/* $OpenBSD: util.c,v 1.59 2005/11/15 21:49:04 cloder Exp $ */ /* $EOM: util.c,v 1.23 2000/11/23 12:22:08 niklas Exp $ */ /* * Copyright (c) 1998, 1999, 2001 Niklas Hallqvist. All rights reserved. * Copyright (c) 2000, 2001, 2004 Håkan Olsson. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * This code was written under funding by Ericsson Radio Systems. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "log.h" #include "message.h" #include "monitor.h" #include "sysdep.h" #include "transport.h" #include "util.h" /* * Set if -N is given, allowing name lookups to be done, possibly stalling * the daemon for quite a while. */ int allow_name_lookups = 0; #if defined(INSECURE_RAND) /* * This is set to true in case of regression-test mode, when it will * cause predictable random numbers be generated. */ int regrand = 0; #endif /* * If in regression-test mode, this is the seed used. */ u_long seed; /* * XXX These might be turned into inlines or macros, maybe even * machine-dependent ones, for performance reasons. */ u_int16_t decode_16(u_int8_t *cp) { return cp[0] << 8 | cp[1]; } u_int32_t decode_32(u_int8_t *cp) { return cp[0] << 24 | cp[1] << 16 | cp[2] << 8 | cp[3]; } u_int64_t decode_64(u_int8_t *cp) { return (u_int64_t) cp[0] << 56 | (u_int64_t) cp[1] << 48 | (u_int64_t) cp[2] << 40 | (u_int64_t) cp[3] << 32 | cp[4] << 24 | cp[5] << 16 | cp[6] << 8 | cp[7]; } void encode_16(u_int8_t *cp, u_int16_t x) { *cp++ = x >> 8; *cp = x & 0xff; } void encode_32(u_int8_t *cp, u_int32_t x) { *cp++ = x >> 24; *cp++ = (x >> 16) & 0xff; *cp++ = (x >> 8) & 0xff; *cp = x & 0xff; } void encode_64(u_int8_t *cp, u_int64_t x) { *cp++ = x >> 56; *cp++ = (x >> 48) & 0xff; *cp++ = (x >> 40) & 0xff; *cp++ = (x >> 32) & 0xff; *cp++ = (x >> 24) & 0xff; *cp++ = (x >> 16) & 0xff; *cp++ = (x >> 8) & 0xff; *cp = x & 0xff; } /* Check a buffer for all zeroes. */ int zero_test(const u_int8_t *p, size_t sz) { while (sz-- > 0) if (*p++ != 0) return 0; return 1; } /* Check a buffer for all ones. */ int ones_test(const u_int8_t *p, size_t sz) { while (sz-- > 0) if (*p++ != 0xff) return 0; return 1; } /* * Generate 32 bits of random data. If compiled with INSECURE_RAND * and -r option is specified, then return deterministic data. */ u_int32_t rand_32(void) { #if !defined(INSECURE_RAND) return arc4random(); #else if (regrand) return random(); else return arc4random(); #endif } /* * Generate a random data, len bytes long. */ u_int8_t * getrandom(u_int8_t *buf, size_t len) { u_int32_t tmp = 0; size_t i; for (i = 0; i < len; i++) { if (i % sizeof tmp == 0) tmp = rand_32(); buf[i] = tmp & 0xff; tmp >>= 8; } return buf; } static __inline int hex2nibble(char c) { if (c >= '0' && c <= '9') return c - '0'; if (c >= 'a' && c <= 'f') return c - 'a' + 10; if (c >= 'A' && c <= 'F') return c - 'A' + 10; return -1; } /* * Convert hexadecimal string in S to raw binary buffer at BUF sized SZ * bytes. Return 0 if everything is OK, -1 otherwise. */ int hex2raw(char *s, u_int8_t *buf, size_t sz) { u_int8_t *bp; char *p; int tmp; if (strlen(s) > sz * 2) return -1; for (p = s + strlen(s) - 1, bp = &buf[sz - 1]; bp >= buf; bp--) { *bp = 0; if (p >= s) { tmp = hex2nibble(*p--); if (tmp == -1) return -1; *bp = tmp; } if (p >= s) { tmp = hex2nibble(*p--); if (tmp == -1) return -1; *bp |= tmp << 4; } } return 0; } /* * Convert raw binary buffer to a newly allocated hexadecimal string. Returns * NULL if an error occured. It is the caller's responsibility to free the * returned string. */ char * raw2hex(u_int8_t *buf, size_t sz) { char *s; size_t i; if ((s = (char *)malloc(sz * 2 + 1)) == NULL) { log_error("raw2hex: malloc (%lu) failed", (unsigned long)sz * 2 + 1); return NULL; } for (i = 0; i < sz; i++) snprintf(s + (2 * i), 2 * (sz - i) + 1, "%02x", buf[i]); s[sz * 2] = '\0'; return s; } in_port_t text2port(char *port_str) { char *port_str_end; long port_long; struct servent *service; port_long = strtol(port_str, &port_str_end, 0); if (port_str == port_str_end) { service = getservbyname(port_str, "udp"); if (!service) { log_print("text2port: service \"%s\" unknown", port_str); return 0; } return ntohs(service->s_port); } else if (port_long < 1 || port_long > (long)USHRT_MAX) { log_print("text2port: port %ld out of range", port_long); return 0; } return port_long; } int text2sockaddr(char *address, char *port, struct sockaddr **sa, sa_family_t af, int netmask) { struct addrinfo *ai, hints; struct sockaddr_storage tmp_sas; struct ifaddrs *ifap, *ifa = NULL, *llifa = NULL; char *np = address; char ifname[IFNAMSIZ]; u_char buf[BUFSIZ]; struct rt_msghdr *rtm; struct sockaddr *sa2; struct sockaddr_in *sin; struct sockaddr_in6 *sin6; int fd = 0, seq, len, b; pid_t pid; bzero(&hints, sizeof hints); if (!allow_name_lookups) hints.ai_flags = AI_NUMERICHOST; hints.ai_family = PF_UNSPEC; hints.ai_socktype = SOCK_DGRAM; hints.ai_protocol = IPPROTO_UDP; if (getaddrinfo(address, port, &hints, &ai)) { /* * If the 'default' keyword is used, do a route lookup for * the default route, and use the interface associated with * it to select a source address. */ if (!strcmp(address, "default")) { fd = socket(PF_ROUTE, SOCK_RAW, af); bzero(buf, sizeof(buf)); rtm = (struct rt_msghdr *)buf; rtm->rtm_version = RTM_VERSION; rtm->rtm_type = RTM_GET; rtm->rtm_flags = RTF_UP; rtm->rtm_addrs = RTA_DST; rtm->rtm_seq = seq = arc4random(); /* default destination */ sa2 = (struct sockaddr *)(rtm + 1); switch (af) { case AF_INET: { sin = (struct sockaddr_in *)sa2; sin->sin_len = sizeof(*sin); sin->sin_family = af; break; } case AF_INET6: { sin6 = (struct sockaddr_in6 *)sa2; sin6->sin6_len = sizeof(*sin6); sin6->sin6_family = af; break; } default: close(fd); return (-1); } rtm->rtm_addrs |= RTA_NETMASK|RTA_IFP|RTA_IFA; rtm->rtm_msglen = sizeof(*rtm) + sizeof(*sa2); if ((b = write(fd, buf, rtm->rtm_msglen)) < 0) { close(fd); return (-1); } pid = getpid(); while ((len = read(fd, buf, sizeof(buf))) > 0) { if (len < sizeof(*rtm)) { close(fd); return (-1); } if (rtm->rtm_type == RTM_GET && rtm->rtm_pid == pid && rtm->rtm_seq == seq) { if (rtm->rtm_errno) { close(fd); return (-1); } break; } } close(fd); if ((rtm->rtm_addrs & (RTA_DST|RTA_GATEWAY)) == (RTA_DST|RTA_GATEWAY)) { np = if_indextoname(rtm->rtm_index, ifname); if (np == NULL) return (-1); } } if (getifaddrs(&ifap) != 0) return (-1); switch (af) { default: case AF_INET: for (ifa = ifap; ifa; ifa = ifa->ifa_next) if (!strcmp(ifa->ifa_name, np) && ifa->ifa_addr != NULL && ifa->ifa_addr->sa_family == AF_INET) break; break; case AF_INET6: for (ifa = ifap; ifa; ifa = ifa->ifa_next) { if (!strcmp(ifa->ifa_name, np) && ifa->ifa_addr != NULL && ifa->ifa_addr->sa_family == AF_INET6) { if (IN6_IS_ADDR_LINKLOCAL( &((struct sockaddr_in6 *) ifa->ifa_addr)->sin6_addr) && llifa == NULL) llifa = ifa; else break; } } if (ifa == NULL) { ifa = llifa; } break; } if (ifa) { if (netmask) memcpy(&tmp_sas, ifa->ifa_netmask, SA_LEN(ifa->ifa_netmask)); else memcpy(&tmp_sas, ifa->ifa_addr, SA_LEN(ifa->ifa_addr)); freeifaddrs(ifap); } else { freeifaddrs(ifap); return -1; } } else { memcpy(&tmp_sas, ai->ai_addr, SA_LEN(ai->ai_addr)); freeaddrinfo(ai); } *sa = malloc(SA_LEN((struct sockaddr *)&tmp_sas)); if (!*sa) return -1; memcpy(*sa, &tmp_sas, SA_LEN((struct sockaddr *)&tmp_sas)); return 0; } /* * Convert a sockaddr to text. With zflag non-zero fill out with zeroes, * i.e 10.0.0.10 --> "010.000.000.010" */ int sockaddr2text(struct sockaddr *sa, char **address, int zflag) { char buf[NI_MAXHOST], *token, *bstart, *ep; int addrlen, i, j; long val; if (getnameinfo(sa, SA_LEN(sa), buf, sizeof buf, 0, 0, allow_name_lookups ? 0 : NI_NUMERICHOST)) return -1; if (zflag == 0) { *address = strdup(buf); if (!*address) return -1; } else switch (sa->sa_family) { case AF_INET: addrlen = sizeof "000.000.000.000"; *address = malloc(addrlen); if (!*address) return -1; buf[addrlen] = '\0'; bstart = buf; **address = '\0'; while ((token = strsep(&bstart, ".")) != NULL) { if (strlen(*address) > 12) { free(*address); return -1; } val = strtol(token, &ep, 10); if (ep == token || val < (long)0 || val > (long)UCHAR_MAX) { free(*address); return -1; } snprintf(*address + strlen(*address), addrlen - strlen(*address), "%03ld", val); if (bstart) strlcat(*address, ".", addrlen); } break; case AF_INET6: /* * XXX In the algorithm below there are some magic * numbers we probably could give explaining names. */ addrlen = sizeof "0000:0000:0000:0000:0000:0000:0000:0000"; *address = malloc(addrlen); if (!*address) return -1; for (i = 0, j = 0; i < 8; i++) { snprintf((*address) + j, addrlen - j, "%02x%02x", ((struct sockaddr_in6 *)sa)->sin6_addr.s6_addr[2*i], ((struct sockaddr_in6 *)sa)->sin6_addr.s6_addr[2*i + 1]); j += 4; (*address)[j] = (j < (addrlen - 1)) ? ':' : '\0'; j++; } break; default: *address = strdup(""); if (!*address) return -1; } return 0; } /* * sockaddr_addrlen and sockaddr_addrdata return the relevant sockaddr info * depending on address family. Useful to keep other code shorter(/clearer?). */ int sockaddr_addrlen(struct sockaddr *sa) { switch (sa->sa_family) { case AF_INET6: return sizeof((struct sockaddr_in6 *)sa)->sin6_addr.s6_addr; case AF_INET: return sizeof((struct sockaddr_in *)sa)->sin_addr.s_addr; default: log_print("sockaddr_addrlen: unsupported protocol family %d", sa->sa_family); return 0; } } u_int8_t * sockaddr_addrdata(struct sockaddr *sa) { switch (sa->sa_family) { case AF_INET6: return (u_int8_t *)&((struct sockaddr_in6 *)sa)->sin6_addr.s6_addr; case AF_INET: return (u_int8_t *)&((struct sockaddr_in *)sa)->sin_addr.s_addr; default: log_print("sockaddr_addrdata: unsupported protocol family %d", sa->sa_family); return 0; } } in_port_t sockaddr_port(struct sockaddr *sa) { switch (sa->sa_family) { case AF_INET6: return ((struct sockaddr_in6 *)sa)->sin6_port; case AF_INET: return ((struct sockaddr_in *)sa)->sin_port; default: log_print("sockaddr_port: unsupported protocol family %d", sa->sa_family); return 0; } } /* Utility function used to set the port of a sockaddr. */ void sockaddr_set_port(struct sockaddr *sa, in_port_t port) { switch (sa->sa_family) { case AF_INET: ((struct sockaddr_in *)sa)->sin_port = htons (port); break; case AF_INET6: ((struct sockaddr_in6 *)sa)->sin6_port = htons (port); break; } } /* * Convert network address to text. The network address does not need * to be properly aligned. */ void util_ntoa(char **buf, int af, u_int8_t *addr) { struct sockaddr_storage from; struct sockaddr *sfrom = (struct sockaddr *) & from; socklen_t fromlen = sizeof from; bzero(&from, fromlen); sfrom->sa_family = af; switch (af) { case AF_INET: sfrom->sa_len = sizeof(struct sockaddr_in); break; case AF_INET6: sfrom->sa_len = sizeof(struct sockaddr_in6); break; } memcpy(sockaddr_addrdata(sfrom), addr, sockaddr_addrlen(sfrom)); if (sockaddr2text(sfrom, buf, 0)) { log_print("util_ntoa: could not make printable address out " "of sockaddr %p", sfrom); *buf = 0; } } /* * Perform sanity check on files containing secret information. * Returns -1 on failure, 0 otherwise. * Also, if FILE_SIZE is a not a null pointer, store file size here. */ int check_file_secrecy_fd(int fd, char *name, size_t *file_size) { struct stat st; if (fstat(fd, &st) == -1) { log_error("check_file_secrecy: stat (\"%s\") failed", name); return -1; } if (st.st_uid != 0 && st.st_uid != getuid()) { log_print("check_file_secrecy_fd: " "not loading %s - file owner is not process user", name); errno = EPERM; return -1; } if ((st.st_mode & (S_IRWXG | S_IRWXO)) != 0) { log_print("check_file_secrecy_fd: not loading %s - too open " "permissions", name); errno = EPERM; return -1; } if (file_size) *file_size = (size_t)st.st_size; return 0; } /* Calculate timeout. Returns -1 on error. */ long get_timeout(struct timeval *timeout) { struct timeval now, result; if (gettimeofday(&now, NULL) < 0) return -1; timersub(timeout, &now, &result); return result.tv_sec; } /* Special for compiling with Boehms GC. See Makefile and sysdep.h */ #if defined (USE_BOEHM_GC) char * gc_strdup(const char *x) { char *strcpy(char *,const char *); char *y = malloc(strlen(x) + 1); return strcpy(y,x); } #endif