/* $OpenBSD: crypto.c,v 1.11 2001/02/24 04:42:48 angelos Exp $ */ /* $EOM: crypto.c,v 1.32 2000/03/07 20:08:51 niklas Exp $ */ /* * Copyright (c) 1998 Niels Provos. All rights reserved. * Copyright (c) 1999, 2000 Niklas Hallqvist. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Ericsson Radio Systems. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * This code was written under funding by Ericsson Radio Systems. */ #include #include #include #include "sysdep.h" #include "crypto.h" #include "log.h" enum cryptoerr des1_init (struct keystate *, u_int8_t *, u_int16_t); enum cryptoerr des3_init (struct keystate *, u_int8_t *, u_int16_t); enum cryptoerr blf_init (struct keystate *, u_int8_t *, u_int16_t); enum cryptoerr cast_init (struct keystate *, u_int8_t *, u_int16_t); void des1_encrypt (struct keystate *, u_int8_t *, u_int16_t); void des1_decrypt (struct keystate *, u_int8_t *, u_int16_t); void des3_encrypt (struct keystate *, u_int8_t *, u_int16_t); void des3_decrypt (struct keystate *, u_int8_t *, u_int16_t); void blf_encrypt (struct keystate *, u_int8_t *, u_int16_t); void blf_decrypt (struct keystate *, u_int8_t *, u_int16_t); void cast1_encrypt (struct keystate *, u_int8_t *, u_int16_t); void cast1_decrypt (struct keystate *, u_int8_t *, u_int16_t); struct crypto_xf transforms[] = { #ifdef USE_DES { DES_CBC, "Data Encryption Standard (CBC-Mode)", 8, 8, BLOCKSIZE, 0, des1_init, des1_encrypt, des1_decrypt }, #endif #ifdef USE_TRIPLEDES { TRIPLEDES_CBC, "Triple-DES (CBC-Mode)", 24, 24, BLOCKSIZE, 0, des3_init, des3_encrypt, des3_decrypt }, #endif #ifdef USE_BLOWFISH { BLOWFISH_CBC, "Blowfish (CBC-Mode)", 12, 56, BLOCKSIZE, 0, blf_init, blf_encrypt, blf_decrypt }, #endif #ifdef USE_CAST { CAST_CBC, "CAST (CBC-Mode)", 12, 16, BLOCKSIZE, 0, cast_init, cast1_encrypt, cast1_decrypt }, #endif }; /* Hmm, the function prototypes for des are really dumb */ #ifdef __OpenBSD__ #define DC (des_cblock *) #else #define DC (void *) #endif enum cryptoerr des1_init (struct keystate *ks, u_int8_t *key, u_int16_t len) { /* des_set_key returns -1 for parity problems, and -2 for weak keys */ des_set_odd_parity (DC key); switch (des_set_key (DC key, ks->ks_des[0])) { case -2: return EWEAKKEY; default: return EOKAY; } } void des1_encrypt (struct keystate *ks, u_int8_t *d, u_int16_t len) { des_cbc_encrypt (DC d, DC d, len, ks->ks_des[0], DC ks->riv, DES_ENCRYPT); } void des1_decrypt (struct keystate *ks, u_int8_t *d, u_int16_t len) { des_cbc_encrypt (DC d, DC d, len, ks->ks_des[0], DC ks->riv, DES_DECRYPT); } #ifdef USE_TRIPLEDES enum cryptoerr des3_init (struct keystate *ks, u_int8_t *key, u_int16_t len) { des_set_odd_parity (DC key); des_set_odd_parity (DC (key + 8)); des_set_odd_parity (DC (key + 16)); /* As of the draft Tripe-DES does not check for weak keys */ des_set_key (DC key, ks->ks_des[0]); des_set_key (DC (key + 8), ks->ks_des[1]); des_set_key (DC (key + 16), ks->ks_des[2]); return EOKAY; } void des3_encrypt (struct keystate *ks, u_int8_t *data, u_int16_t len) { u_int8_t iv[MAXBLK]; memcpy (iv, ks->riv, ks->xf->blocksize); des_ede3_cbc_encrypt (DC data, DC data, len, ks->ks_des[0], ks->ks_des[1], ks->ks_des[2], DC iv, DES_ENCRYPT); } void des3_decrypt (struct keystate *ks, u_int8_t *data, u_int16_t len) { u_int8_t iv[MAXBLK]; memcpy (iv, ks->riv, ks->xf->blocksize); des_ede3_cbc_encrypt (DC data, DC data, len, ks->ks_des[0], ks->ks_des[1], ks->ks_des[2], DC iv, DES_DECRYPT); } #undef DC #endif /* USE_TRIPLEDES */ #ifdef USE_BLOWFISH enum cryptoerr blf_init (struct keystate *ks, u_int8_t *key, u_int16_t len) { blf_key (&ks->ks_blf, key, len); return EOKAY; } void blf_encrypt (struct keystate *ks, u_int8_t *data, u_int16_t len) { u_int16_t i, blocksize = ks->xf->blocksize; u_int8_t *iv = ks->liv; u_int32_t xl, xr; memcpy (iv, ks->riv, blocksize); for (i = 0; i < len; data += blocksize, i += blocksize) { XOR64 (data, iv); xl = GET_32BIT_BIG (data); xr = GET_32BIT_BIG (data + 4); Blowfish_encipher (&ks->ks_blf, &xl, &xr); SET_32BIT_BIG (data, xl); SET_32BIT_BIG (data + 4, xr); SET64 (iv, data); } } void blf_decrypt (struct keystate *ks, u_int8_t *data, u_int16_t len) { u_int16_t i, blocksize = ks->xf->blocksize; u_int32_t xl, xr; data += len - blocksize; for (i = len - blocksize; i >= blocksize; data -= blocksize, i -= blocksize) { xl = GET_32BIT_BIG (data); xr = GET_32BIT_BIG (data + 4); Blowfish_decipher (&ks->ks_blf, &xl, &xr); SET_32BIT_BIG (data, xl); SET_32BIT_BIG (data + 4, xr); XOR64 (data, data - blocksize); } xl = GET_32BIT_BIG (data); xr = GET_32BIT_BIG (data + 4); Blowfish_decipher (&ks->ks_blf, &xl, &xr); SET_32BIT_BIG (data, xl); SET_32BIT_BIG (data + 4, xr); XOR64 (data, ks->riv); } #endif /* USE_BLOWFISH */ #ifdef USE_CAST enum cryptoerr cast_init (struct keystate *ks, u_int8_t *key, u_int16_t len) { cast_setkey (&ks->ks_cast, key, len); return EOKAY; } void cast1_encrypt (struct keystate *ks, u_int8_t *data, u_int16_t len) { u_int16_t i, blocksize = ks->xf->blocksize; u_int8_t *iv = ks->liv; memcpy (iv, ks->riv, blocksize); for (i = 0; i < len; data += blocksize, i += blocksize) { XOR64 (data, iv); cast_encrypt (&ks->ks_cast, data, data); SET64 (iv, data); } } void cast1_decrypt (struct keystate *ks, u_int8_t *data, u_int16_t len) { u_int16_t i, blocksize = ks->xf->blocksize; data += len - blocksize; for (i = len - blocksize; i >= blocksize; data -= blocksize, i -= blocksize) { cast_decrypt (&ks->ks_cast, data, data); XOR64 (data, data - blocksize); } cast_decrypt (&ks->ks_cast, data, data); XOR64 (data, ks->riv); } #endif /* USE_CAST */ struct crypto_xf * crypto_get (enum transform id) { int i; for (i = 0; i < sizeof transforms / sizeof transforms[0]; i++) if (id == transforms[i].id) return &transforms[i]; return 0; } struct keystate * crypto_init (struct crypto_xf *xf, u_int8_t *key, u_int16_t len, enum cryptoerr *err) { struct keystate *ks; if (len < xf->keymin || len > xf->keymax) { LOG_DBG ((LOG_CRYPTO, 10, "crypto_init: invalid key length %d", len)); *err = EKEYLEN; return 0; } ks = calloc (1, sizeof *ks); if (!ks) { log_error ("crypto_init: calloc (1, %d) failed", sizeof *ks); *err = ENOCRYPTO; return 0; } ks->xf = xf; /* Setup the IV. */ ks->riv = ks->iv; ks->liv = ks->iv2; LOG_DBG_BUF ((LOG_CRYPTO, 40, "crypto_init: key", key, len)); *err = xf->init (ks, key, len); if (*err != EOKAY) { LOG_DBG ((LOG_CRYPTO, 30, "crypto_init: weak key found for %s", xf->name)); free (ks); return 0; } return ks; } void crypto_update_iv (struct keystate *ks) { u_int8_t *tmp; tmp = ks->riv; ks->riv = ks->liv; ks->liv = tmp; LOG_DBG_BUF ((LOG_CRYPTO, 50, "crypto_update_iv: updated IV", ks->riv, ks->xf->blocksize)); } void crypto_init_iv (struct keystate *ks, u_int8_t *buf, size_t len) { memcpy (ks->riv, buf, len); LOG_DBG_BUF ((LOG_CRYPTO, 50, "crypto_update_iv: initialized IV", ks->riv, len)); } void crypto_encrypt (struct keystate *ks, u_int8_t *buf, u_int16_t len) { LOG_DBG_BUF ((LOG_CRYPTO, 10, "crypto_encrypt: before encryption", buf, len)); ks->xf->encrypt (ks, buf, len); memcpy (ks->liv, buf + len - ks->xf->blocksize, ks->xf->blocksize); LOG_DBG_BUF ((LOG_CRYPTO, 30, "crypto_encrypt: after encryption", buf, len)); } void crypto_decrypt (struct keystate *ks, u_int8_t *buf, u_int16_t len) { LOG_DBG_BUF ((LOG_CRYPTO, 10, "crypto_decrypt: before decryption", buf, len)); /* * XXX There is controversy about the correctness of updating the IV * like this. */ memcpy (ks->liv, buf + len - ks->xf->blocksize, ks->xf->blocksize); ks->xf->decrypt (ks, buf, len);; LOG_DBG_BUF ((LOG_CRYPTO, 30, "crypto_decrypt: after decryption", buf, len)); } /* Make a copy of the keystate pointed to by OKS. */ struct keystate * crypto_clone_keystate (struct keystate *oks) { struct keystate *ks; ks = malloc (sizeof *ks); if (!ks) { log_error ("crypto_clone_keystate: malloc (%d) failed", sizeof *ks); return 0; } memcpy (ks, oks, sizeof *ks); if (oks->riv == oks->iv) { ks->riv = ks->iv; ks->liv = ks->iv2; } else { ks->riv = ks->iv2; ks->liv = ks->iv; } return ks; }