/* $OpenBSD: crypto.c,v 1.28 2005/04/08 22:32:09 cloder Exp $ */ /* $EOM: crypto.c,v 1.32 2000/03/07 20:08:51 niklas Exp $ */ /* * Copyright (c) 1998 Niels Provos. All rights reserved. * Copyright (c) 1999, 2000 Niklas Hallqvist. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * This code was written under funding by Ericsson Radio Systems. */ #include #include #include #include "crypto.h" #include "log.h" enum cryptoerr des1_init(struct keystate *, u_int8_t *, u_int16_t); enum cryptoerr des3_init(struct keystate *, u_int8_t *, u_int16_t); enum cryptoerr blf_init(struct keystate *, u_int8_t *, u_int16_t); enum cryptoerr cast_init(struct keystate *, u_int8_t *, u_int16_t); enum cryptoerr aes_init(struct keystate *, u_int8_t *, u_int16_t); void des1_encrypt(struct keystate *, u_int8_t *, u_int16_t); void des1_decrypt(struct keystate *, u_int8_t *, u_int16_t); void des3_encrypt(struct keystate *, u_int8_t *, u_int16_t); void des3_decrypt(struct keystate *, u_int8_t *, u_int16_t); void blf_encrypt(struct keystate *, u_int8_t *, u_int16_t); void blf_decrypt(struct keystate *, u_int8_t *, u_int16_t); void cast1_encrypt(struct keystate *, u_int8_t *, u_int16_t); void cast1_decrypt(struct keystate *, u_int8_t *, u_int16_t); void aes_encrypt(struct keystate *, u_int8_t *, u_int16_t); void aes_decrypt(struct keystate *, u_int8_t *, u_int16_t); struct crypto_xf transforms[] = { { DES_CBC, "Data Encryption Standard (CBC-Mode)", 8, 8, BLOCKSIZE, 0, des1_init, des1_encrypt, des1_decrypt }, { TRIPLEDES_CBC, "Triple-DES (CBC-Mode)", 24, 24, BLOCKSIZE, 0, des3_init, des3_encrypt, des3_decrypt }, { BLOWFISH_CBC, "Blowfish (CBC-Mode)", 12, 56, BLOCKSIZE, 0, blf_init, blf_encrypt, blf_decrypt }, { CAST_CBC, "CAST (CBC-Mode)", 12, 16, BLOCKSIZE, 0, cast_init, cast1_encrypt, cast1_decrypt }, { AES_CBC, "AES (CBC-Mode)", 16, 32, AES_BLOCK_SIZE, 0, aes_init, aes_encrypt, aes_decrypt }, }; enum cryptoerr des1_init(struct keystate *ks, u_int8_t *key, u_int16_t len) { /* des_set_key returns -1 for parity problems, and -2 for weak keys */ des_set_odd_parity((void *)key); switch (des_set_key((void *)key, ks->ks_des[0])) { case -2: return EWEAKKEY; default: return EOKAY; } } void des1_encrypt(struct keystate *ks, u_int8_t *d, u_int16_t len) { des_cbc_encrypt((void *)d, (void *)d, len, ks->ks_des[0], (void *)ks->riv, DES_ENCRYPT); } void des1_decrypt(struct keystate *ks, u_int8_t *d, u_int16_t len) { des_cbc_encrypt((void *)d, (void *)d, len, ks->ks_des[0], (void *)ks->riv, DES_DECRYPT); } enum cryptoerr des3_init(struct keystate *ks, u_int8_t *key, u_int16_t len) { des_set_odd_parity((void *)key); des_set_odd_parity((void *)(key + 8)); des_set_odd_parity((void *)(key + 16)); /* As of the draft Tripe-DES does not check for weak keys */ des_set_key((void *)key, ks->ks_des[0]); des_set_key((void *)(key + 8), ks->ks_des[1]); des_set_key((void *)(key + 16), ks->ks_des[2]); return EOKAY; } void des3_encrypt(struct keystate *ks, u_int8_t *data, u_int16_t len) { u_int8_t iv[MAXBLK]; memcpy(iv, ks->riv, ks->xf->blocksize); des_ede3_cbc_encrypt((void *)data, (void *)data, len, ks->ks_des[0], ks->ks_des[1], ks->ks_des[2], (void *)iv, DES_ENCRYPT); } void des3_decrypt(struct keystate *ks, u_int8_t *data, u_int16_t len) { u_int8_t iv[MAXBLK]; memcpy(iv, ks->riv, ks->xf->blocksize); des_ede3_cbc_encrypt((void *)data, (void *)data, len, ks->ks_des[0], ks->ks_des[1], ks->ks_des[2], (void *)iv, DES_DECRYPT); } enum cryptoerr blf_init(struct keystate *ks, u_int8_t *key, u_int16_t len) { blf_key(&ks->ks_blf, key, len); return EOKAY; } void blf_encrypt(struct keystate *ks, u_int8_t *data, u_int16_t len) { u_int16_t i, blocksize = ks->xf->blocksize; u_int8_t *iv = ks->liv; u_int32_t xl, xr; memcpy(iv, ks->riv, blocksize); for (i = 0; i < len; data += blocksize, i += blocksize) { XOR64(data, iv); xl = GET_32BIT_BIG(data); xr = GET_32BIT_BIG(data + 4); Blowfish_encipher(&ks->ks_blf, &xl, &xr); SET_32BIT_BIG(data, xl); SET_32BIT_BIG(data + 4, xr); SET64(iv, data); } } void blf_decrypt(struct keystate *ks, u_int8_t *data, u_int16_t len) { u_int16_t i, blocksize = ks->xf->blocksize; u_int32_t xl, xr; data += len - blocksize; for (i = len - blocksize; i >= blocksize; data -= blocksize, i -= blocksize) { xl = GET_32BIT_BIG(data); xr = GET_32BIT_BIG(data + 4); Blowfish_decipher(&ks->ks_blf, &xl, &xr); SET_32BIT_BIG(data, xl); SET_32BIT_BIG(data + 4, xr); XOR64(data, data - blocksize); } xl = GET_32BIT_BIG(data); xr = GET_32BIT_BIG(data + 4); Blowfish_decipher(&ks->ks_blf, &xl, &xr); SET_32BIT_BIG(data, xl); SET_32BIT_BIG(data + 4, xr); XOR64(data, ks->riv); } enum cryptoerr cast_init(struct keystate *ks, u_int8_t *key, u_int16_t len) { cast_setkey(&ks->ks_cast, key, len); return EOKAY; } void cast1_encrypt(struct keystate *ks, u_int8_t *data, u_int16_t len) { u_int16_t i, blocksize = ks->xf->blocksize; u_int8_t *iv = ks->liv; memcpy(iv, ks->riv, blocksize); for (i = 0; i < len; data += blocksize, i += blocksize) { XOR64(data, iv); cast_encrypt(&ks->ks_cast, data, data); SET64(iv, data); } } void cast1_decrypt(struct keystate *ks, u_int8_t *data, u_int16_t len) { u_int16_t i, blocksize = ks->xf->blocksize; data += len - blocksize; for (i = len - blocksize; i >= blocksize; data -= blocksize, i -= blocksize) { cast_decrypt(&ks->ks_cast, data, data); XOR64(data, data - blocksize); } cast_decrypt(&ks->ks_cast, data, data); XOR64(data, ks->riv); } enum cryptoerr aes_init(struct keystate *ks, u_int8_t *key, u_int16_t len) { AES_set_encrypt_key(key, len << 3, &ks->ks_aes[0]); AES_set_decrypt_key(key, len << 3, &ks->ks_aes[1]); return EOKAY; } void aes_encrypt(struct keystate *ks, u_int8_t *data, u_int16_t len) { u_int8_t iv[MAXBLK]; memcpy(iv, ks->riv, ks->xf->blocksize); AES_cbc_encrypt(data, data, len, &ks->ks_aes[0], iv, AES_ENCRYPT); } void aes_decrypt(struct keystate *ks, u_int8_t *data, u_int16_t len) { u_int8_t iv[MAXBLK]; memcpy(iv, ks->riv, ks->xf->blocksize); AES_cbc_encrypt(data, data, len, &ks->ks_aes[1], iv, AES_DECRYPT); } struct crypto_xf * crypto_get(enum transform id) { size_t i; for (i = 0; i < sizeof transforms / sizeof transforms[0]; i++) if (id == transforms[i].id) return &transforms[i]; return 0; } struct keystate * crypto_init(struct crypto_xf *xf, u_int8_t *key, u_int16_t len, enum cryptoerr *err) { struct keystate *ks; if (len < xf->keymin || len > xf->keymax) { LOG_DBG((LOG_CRYPTO, 10, "crypto_init: invalid key length %d", len)); *err = EKEYLEN; return 0; } ks = calloc(1, sizeof *ks); if (!ks) { log_error("crypto_init: calloc (1, %lu) failed", (unsigned long)sizeof *ks); *err = ENOCRYPTO; return 0; } ks->xf = xf; /* Setup the IV. */ ks->riv = ks->iv; ks->liv = ks->iv2; LOG_DBG_BUF((LOG_CRYPTO, 40, "crypto_init: key", key, len)); *err = xf->init(ks, key, len); if (*err != EOKAY) { LOG_DBG((LOG_CRYPTO, 30, "crypto_init: weak key found for %s", xf->name)); free(ks); return 0; } return ks; } void crypto_update_iv(struct keystate *ks) { u_int8_t *tmp; tmp = ks->riv; ks->riv = ks->liv; ks->liv = tmp; LOG_DBG_BUF((LOG_CRYPTO, 50, "crypto_update_iv: updated IV", ks->riv, ks->xf->blocksize)); } void crypto_init_iv(struct keystate *ks, u_int8_t *buf, size_t len) { memcpy(ks->riv, buf, len); LOG_DBG_BUF((LOG_CRYPTO, 50, "crypto_init_iv: initialized IV", ks->riv, len)); } void crypto_encrypt(struct keystate *ks, u_int8_t *buf, u_int16_t len) { LOG_DBG_BUF((LOG_CRYPTO, 30, "crypto_encrypt: before encryption", buf, len)); ks->xf->encrypt(ks, buf, len); memcpy(ks->liv, buf + len - ks->xf->blocksize, ks->xf->blocksize); LOG_DBG_BUF((LOG_CRYPTO, 30, "crypto_encrypt: after encryption", buf, len)); } void crypto_decrypt(struct keystate *ks, u_int8_t *buf, u_int16_t len) { LOG_DBG_BUF((LOG_CRYPTO, 30, "crypto_decrypt: before decryption", buf, len)); /* * XXX There is controversy about the correctness of updating the IV * like this. */ memcpy(ks->liv, buf + len - ks->xf->blocksize, ks->xf->blocksize); ks->xf->decrypt(ks, buf, len); LOG_DBG_BUF((LOG_CRYPTO, 30, "crypto_decrypt: after decryption", buf, len)); } /* Make a copy of the keystate pointed to by OKS. */ struct keystate * crypto_clone_keystate(struct keystate *oks) { struct keystate *ks; ks = malloc(sizeof *ks); if (!ks) { log_error("crypto_clone_keystate: malloc (%lu) failed", (unsigned long)sizeof *ks); return 0; } memcpy(ks, oks, sizeof *ks); if (oks->riv == oks->iv) { ks->riv = ks->iv; ks->liv = ks->iv2; } else { ks->riv = ks->iv2; ks->liv = ks->iv; } return ks; }