/* $OpenBSD: math_2n.c,v 1.10 2002/06/09 08:13:06 todd Exp $ */ /* $EOM: math_2n.c,v 1.15 1999/04/20 09:23:30 niklas Exp $ */ /* * Copyright (c) 1998 Niels Provos. All rights reserved. * Copyright (c) 1999 Niklas Hallqvist. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Ericsson Radio Systems. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * This code was written under funding by Ericsson Radio Systems. */ /* * B2N is a module for doing arithmetic on the Field GF(2**n) which is * isomorph to ring of polynomials GF(2)[x]/p(x) where p(x) is an * irreduciable polynomial over GF(2)[x] with grade n. * * First we need functions which operate on GF(2)[x], operation * on GF(2)[x]/p(x) can be done as for Z_p then. */ #include #include #include #include "sysdep.h" #include "math_2n.h" #include "util.h" static u_int8_t hex2int (char); static char int2hex[] = "0123456789abcdef"; CHUNK_TYPE b2n_mask[CHUNK_BITS] = { 0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80, #if CHUNK_BITS > 8 0x0100,0x0200,0x0400,0x0800,0x1000,0x2000,0x4000,0x8000, #if CHUNK_BITS > 16 0x00010000,0x00020000,0x00040000,0x00080000, 0x00100000,0x00200000,0x00400000,0x00800000, 0x01000000,0x02000000,0x04000000,0x08000000, 0x10000000,0x20000000,0x40000000,0x80000000, #endif #endif }; /* Convert a hex character to its integer value. */ static u_int8_t hex2int (char c) { if (c <= '9') return c - '0'; if (c <= 'f') return 10 + c - 'a'; return 0; } int b2n_random (b2n_ptr n, u_int32_t bits) { if (b2n_resize (n, (CHUNK_MASK + bits) >> CHUNK_SHIFTS)) return -1; getrandom ((u_int8_t *)n->limp, CHUNK_BYTES * n->chunks); /* Get the number of significant bits right */ if (bits & CHUNK_MASK) { CHUNK_TYPE m = (((1 << ((bits & CHUNK_MASK)-1)) - 1) << 1) | 1; n->limp[n->chunks-1] &= m; } n->dirty = 1; return 0; } /* b2n management functions */ void b2n_init (b2n_ptr n) { n->chunks = 0; n->limp = 0; } void b2n_clear (b2n_ptr n) { if (n->limp) free (n->limp); } int b2n_resize (b2n_ptr n, unsigned int chunks) { int old = n->chunks; int size; CHUNK_TYPE *new; if (chunks == 0) chunks = 1; if (chunks == old) return 0; size = CHUNK_BYTES * chunks; new = realloc (n->limp, size); if (!new) return -1; n->limp = new; n->chunks = chunks; n->bits = chunks << CHUNK_SHIFTS; n->dirty = 1; if (chunks > old) memset (n->limp + old, 0, size - CHUNK_BYTES * old); return 0; } /* Simple assignment functions. */ int b2n_set (b2n_ptr d, b2n_ptr s) { if (d == s) return 0; b2n_sigbit (s); if (b2n_resize (d, (CHUNK_MASK + s->bits) >> CHUNK_SHIFTS)) return -1; memcpy (d->limp, s->limp, CHUNK_BYTES * d->chunks); d->bits = s->bits; d->dirty = s->dirty; return 0; } int b2n_set_null (b2n_ptr n) { if (b2n_resize (n, 1)) return -1; n->limp[0] = n->bits = n->dirty = 0; return 0; } int b2n_set_ui (b2n_ptr n, unsigned int val) { #if CHUNK_BITS < 32 int i, chunks; chunks = (CHUNK_BYTES - 1 + sizeof (val)) / CHUNK_BYTES; if (b2n_resize (n, chunks)) return -1; for (i = 0; i < chunks; i++) { n->limp[i] = val & CHUNK_BMASK; val >>= CHUNK_BITS; } #else if (b2n_resize (n, 1)) return -1; n->limp[0] = val; #endif n->dirty = 1; return 0; } /* XXX This one only takes hex at the moment. */ int b2n_set_str (b2n_ptr n, char *str) { int i, j, w, len, chunks; CHUNK_TYPE tmp; if (strncasecmp (str, "0x", 2)) return -1; /* Make the hex string even lengthed */ len = strlen (str) - 2; if (len & 1) { len ++; str ++; } else str += 2; len /= 2; chunks = (CHUNK_BYTES - 1 + len) / CHUNK_BYTES; if (b2n_resize (n, chunks)) return -1; memset (n->limp, 0, CHUNK_BYTES * n->chunks); for (w = 0, i = 0; i < chunks; i++) { tmp = 0; for (j = (i == 0 ? ((len - 1) % CHUNK_BYTES) + 1 : CHUNK_BYTES); j > 0; j--) { tmp <<= 8; tmp |= (hex2int (str[w]) << 4) | hex2int (str[w + 1]); w += 2; } n->limp[chunks - 1 - i] = tmp; } n->dirty = 1; return 0; } /* Output function, mainly for debugging purposes. */ void b2n_print (b2n_ptr n) { int i, j, w, flag = 0; int left; char buffer[2 * CHUNK_BYTES]; CHUNK_TYPE tmp; left = ((((7 + b2n_sigbit (n)) >> 3) - 1) % CHUNK_BYTES) + 1; printf ("0x"); for (i = 0; i < n->chunks; i++) { tmp = n->limp[n->chunks - 1 - i]; memset (buffer, '0', sizeof (buffer)); for (w = 0, j = (i == 0 ? left : CHUNK_BYTES); j > 0; j--) { buffer[w++] = int2hex[(tmp >> 4) & 0xf]; buffer[w++] = int2hex[tmp & 0xf]; tmp >>= 8; } for (j = (i == 0 ? left - 1: CHUNK_BYTES - 1); j >= 0; j--) if (flag || (i == n->chunks - 1 && j == 0) || buffer[2 * j] != '0' || buffer[2 * j + 1] != '0') { putchar (buffer[2 * j]); putchar (buffer[2 * j + 1]); flag = 1; } } printf ("\n"); } int b2n_snprint (char *buf, size_t sz, b2n_ptr n) { int i, k, j, w, flag = 0; int left; char buffer[2 * CHUNK_BYTES]; CHUNK_TYPE tmp; left = ((((7 + b2n_sigbit (n)) >> 3) - 1) % CHUNK_BYTES) + 1; k = strlcpy (buf, "0x", sz); for (i = 0; i < n->chunks && k < sz - 1; i++) { tmp = n->limp[n->chunks - 1 - i]; memset (buffer, '0', sizeof (buffer)); for (w = 0, j = (i == 0 ? left : CHUNK_BYTES); j > 0; j--) { buffer[w++] = int2hex[(tmp >> 4) & 0xf]; buffer[w++] = int2hex[tmp & 0xf]; tmp >>= 8; } for (j = (i == 0 ? left - 1: CHUNK_BYTES - 1); j >= 0 && k < sz - 3; j--) if (flag || (i == n->chunks - 1 && j == 0) || buffer[2 * j] != '0' || buffer[2 * j + 1] != '0') { buf[k++] = buffer[2 * j]; buf[k++] = buffer[2 * j + 1]; flag = 1; } } buf[k++] = 0; return k; } /* Arithmetic functions. */ u_int32_t b2n_sigbit (b2n_ptr n) { int i, j; if (!n->dirty) return n->bits; for (i = n->chunks - 1; i > 0; i--) if (n->limp[i]) break; if (!n->limp[i]) return 0; for (j = CHUNK_MASK; j > 0; j--) if (n->limp[i] & b2n_mask[j]) break; n->bits = (i << CHUNK_SHIFTS) + j + 1; n->dirty = 0; return n->bits; } /* Addition on GF(2)[x] is nice, its just an XOR. */ int b2n_add (b2n_ptr d, b2n_ptr a, b2n_ptr b) { int i; b2n_ptr bmin, bmax; if (!b2n_cmp_null (a)) return b2n_set (d, b); if (!b2n_cmp_null (b)) return b2n_set (d, a); bmin = B2N_MIN (a,b); bmax = B2N_MAX (a,b); if (b2n_resize (d, bmax->chunks)) return -1; for (i = 0; i < bmin->chunks; i++) d->limp[i] = bmax->limp[i] ^ bmin->limp[i]; /* * If d is not bmax, we have to copy the rest of the bytes, and also * need to adjust to number of relevant bits. */ if (d != bmax) { for ( ; i < bmax->chunks; i++) d->limp[i] = bmax->limp[i]; d->bits = bmax->bits; } /* * Help to converse memory. When the result of the addition is zero * truncate the used amount of memory. */ if (d != bmax && !b2n_cmp_null (d)) return b2n_set_null (d); else d->dirty = 1; return 0; } /* Compare two polynomials. */ int b2n_cmp (b2n_ptr n, b2n_ptr m) { int sn, sm; int i; sn = b2n_sigbit (n); sm = b2n_sigbit (m); if (sn > sm) return 1; if (sn < sm) return -1; for (i = n->chunks-1; i >= 0; i--) if (n->limp[i] > m->limp[i]) return 1; else if (n->limp[i] < m->limp[i]) return -1; return 0; } int b2n_cmp_null (b2n_ptr a) { int i = 0; do { if (a->limp[i]) return 1; } while (++i < a->chunks); return 0; } /* Left shift, needed for polynomial multiplication. */ int b2n_lshift (b2n_ptr d, b2n_ptr n, unsigned int s) { int i, maj, min, chunks; u_int16_t bits = b2n_sigbit (n), add; CHUNK_TYPE *p, *op; if (!s) return b2n_set (d, n); maj = s >> CHUNK_SHIFTS; min = s & CHUNK_MASK; add = (!(bits & CHUNK_MASK) || ((bits & CHUNK_MASK) + min) > CHUNK_MASK) ? 1 : 0; chunks = n->chunks; if (b2n_resize (d, chunks + maj + add)) return -1; memmove (d->limp + maj, n->limp, CHUNK_BYTES * chunks); if (maj) memset (d->limp, 0, CHUNK_BYTES * maj); if (add) d->limp[d->chunks - 1] = 0; /* If !min there are no bit shifts, we are done */ if (!min) return 0; op = p = &d->limp[d->chunks - 1]; for (i = d->chunks - 2; i >= maj; i--) { op--; *p-- = (*p << min) | (*op >> (CHUNK_BITS - min)); } *p <<= min; d->dirty = 0; d->bits = bits + (maj << CHUNK_SHIFTS) + min; return 0; } /* Right shift, needed for polynomial division. */ int b2n_rshift (b2n_ptr d, b2n_ptr n, unsigned int s) { int maj, min, size = n->chunks, newsize; b2n_ptr tmp; if (!s) return b2n_set (d, n); maj = s >> CHUNK_SHIFTS; newsize = size - maj; if (size < maj) return b2n_set_null (d); min = (CHUNK_BITS - (s & CHUNK_MASK)) & CHUNK_MASK; if (min) { if ((b2n_sigbit (n) & CHUNK_MASK) > min) newsize++; if (b2n_lshift (d, n, min)) return -1; tmp = d; } else tmp = n; memmove (d->limp, tmp->limp + maj + (min ? 1 : 0), CHUNK_BYTES * newsize); if (b2n_resize (d, newsize)) return -1; d->bits = tmp->bits - ((maj + (min ? 1 : 0)) << CHUNK_SHIFTS); return 0; } /* Normal polynomial multiplication. */ int b2n_mul (b2n_ptr d, b2n_ptr n, b2n_ptr m) { int i, j; b2n_t tmp, tmp2; if (!b2n_cmp_null (m) || !b2n_cmp_null (n)) return b2n_set_null (d); if (b2n_sigbit (m) == 1) return b2n_set (d, n); if (b2n_sigbit (n) == 1) return b2n_set (d, m); b2n_init (tmp); b2n_init (tmp2); if (b2n_set (tmp, B2N_MAX (n, m))) goto fail; if (b2n_set (tmp2, B2N_MIN (n, m))) goto fail; if (b2n_set_null (d)) goto fail; for (i = 0; i < tmp2->chunks; i++) if (tmp2->limp[i]) for (j = 0; j < CHUNK_BITS; j++) { if (tmp2->limp[i] & b2n_mask[j]) if (b2n_add (d, d, tmp)) goto fail; if (b2n_lshift (tmp, tmp, 1)) goto fail; } else if (b2n_lshift (tmp, tmp, CHUNK_BITS)) goto fail; b2n_clear (tmp); b2n_clear (tmp2); return 0; fail: b2n_clear (tmp); b2n_clear (tmp2); return -1; } /* * Squaring in this polynomial ring is more efficient than normal * multiplication. */ int b2n_square (b2n_ptr d, b2n_ptr n) { int i, j, maj, min, bits, chunk; b2n_t t; maj = b2n_sigbit (n); min = maj & CHUNK_MASK; maj = (maj + CHUNK_MASK) >> CHUNK_SHIFTS; b2n_init (t); if (b2n_resize (t, 2 * maj + ((CHUNK_MASK + 2 * min) >> CHUNK_SHIFTS))) { b2n_clear (t); return -1; } chunk = 0; bits = 0; for (i = 0; i < maj; i++) if (n->limp[i]) for (j = 0; j < CHUNK_BITS; j++) { if (n->limp[i] & b2n_mask[j]) t->limp[chunk] ^= b2n_mask[bits]; bits += 2; if (bits >= CHUNK_BITS) { chunk++; bits &= CHUNK_MASK; } } else chunk += 2; t->dirty = 1; B2N_SWAP (d, t); b2n_clear (t); return 0; } /* * Normal polynomial division. * These functions are far from optimal in speed. */ int b2n_div_q (b2n_ptr d, b2n_ptr n, b2n_ptr m) { b2n_t r; int rv; b2n_init (r); rv = b2n_div (d, r, n, m); b2n_clear (r); return rv; } int b2n_div_r (b2n_ptr r, b2n_ptr n, b2n_ptr m) { b2n_t q; int rv; b2n_init (q); rv = b2n_div (q, r, n, m); b2n_clear (q); return rv; } int b2n_div (b2n_ptr q, b2n_ptr r, b2n_ptr n, b2n_ptr m) { int sn, sm, i, j, len, bits; b2n_t nenn, div, shift, mask; /* If Teiler > Zaehler, the result is 0 */ if ((sm = b2n_sigbit (m)) > (sn = b2n_sigbit (n))) { if (b2n_set_null (q)) return -1; return b2n_set (r, n); } if (sm == 0) /* Division by Zero */ return -1; else if (sm == 1) { /* Division by the One-Element */ if (b2n_set (q, n)) return -1; return b2n_set_null (r); } b2n_init (nenn); b2n_init (div); b2n_init (shift); b2n_init (mask); if (b2n_set (nenn, n)) goto fail; if (b2n_set (div, m)) goto fail; if (b2n_set (shift, m)) goto fail; if (b2n_set_ui (mask, 1)) goto fail; if (b2n_resize (q, (sn - sm + CHUNK_MASK) >> CHUNK_SHIFTS)) goto fail; memset (q->limp, 0, CHUNK_BYTES * q->chunks); if (b2n_lshift (shift, shift, sn - sm)) goto fail; if (b2n_lshift (mask, mask, sn - sm)) goto fail; /* Number of significant octets */ len = (sn - 1) >> CHUNK_SHIFTS; /* The first iteration is done over the relevant bits */ bits = (CHUNK_MASK + sn) & CHUNK_MASK; for (i = len; i >= 0 && b2n_sigbit (nenn) >= sm; i--) for (j = (i == len ? bits : CHUNK_MASK); j >= 0 && b2n_sigbit (nenn) >= sm; j--) { if (nenn->limp[i] & b2n_mask[j]) { if (b2n_sub (nenn, nenn, shift)) goto fail; if (b2n_add (q, q, mask)) goto fail; } if (b2n_rshift (shift, shift, 1)) goto fail; if (b2n_rshift (mask, mask, 1)) goto fail; } B2N_SWAP (r, nenn); b2n_clear (nenn); b2n_clear (div); b2n_clear (shift); b2n_clear (mask); return 0; fail: b2n_clear (nenn); b2n_clear (div); b2n_clear (shift); b2n_clear (mask); return -1; } /* Functions for Operation on GF(2**n) ~= GF(2)[x]/p(x). */ int b2n_mod (b2n_ptr m, b2n_ptr n, b2n_ptr p) { int bits, size; if (b2n_div_r (m, n, p)) return -1; bits = b2n_sigbit (m); size = ((CHUNK_MASK + bits) >> CHUNK_SHIFTS); if (size == 0) size = 1; if (m->chunks > size) if (b2n_resize (m, size)) return -1; m->bits = bits; m->dirty = 0; return 0; } int b2n_gcd (b2n_ptr e, b2n_ptr go, b2n_ptr ho) { b2n_t g, h; b2n_init (g); b2n_init (h); if (b2n_set (g, go)) goto fail; if (b2n_set (h, ho)) goto fail; while (b2n_cmp_null (h)) { if (b2n_mod (g, g, h)) goto fail; B2N_SWAP (g, h); } B2N_SWAP (e, g); b2n_clear (g); b2n_clear (h); return 0; fail: b2n_clear (g); b2n_clear (h); return -1; } int b2n_mul_inv (b2n_ptr ga, b2n_ptr be, b2n_ptr p) { b2n_t a; b2n_init (a); if (b2n_set_ui (a, 1)) goto fail; if (b2n_div_mod (ga, a, be, p)) goto fail; b2n_clear (a); return 0; fail: b2n_clear (a); return -1; } int b2n_div_mod (b2n_ptr ga, b2n_ptr a, b2n_ptr be, b2n_ptr p) { b2n_t s0, s1, s2, q, r0, r1; /* There is no multiplicative inverse to Null. */ if (!b2n_cmp_null (be)) return b2n_set_null (ga); b2n_init (s0); b2n_init (s1); b2n_init (s2); b2n_init (r0); b2n_init (r1); b2n_init (q); if (b2n_set (r0, p)) goto fail; if (b2n_set (r1, be)) goto fail; if (b2n_set_null (s0)) goto fail; if (b2n_set (s1, a)) goto fail; while (b2n_cmp_null (r1)) { if (b2n_div (q, r0, r0, r1)) goto fail; B2N_SWAP (r0, r1); if (b2n_mul (s2, q, s1)) goto fail; if (b2n_mod (s2, s2, p)) goto fail; if (b2n_sub (s2, s0, s2)) goto fail; B2N_SWAP (s0, s1); B2N_SWAP (s1, s2); } B2N_SWAP (ga, s0); b2n_clear (s0); b2n_clear (s1); b2n_clear (s2); b2n_clear (r0); b2n_clear (r1); b2n_clear (q); return 0; fail: b2n_clear (s0); b2n_clear (s1); b2n_clear (s2); b2n_clear (r0); b2n_clear (r1); b2n_clear (q); return -1; } /* * The trace tells us if there do exist any square roots * for 'a' in GF(2)[x]/p(x). The number of square roots is * 2 - 2*Trace. * If z is a square root, z + 1 is the other. */ int b2n_trace (b2n_ptr ho, b2n_ptr a, b2n_ptr p) { int i, m = b2n_sigbit (p) - 1; b2n_t h; b2n_init (h); if (b2n_set (h, a)) goto fail; for (i = 0; i < m - 1; i++) { if (b2n_square (h, h)) goto fail; if (b2n_mod (h, h, p)) goto fail; if (b2n_add (h, h, a)) goto fail; } B2N_SWAP (ho, h); b2n_clear (h); return 0; fail: b2n_clear (h); return -1; } /* * The halftrace yields the square root if the degree of the * irreduceable polynomial is odd. */ int b2n_halftrace (b2n_ptr ho, b2n_ptr a, b2n_ptr p) { int i, m = b2n_sigbit (p) - 1; b2n_t h; b2n_init (h); if (b2n_set (h, a)) goto fail; for (i = 0; i < (m - 1) / 2; i++) { if (b2n_square (h, h)) goto fail; if (b2n_mod (h, h, p)) goto fail; if (b2n_square (h, h)) goto fail; if (b2n_mod (h, h, p)) goto fail; if (b2n_add (h, h, a)) goto fail; } B2N_SWAP (ho, h); b2n_clear (h); return 0; fail: b2n_clear (h); return -1; } /* * Solving the equation: y**2 + y = b in GF(2**m) where ip is the * irreduceable polynomial. If m is odd, use the half trace. */ int b2n_sqrt (b2n_ptr zo, b2n_ptr b, b2n_ptr ip) { int i, m = b2n_sigbit (ip) - 1; b2n_t w, p, temp, z; if (!b2n_cmp_null (b)) return b2n_set_null (z); if (m & 1) return b2n_halftrace (zo, b, ip); b2n_init (z); b2n_init (w); b2n_init (p); b2n_init (temp); do { if (b2n_random (p, m)) goto fail; if (b2n_set_null (z)) goto fail; if (b2n_set (w, p)) goto fail; for (i = 1; i < m; i++) { if (b2n_square (z, z)) /* z**2 */ goto fail; if (b2n_mod (z, z, ip)) goto fail; if (b2n_square (w, w)) /* w**2 */ goto fail; if (b2n_mod (w, w, ip)) goto fail; if (b2n_mul (temp, w, b)) /* w**2 * b */ goto fail; if (b2n_mod (temp, temp, ip)) goto fail; if (b2n_add (z, z, temp)) /* z**2 + w**2 + b */ goto fail; if (b2n_add (w, w, p)) /* w**2 + p */ goto fail; } } while (!b2n_cmp_null (w)); B2N_SWAP (zo, z); b2n_clear (w); b2n_clear (p); b2n_clear (temp); b2n_clear (z); return 0; fail: b2n_clear (w); b2n_clear (p); b2n_clear (temp); b2n_clear (z); return -1; } /* Exponentiation modulo a polynomial. */ int b2n_exp_mod (b2n_ptr d, b2n_ptr b0, u_int32_t e, b2n_ptr p) { b2n_t u, b; b2n_init (u); b2n_init (b); if (b2n_set_ui (u, 1)) goto fail; if (b2n_mod (b, b0, p)) goto fail; while (e) { if (e & 1) { if (b2n_mul (u, u, b)) goto fail; if (b2n_mod (u, u, p)) goto fail; } if (b2n_square (b, b)) goto fail; if (b2n_mod (b, b, p)) goto fail; e >>= 1; } B2N_SWAP (d, u); b2n_clear (u); b2n_clear (b); return 0; fail: b2n_clear (u); b2n_clear (b); return -1; } /* * Low-level function to speed up scalar multiplication with * elliptic curves. * Multiplies a normal number by 3. */ /* Normal addition behaves as Z_{2**n} and not F_{2**n}. */ int b2n_nadd (b2n_ptr d0, b2n_ptr a0, b2n_ptr b0) { int i, carry; b2n_ptr a, b; b2n_t d; if (!b2n_cmp_null (a0)) return b2n_set (d0, b0); if (!b2n_cmp_null (b0)) return b2n_set (d0, a0); b2n_init (d); a = B2N_MAX (a0, b0); b = B2N_MIN (a0, b0); if (b2n_resize (d, a->chunks + 1)) { b2n_clear (d); return -1; } for (carry = i = 0; i < b->chunks; i++) { d->limp[i] = a->limp[i] + b->limp[i] + carry; carry = (d->limp[i] < a->limp[i] ? 1 : 0); } for (; i < a->chunks && carry; i++) { d->limp[i] = a->limp[i] + carry; carry = (d->limp[i] < a->limp[i] ? 1 : 0); } if (i < a->chunks) memcpy (d->limp + i, a->limp + i, CHUNK_BYTES * (a->chunks - i)); d->dirty = 1; B2N_SWAP (d0, d); b2n_clear (d); return 0; } /* Very special sub, a > b. */ int b2n_nsub (b2n_ptr d0, b2n_ptr a, b2n_ptr b) { int i, carry; b2n_t d; if (b2n_cmp (a, b) <= 0) return b2n_set_null (d0); b2n_init (d); if (b2n_resize (d, a->chunks)) { b2n_clear (d); return -1; } for (carry = i = 0; i < b->chunks; i++) { d->limp[i] = a->limp[i] - b->limp[i] - carry; carry = (d->limp[i] > a->limp[i] ? 1 : 0); } for (; i < a->chunks && carry; i++) { d->limp[i] = a->limp[i] - carry; carry = (d->limp[i] > a->limp[i] ? 1 : 0); } if (i < a->chunks) memcpy (d->limp + i, a->limp + i, CHUNK_BYTES*(a->chunks - i)); d->dirty = 1; B2N_SWAP (d0, d); b2n_clear (d); return 0; } int b2n_3mul (b2n_ptr d0, b2n_ptr e) { b2n_t d; b2n_init (d); if (b2n_lshift (d, e, 1)) goto fail; if (b2n_nadd (d0, d, e)) goto fail; b2n_clear (d); return 0; fail: b2n_clear (d); return -1; }