((ch = getopt(argc, argv, "Nqs:vy")) != -1) { switch (ch) { case 'N': Nflag = 1; break; case 'q': quiet = 1; break; case 's': size = strtonum(optarg, 1, LLONG_MAX, &errstr); if (errstr) usage(); break; case 'v': /* for compatibility to newfs */ break; case 'y': ExpertFlag = 1; break; default: usage(); } } argc -= optind; argv += optind; if (argc != 1) usage(); colwidth = charsperline(); /* * Rather than guessing, use opendev() to get the device * name, which we open for reading. */ if ((fsi = opendev(*argv, O_RDONLY, 0, &device)) == -1) err(1, "%s", *argv); /* * Try to access our devices for writing ... */ if (Nflag) { fso = -1; } else { fso = open(device, O_WRONLY); if (fso == -1) err(1, "%s", device); } /* * Now we have a file descriptor for our device, fstat() it to * figure out the partition number. */ if (fstat(fsi, &st) == -1) err(1, "%s: fstat()", device); /* * Try to read a label from the disk. Then get the partition from the * device minor number, using DISKPART(). Probably don't need to * check against getmaxpartitions(). */ lp = get_disklabel(fsi); if (DISKPART(st.st_rdev) < getmaxpartitions()) pp = &lp->d_partitions[DISKPART(st.st_rdev)]; else errx(1, "%s: invalid partition number %u", device, DISKPART(st.st_rdev)); if (pledge("stdio disklabel", NULL) == -1) err(1, "pledge"); /* * Check if that partition is suitable for growing a file system. */ if (DL_GETPSIZE(pp) < 1) errx(1, "partition is unavailable"); if (pp->p_fstype != FS_BSDFFS) errx(1, "can only grow ffs partitions"); /* * Read the current superblock, and take a backup. */ for (i = 0; sblock_try[i] != -1; i++) { sblockloc = sblock_try[i] / DEV_BSIZE; rdfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&(osblock), fsi); if ((osblock.fs_magic == FS_UFS1_MAGIC || (osblock.fs_magic == FS_UFS2_MAGIC && osblock.fs_sblockloc == sblock_try[i])) && osblock.fs_bsize <= MAXBSIZE && osblock.fs_bsize >= (int32_t) sizeof(struct fs)) break; } if (sblock_try[i] == -1) errx(1, "superblock not recognized"); if (osblock.fs_clean == 0) errx(1, "filesystem not clean - run fsck"); if (sblock.fs_magic == FS_UFS1_MAGIC && (sblock.fs_ffs1_flags & FS_FLAGS_UPDATED) == 0) ffs1_sb_update(&sblock, sblock_try[i]); memcpy(&fsun1, &fsun2, sizeof(fsun2)); maxino = sblock.fs_ncg * sblock.fs_ipg; /* * Determine size to grow to. Default to the full size specified in * the disk label. */ sblock.fs_size = dbtofsb(&osblock, DL_SECTOBLK(lp, DL_GETPSIZE(pp))); if (size != 0) { if (size > DL_GETPSIZE(pp)) { errx(1, "there is not enough space (%llu < %lld)", DL_GETPSIZE(pp), size); } sblock.fs_size = dbtofsb(&osblock, DL_SECTOBLK(lp, size)); } /* * Are we really growing ? */ if (osblock.fs_size >= sblock.fs_size) { errx(1, "we are not growing (%jd->%jd)", (intmax_t)osblock.fs_size, (intmax_t)sblock.fs_size); } #ifdef FSMAXSNAP /* * Check if we find an active snapshot. */ if (ExpertFlag == 0) { for (j = 0; j < FSMAXSNAP; j++) { if (sblock.fs_snapinum[j]) { errx(1, "active snapshot found in filesystem\n" " please remove all snapshots before " "using growfs"); } if (!sblock.fs_snapinum[j]) /* list is dense */ break; } } #endif if (ExpertFlag == 0 && Nflag == 0) { printf("We strongly recommend you to make a backup " "before growing the Filesystem\n\n" " Did you backup your data (Yes/No) ? "); if (fgets(reply, (int)sizeof(reply), stdin) == NULL || strncasecmp(reply, "Yes", 3)) { printf("\n Nothing done \n"); exit (0); } } if (!quiet) printf("new filesystem size is: %jd frags\n", (intmax_t)sblock.fs_size); /* * Try to access our new last sector in the filesystem. Even if we * later on realize we have to abort our operation, on that sector * there should be no data, so we can't destroy something yet. */ lastsector = calloc(1, lp->d_secsize); if (!lastsector) err(1, "No memory for last sector test write"); wtfs(DL_SECTOBLK(lp, DL_GETPSIZE(pp) - 1), lp->d_secsize, lastsector, fso, Nflag); free(lastsector); /* * Now calculate new superblock values and check for reasonable * bound for new filesystem size: * fs_size: is derived from label or user input * fs_dsize: should get updated in the routines creating or * updating the cylinder groups on the fly * fs_cstotal: should get updated in the routines creating or * updating the cylinder groups */ /* * Update the number of cylinders and cylinder groups in the file system. */ if (sblock.fs_magic == FS_UFS1_MAGIC) { sblock.fs_ncyl = sblock.fs_size * NSPF(&sblock) / sblock.fs_spc; if (sblock.fs_size * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) sblock.fs_ncyl++; } sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); if ((ino_t)sblock.fs_ncg * sblock.fs_ipg > UINT_MAX) errx(1, "more than 2^32 inodes requested"); maxino = sblock.fs_ncg * sblock.fs_ipg; if (sblock.fs_size % sblock.fs_fpg != 0 && sblock.fs_size % sblock.fs_fpg < cgdmin(&sblock, sblock.fs_ncg)) { /* * The space in the new last cylinder group is too small, * so revert back. */ sblock.fs_ncg--; if (sblock.fs_magic == FS_UFS1_MAGIC) sblock.fs_ncyl = sblock.fs_ncg * sblock.fs_cpg; if (!quiet) printf("Warning: %jd sector(s) cannot be allocated.\n", (intmax_t)fsbtodb(&sblock, sblock.fs_size % sblock.fs_fpg)); sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg; } /* * Update the space for the cylinder group summary information in the * respective cylinder group data area. */ sblock.fs_cssize = fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); if (osblock.fs_size >= sblock.fs_size) errx(1, "not enough new space"); /* * Ok, everything prepared, so now let's do the tricks. */ growfs(fsi, fso, Nflag); /* * Update the disk label. */ pp->p_fragblock = DISKLABELV1_FFS_FRAGBLOCK(sblock.fs_fsize, sblock.fs_frag); pp->p_cpg = sblock.fs_fpg; return_disklabel(fso, lp, Nflag); close(fsi); if (fso > -1) close(fso); return 0; } /* * Write the updated disklabel back to disk. */ static void return_disklabel(int fd, struct disklabel *lp, unsigned int Nflag) { u_short sum; u_short *ptr; if (!lp) return; if (!Nflag) { lp->d_checksum = 0; sum = 0; ptr = (u_short *)lp; /* * recalculate checksum */ while (ptr < (u_short *)&lp->d_partitions[lp->d_npartitions]) sum ^= *ptr++; lp->d_checksum = sum; if (ioctl(fd, DIOCWDINFO, (char *)lp) == -1) errx(1, "DIOCWDINFO failed"); } free(lp); return ; } /* * Read the disklabel from disk. */ static struct disklabel * get_disklabel(int fd) { static struct disklabel *lab; lab = malloc(sizeof(struct disklabel)); if (!lab) errx(1, "malloc failed"); if (ioctl(fd, DIOCGDINFO, (char *)lab) != 0) err(1, "DIOCGDINFO"); return (lab); } /* * Dump a line of usage. */ static void usage(void) { fprintf(stderr, "usage: growfs [-Nqy] [-s size] special\n"); exit(1); } /* * This updates most parameters and the bitmap related to cluster. We have to * assume that sblock, osblock, acg are set up. */ static void updclst(int block) { static int lcs = 0; if (sblock.fs_contigsumsize < 1) /* no clustering */ return; /* * update cluster allocation map */ setbit(cg_clustersfree(&acg), block); /* * update cluster summary table */ if (!lcs) { /* * calculate size for the trailing cluster */ for (block--; lcs < sblock.fs_contigsumsize; block--, lcs++) { if (isclr(cg_clustersfree(&acg), block)) break; } } if (lcs < sblock.fs_contigsumsize) { if (lcs) cg_clustersum(&acg)[lcs]--; lcs++; cg_clustersum(&acg)[lcs]++; } } /* * This updates all references to relocated blocks for the given inode. The * inode is given as number within the cylinder group, and the number of the * cylinder group. */ static void updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int Nflag) { daddr_t len, lbn, numblks; daddr_t iptr, blksperindir; union dinode *ino; int i, mode, inodeupdated; ino = ginode(in, fsi, cg); if (ino == NULL) return; mode = DIP(ino, di_mode) & IFMT; if (mode != IFDIR && mode != IFREG && mode != IFLNK) return; /* only check DIR, FILE, LINK */ if (mode == IFLNK && DIP(ino, di_size) < (u_int64_t) sblock.fs_maxsymlinklen) return; /* skip short symlinks */ numblks = howmany(DIP(ino, di_size), sblock.fs_bsize); if (numblks == 0) return; /* skip empty file */ if (DIP(ino, di_blocks) == 0) return; /* skip empty swiss cheesy file or old fastlink */ /* * Check all the blocks. */ inodeupdated = 0; len = numblks < NDADDR ? numblks : NDADDR; for (i = 0; i < len; i++) { iptr = DIP(ino, di_db[i]); if (iptr == 0) continue; if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) { DIP_SET(ino, di_db[i], iptr); inodeupdated++; } } blksperindir = 1; len = numblks - NDADDR; lbn = NDADDR; for (i = 0; len > 0 && i < NIADDR; i++) { iptr = DIP(ino, di_ib[i]); if (iptr == 0) continue; if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) { DIP_SET(ino, di_ib[i], iptr); inodeupdated++; } indirchk(blksperindir, lbn, iptr, numblks, bp, fsi, fso, Nflag); blksperindir *= NINDIR(&sblock); lbn += blksperindir; len -= blksperindir; } if (inodeupdated) wtfs(inoblk, sblock.fs_bsize, inobuf, fso, Nflag); } /* * Recursively check all the indirect blocks. */ static void indirchk(daddr_t blksperindir, daddr_t lbn, daddr_t blkno, daddr_t lastlbn, struct gfs_bpp *bp, int fsi, int fso, unsigned int Nflag) { void *ibuf; int i, last; daddr_t iptr; /* read in the indirect block. */ ibuf = malloc(sblock.fs_bsize); if (!ibuf) errx(1, "malloc failed"); rdfs(fsbtodb(&sblock, blkno), (size_t)sblock.fs_bsize, ibuf, fsi); last = howmany(lastlbn - lbn, blksperindir) < NINDIR(&sblock) ? howmany(lastlbn - lbn, blksperindir) : NINDIR(&sblock); for (i = 0; i < last; i++) { if (sblock.fs_magic == FS_UFS1_MAGIC) iptr = ((int32_t *)ibuf)[i]; else iptr = ((daddr_t *)ibuf)[i]; if (iptr == 0) continue; if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) { if (sblock.fs_magic == FS_UFS1_MAGIC) ((int32_t *)ibuf)[i] = iptr; else ((daddr_t *)ibuf)[i] = iptr; } if (blksperindir == 1) continue; indirchk(blksperindir / NINDIR(&sblock), lbn + blksperindir * i, iptr, lastlbn, bp, fsi, fso, Nflag); } free(ibuf); } static void ffs1_sb_update(struct fs *fs, daddr_t sbloc) { fs->fs_flags = fs->fs_ffs1_flags; fs->fs_sblockloc = sbloc; fs->fs_maxbsize = fs->fs_bsize; fs->fs_time = fs->fs_ffs1_time; fs->fs_size = fs->fs_ffs1_size; fs->fs_dsize = fs->fs_ffs1_dsize; fs->fs_csaddr = fs->fs_ffs1_csaddr; fs->fs_cstotal.cs_ndir = fs->fs_ffs1_cstotal.cs_ndir; fs->fs_cstotal.cs_nbfree = fs->fs_ffs1_cstotal.cs_nbfree; fs->fs_cstotal.cs_nifree = fs->fs_ffs1_cstotal.cs_nifree; fs->fs_cstotal.cs_nffree = fs->fs_ffs1_cstotal.cs_nffree; fs->fs_ffs1_flags |= FS_FLAGS_UPDATED; }