/* $OpenBSD: mkfs.c,v 1.68 2007/06/10 19:11:43 otto Exp $ */ /* $NetBSD: mkfs.c,v 1.25 1995/06/18 21:35:38 cgd Exp $ */ /* * Copyright (c) 2002 Networks Associates Technology, Inc. * All rights reserved. * * This software was developed for the FreeBSD Project by Marshall * Kirk McKusick and Network Associates Laboratories, the Security * Research Division of Network Associates, Inc. under DARPA/SPAWAR * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS * research program. * * Copyright (c) 1980, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef STANDALONE #include #include #include #endif /* * Default directory umask. */ #define UMASK 0755 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) /* * 'Standard' bad FFS magic. */ #define FS_BAD_MAGIC 0x19960408 /* * The minimum number of cylinder groups that should be created. */ #define MINCYLGRPS 4 /* * variables set up by front end. */ extern int mfs; /* run as the memory based filesystem */ extern int Nflag; /* run mkfs without writing file system */ extern int Oflag; /* format as an 4.3BSD file system */ extern int fssize; /* file system size */ extern int sectorsize; /* bytes/sector */ extern int fsize; /* fragment size */ extern int bsize; /* block size */ extern int maxfrgspercg; /* maximum fragments per cylinder group */ extern int minfree; /* free space threshold */ extern int opt; /* optimization preference (space or time) */ extern int density; /* number of bytes per inode */ extern int maxbpg; /* maximum blocks per file in a cyl group */ extern int avgfilesize; /* expected average file size */ extern int avgfilesperdir; /* expected number of files per directory */ extern int quiet; /* quiet flag */ extern caddr_t membase; /* start address of memory based filesystem */ union fs_u { struct fs fs; char pad[SBSIZE]; } *fsun; #define sblock fsun->fs struct csum *fscs; union cg_u { struct cg cg; char pad[MAXBSIZE]; } *cgun; #define acg cgun->cg union dinode { struct ufs1_dinode dp1; struct ufs2_dinode dp2; }; int fsi, fso; static caddr_t iobuf; static long iobufsize; daddr64_t alloc(int, int); static int charsperline(void); static int ilog2(int); void initcg(int, time_t); void wtfs(daddr64_t, int, void *); int fsinit1(time_t, mode_t, uid_t, gid_t); int fsinit2(time_t); int makedir(struct direct *, int); void iput(union dinode *, ino_t); void setblock(struct fs *, unsigned char *, int); void clrblock(struct fs *, unsigned char *, int); int isblock(struct fs *, unsigned char *, int); void rdfs(daddr64_t, int, void *); void mkfs(struct partition *, char *, int, int, mode_t, uid_t, gid_t); #ifndef STANDALONE volatile sig_atomic_t cur_cylno; volatile const char *cur_fsys; void siginfo(int sig) { int save_errno = errno; char buf[128]; snprintf(buf, sizeof(buf), "%s: initializing cg %ld/%d\n", cur_fsys, (long)cur_cylno, sblock.fs_ncg); write(STDERR_FILENO, buf, strlen(buf)); errno = save_errno; } #endif void mkfs(struct partition *pp, char *fsys, int fi, int fo, mode_t mfsmode, uid_t mfsuid, gid_t mfsgid) { time_t utime; quad_t sizepb; int i, j, width, origdensity, fragsperinode, minfpg, optimalfpg; int lastminfpg, mincylgrps; long cylno, csfrags; char tmpbuf[100]; /* XXX this will break in about 2,500 years */ if ((fsun = calloc(1, sizeof (union fs_u))) == NULL || (cgun = calloc(1, sizeof (union cg_u))) == NULL) err(1, "calloc"); #ifndef STANDALONE time(&utime); #endif if (mfs) { quad_t sz = (quad_t)fssize * sectorsize; if (sz > SIZE_T_MAX) { errno = ENOMEM; err(12, "mmap"); } membase = mmap(NULL, sz, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, (off_t)0); if (membase == MAP_FAILED) err(12, "mmap"); madvise(membase, sz, MADV_RANDOM); } fsi = fi; fso = fo; /* * Validate the given file system size. * Verify that its last block can actually be accessed. */ if (fssize <= 0) errx(13, "preposterous size %u, max is %u", fssize, INT_MAX); wtfs(fssize - 1, sectorsize, (char *)&sblock); sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT; sblock.fs_avgfilesize = avgfilesize; sblock.fs_avgfpdir = avgfilesperdir; /* * Collect and verify the block and fragment sizes. */ if (!POWEROF2(bsize)) { errx(16, "block size must be a power of 2, not %d", bsize); } if (!POWEROF2(fsize)) { errx(17, "fragment size must be a power of 2, not %d", fsize); } if (fsize < sectorsize) { errx(18, "fragment size %d is too small, minimum is %d", fsize, sectorsize); } if (bsize < MINBSIZE) { errx(19, "block size %d is too small, minimum is %d", bsize, MINBSIZE); } if (bsize > MAXBSIZE) { errx(19, "block size %d is too large, maximum is %d", bsize, MAXBSIZE); } if (bsize < fsize) { errx(20, "block size (%d) cannot be smaller than fragment size (%d)", bsize, fsize); } sblock.fs_bsize = bsize; sblock.fs_fsize = fsize; /* * Calculate the superblock bitmasks and shifts. */ sblock.fs_bmask = ~(sblock.fs_bsize - 1); sblock.fs_fmask = ~(sblock.fs_fsize - 1); sblock.fs_qbmask = ~sblock.fs_bmask; sblock.fs_qfmask = ~sblock.fs_fmask; sblock.fs_bshift = ilog2(sblock.fs_bsize); sblock.fs_fshift = ilog2(sblock.fs_fsize); sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); if (sblock.fs_frag > MAXFRAG) { errx(21, "fragment size %d is too small, minimum with block " "size %d is %d", sblock.fs_fsize, sblock.fs_bsize, sblock.fs_bsize / MAXFRAG); } sblock.fs_fragshift = ilog2(sblock.fs_frag); sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); sblock.fs_size = dbtofsb(&sblock, fssize); sblock.fs_nspf = sblock.fs_fsize / sectorsize; sblock.fs_maxcontig = 1; sblock.fs_nrpos = 1; sblock.fs_cpg = 1; /* * Before the file system is fully initialized, mark it as invalid. */ sblock.fs_magic = FS_BAD_MAGIC; /* * Set the remaining superblock fields. Note that for FFS1, media * geometry fields are set to fake values. This is for compatibility * with really ancient kernels that might still inspect these values. */ if (Oflag <= 1) { sblock.fs_sblockloc = SBLOCK_UFS1; sblock.fs_nindir = sblock.fs_bsize / sizeof(int32_t); sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); if (Oflag == 0) { sblock.fs_maxsymlinklen = 0; sblock.fs_inodefmt = FS_42INODEFMT; } else { sblock.fs_maxsymlinklen = MAXSYMLINKLEN_UFS1; sblock.fs_inodefmt = FS_44INODEFMT; } sblock.fs_cgoffset = 0; sblock.fs_cgmask = 0xffffffff; sblock.fs_ffs1_size = sblock.fs_size; sblock.fs_rotdelay = 0; sblock.fs_rps = 60; sblock.fs_interleave = 1; sblock.fs_trackskew = 0; sblock.fs_cpc = 0; } else { sblock.fs_inodefmt = FS_44INODEFMT; sblock.fs_sblockloc = SBLOCK_UFS2; sblock.fs_nindir = sblock.fs_bsize / sizeof(int64_t); sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); sblock.fs_maxsymlinklen = MAXSYMLINKLEN_UFS2; } sblock.fs_sblkno = roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); sblock.fs_cblkno = (int32_t)(sblock.fs_sblkno + roundup(howmany(SBSIZE, sblock.fs_fsize), sblock.fs_frag)); sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { sizepb *= NINDIR(&sblock); sblock.fs_maxfilesize += sizepb; } #ifdef notyet /* * It is impossible to create a snapshot in case fs_maxfilesize is * smaller than fssize. */ if (sblock.fs_maxfilesize < (u_quad_t)fssize) warnx("WARNING: You will be unable to create snapshots on this " "file system. Correct by using a larger blocksize."); #endif /* * Calculate the number of blocks to put into each cylinder group. The * first goal is to have at least enough data blocks in each cylinder * group to meet the density requirement. Once this goal is achieved * we try to expand to have at least mincylgrps cylinder groups. Once * this goal is achieved, we pack as many blocks into each cylinder * group map as will fit. * * We start by calculating the smallest number of blocks that we can * put into each cylinder group. If this is too big, we reduce the * density until it fits. */ origdensity = density; for (;;) { fragsperinode = MAX(numfrags(&sblock, density), 1); minfpg = fragsperinode * INOPB(&sblock); if (minfpg > sblock.fs_size) minfpg = sblock.fs_size; sblock.fs_ipg = INOPB(&sblock); sblock.fs_fpg = roundup(sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); if (sblock.fs_fpg < minfpg) sblock.fs_fpg = minfpg; sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), INOPB(&sblock)); sblock.fs_fpg = roundup(sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); if (sblock.fs_fpg < minfpg) sblock.fs_fpg = minfpg; sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), INOPB(&sblock)); if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) break; density -= sblock.fs_fsize; } if (density != origdensity) warnx("density reduced from %d to %d bytes per inode", origdensity, density); /* * Use a lower value for mincylgrps if the user specified a large * number of blocks per cylinder group. This is needed for, e.g. the * install media which needs to pack 2 files very tightly. */ mincylgrps = MINCYLGRPS; if (maxfrgspercg != INT_MAX) { i = sblock.fs_size / maxfrgspercg; if (i < MINCYLGRPS) mincylgrps = i <= 0 ? 1 : i; } /* * Start packing more blocks into the cylinder group until it cannot * grow any larger, the number of cylinder groups drops below * mincylgrps, or we reach the requested size. */ for (;;) { sblock.fs_fpg += sblock.fs_frag; sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), INOPB(&sblock)); if (sblock.fs_fpg > maxfrgspercg || sblock.fs_size / sblock.fs_fpg < mincylgrps || CGSIZE(&sblock) > (unsigned long)sblock.fs_bsize) break; } sblock.fs_fpg -= sblock.fs_frag; sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), INOPB(&sblock)); if (sblock.fs_fpg > maxfrgspercg) warnx("can't honour -c: minimum is %d", sblock.fs_fpg); /* * Check to be sure that the last cylinder group has enough blocks to * be viable. If it is too small, reduce the number of blocks per * cylinder group which will have the effect of moving more blocks into * the last cylinder group. */ optimalfpg = sblock.fs_fpg; for (;;) { sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); lastminfpg = roundup(sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); if (sblock.fs_size < lastminfpg) errx(28, "file system size %jd < minimum size of %d", (intmax_t)sblock.fs_size, lastminfpg); if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || sblock.fs_size % sblock.fs_fpg == 0) break; sblock.fs_fpg -= sblock.fs_frag; sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), INOPB(&sblock)); } if (optimalfpg != sblock.fs_fpg) warnx("reduced number of fragments per cylinder group from %d" " to %d to enlarge last cylinder group", optimalfpg, sblock.fs_fpg); /* * Back to filling superblock fields. */ if (Oflag <= 1) { sblock.fs_spc = sblock.fs_fpg * sblock.fs_nspf; sblock.fs_nsect = sblock.fs_spc; sblock.fs_npsect = sblock.fs_spc; sblock.fs_ncyl = sblock.fs_ncg; } sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); sblock.fs_csaddr = cgdmin(&sblock, 0); sblock.fs_cssize = fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); fscs = (struct csum *)calloc(1, sblock.fs_cssize); if (fscs == NULL) errx(31, "calloc failed"); sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); if (sblock.fs_sbsize > SBLOCKSIZE) sblock.fs_sbsize = SBLOCKSIZE; sblock.fs_minfree = minfree; sblock.fs_maxbpg = maxbpg; sblock.fs_optim = opt; sblock.fs_cgrotor = 0; sblock.fs_pendingblocks = 0; sblock.fs_pendinginodes = 0; sblock.fs_fmod = 0; sblock.fs_ronly = 0; sblock.fs_state = 0; sblock.fs_clean = 1; sblock.fs_id[0] = (u_int32_t)utime; sblock.fs_id[1] = (u_int32_t)arc4random(); sblock.fs_fsmnt[0] = '\0'; csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); sblock.fs_cstotal.cs_nbfree = fragstoblks(&sblock, sblock.fs_dsize) - howmany(csfrags, sblock.fs_frag); sblock.fs_cstotal.cs_nffree = fragnum(&sblock, sblock.fs_size) + (fragnum(&sblock, csfrags) > 0 ? sblock.fs_frag - fragnum(&sblock, csfrags) : 0); sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO; sblock.fs_cstotal.cs_ndir = 0; sblock.fs_dsize -= csfrags; sblock.fs_time = utime; if (Oflag <= 1) { sblock.fs_ffs1_time = sblock.fs_time; sblock.fs_ffs1_dsize = sblock.fs_dsize; sblock.fs_ffs1_csaddr = sblock.fs_csaddr; sblock.fs_ffs1_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; sblock.fs_ffs1_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; sblock.fs_ffs1_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; sblock.fs_ffs1_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; } /* * Dump out summary information about file system. */ if (!mfs) { #define B2MBFACTOR (1 / (1024.0 * 1024.0)) printf("%s: %.1fMB in %jd sectors of %d bytes\n", fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, (intmax_t)fsbtodb(&sblock, sblock.fs_size), sectorsize); printf("%d cylinder groups of %.2fMB, %d blocks, %d" " inodes each\n", sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); #undef B2MBFACTOR } /* * Wipe out old FFS1 superblock if necessary. */ if (Oflag >= 2) { union fs_u *fsun1; struct fs *fs1; fsun1 = calloc(1, sizeof(union fs_u)); if (fsun1 == NULL) err(39, "calloc"); fs1 = &fsun1->fs; rdfs(SBLOCK_UFS1 / sectorsize, SBSIZE, (char *)fs1); if (fs1->fs_magic == FS_UFS1_MAGIC) { fs1->fs_magic = FS_BAD_MAGIC; wtfs(SBLOCK_UFS1 / sectorsize, SBSIZE, (char *)fs1); } free(fsun1); } wtfs((int)sblock.fs_sblockloc / sectorsize, SBSIZE, (char *)&sblock); sblock.fs_magic = (Oflag <= 1) ? FS_UFS1_MAGIC : FS_UFS2_MAGIC; /* * Now build the cylinders group blocks and * then print out indices of cylinder groups. */ if (!quiet) printf("super-block backups (for fsck -b #) at:\n"); #ifndef STANDALONE else if (!mfs && isatty(STDIN_FILENO)) { signal(SIGINFO, siginfo); cur_fsys = fsys; } #endif i = 0; width = charsperline(); /* * Allocate space for superblock, cylinder group map, and two sets of * inode blocks. */ if (sblock.fs_bsize < SBLOCKSIZE) iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; else iobufsize = 4 * sblock.fs_bsize; if ((iobuf = malloc(iobufsize)) == 0) errx(38, "cannot allocate I/O buffer"); bzero(iobuf, iobufsize); /* * Make a copy of the superblock into the buffer that we will be * writing out in each cylinder group. */ bcopy((char *)&sblock, iobuf, SBLOCKSIZE); for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { cur_cylno = (sig_atomic_t)cylno; initcg(cylno, utime); if (quiet) continue; j = snprintf(tmpbuf, sizeof tmpbuf, " %ld,", fsbtodb(&sblock, cgsblock(&sblock, cylno))); if (j >= sizeof tmpbuf) j = sizeof tmpbuf - 1; if (j == -1 || i+j >= width) { printf("\n"); i = 0; } i += j; printf("%s", tmpbuf); fflush(stdout); } if (!quiet) printf("\n"); if (Nflag && !mfs) exit(0); /* * Now construct the initial file system, then write out the superblock. */ if (Oflag <= 1) { if (fsinit1(utime, mfsmode, mfsuid, mfsgid)) errx(32, "fsinit1 failed"); sblock.fs_ffs1_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; sblock.fs_ffs1_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; sblock.fs_ffs1_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; sblock.fs_ffs1_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; } else { if (fsinit2(utime)) errx(32, "fsinit2 failed"); } wtfs((int)sblock.fs_sblockloc / sectorsize, SBSIZE, (char *)&sblock); for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), sblock.fs_cssize - i < sblock.fs_bsize ? sblock.fs_cssize - i : sblock.fs_bsize, ((char *)fscs) + i); /* * Update information about this partion in pack label, to that it may * be updated on disk. */ pp->p_fstype = FS_BSDFFS; pp->p_fragblock = DISKLABELV1_FFS_FRAGBLOCK(sblock.fs_fsize, sblock.fs_frag); pp->p_cpg = sblock.fs_cpg; } /* * Initialize a cylinder group. */ void initcg(int cylno, time_t utime) { int i, j, d, dlower, dupper, blkno, start; daddr64_t cbase, dmax; struct ufs1_dinode *dp1; struct ufs2_dinode *dp2; struct csum *cs; /* * Determine block bounds for cylinder group. Allow space for * super block summary information in first cylinder group. */ cbase = cgbase(&sblock, cylno); dmax = cbase + sblock.fs_fpg; if (dmax > sblock.fs_size) dmax = sblock.fs_size; if (fsbtodb(&sblock, cgsblock(&sblock, cylno)) + iobufsize / sectorsize > fssize) errx(40, "inode table does not fit in cylinder group"); dlower = cgsblock(&sblock, cylno) - cbase; dupper = cgdmin(&sblock, cylno) - cbase; if (cylno == 0) dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); cs = &fscs[cylno]; memset(&acg, 0, sblock.fs_cgsize); acg.cg_ffs2_time = utime; acg.cg_magic = CG_MAGIC; acg.cg_cgx = cylno; acg.cg_ffs2_niblk = sblock.fs_ipg; acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ? sblock.fs_ipg : 2 * INOPB(&sblock); acg.cg_ndblk = dmax - cbase; start = sizeof(struct cg); if (Oflag <= 1) { /* Hack to maintain compatibility with old fsck. */ if (cylno == sblock.fs_ncg - 1) acg.cg_ncyl = 0; else acg.cg_ncyl = sblock.fs_cpg; acg.cg_time = acg.cg_ffs2_time; acg.cg_ffs2_time = 0; acg.cg_niblk = acg.cg_ffs2_niblk; acg.cg_ffs2_niblk = 0; acg.cg_initediblk = 0; acg.cg_btotoff = start; acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t); acg.cg_iusedoff = acg.cg_boff + sblock.fs_cpg * sizeof(u_int16_t); } else { acg.cg_iusedoff = start; } acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); if (acg.cg_nextfreeoff > sblock.fs_cgsize) errx(37, "panic: cylinder group too big: %d > %d", acg.cg_nextfreeoff, sblock.fs_cgsize); acg.cg_cs.cs_nifree += sblock.fs_ipg; if (cylno == 0) { for (i = 0; i < ROOTINO; i++) { setbit(cg_inosused(&acg), i); acg.cg_cs.cs_nifree--; } } if (cylno > 0) { /* * In cylno 0, space is reserved for boot and super blocks. */ for (d = 0; d < dlower; d += sblock.fs_frag) { blkno = d / sblock.fs_frag; setblock(&sblock, cg_blksfree(&acg), blkno); acg.cg_cs.cs_nbfree++; if (Oflag <= 1) { cg_blktot(&acg)[cbtocylno(&sblock, d)]++; cg_blks(&sblock, &acg, cbtocylno(&sblock, d)) [cbtorpos(&sblock, d)]++; } } } if ((i = dupper % sblock.fs_frag)) { acg.cg_frsum[sblock.fs_frag - i]++; for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { setbit(cg_blksfree(&acg), dupper); acg.cg_cs.cs_nffree++; } } for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; d += sblock.fs_frag) { blkno = d / sblock.fs_frag; setblock(&sblock, cg_blksfree(&acg), blkno); acg.cg_cs.cs_nbfree++; if (Oflag <= 1) { cg_blktot(&acg)[cbtocylno(&sblock, d)]++; cg_blks(&sblock, &acg, cbtocylno(&sblock, d)) [cbtorpos(&sblock, d)]++; } } if (d < acg.cg_ndblk) { acg.cg_frsum[acg.cg_ndblk - d]++; for (; d < acg.cg_ndblk; d++) { setbit(cg_blksfree(&acg), d); acg.cg_cs.cs_nffree++; } } *cs = acg.cg_cs; /* * Write out the duplicate superblock, the cylinder group map * and two blocks worth of inodes in a single write. */ start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE; bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize); start += sblock.fs_bsize; dp1 = (struct ufs1_dinode *)(&iobuf[start]); dp2 = (struct ufs2_dinode *)(&iobuf[start]); for (i = 0; i < acg.cg_initediblk; i++) { if (sblock.fs_magic == FS_UFS1_MAGIC) { dp1->di_gen = (u_int32_t)arc4random(); dp1++; } else { dp2->di_gen = (u_int32_t)arc4random(); dp2++; } } wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf); if (Oflag <= 1) { /* Initialize inodes for FFS1. */ for (i = 2 * sblock.fs_frag; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) { dp1 = (struct ufs1_dinode *)(&iobuf[start]); for (j = 0; j < INOPB(&sblock); j++) { dp1->di_gen = (u_int32_t)arc4random(); dp1++; } wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), sblock.fs_bsize, &iobuf[start]); } } } #define PREDEFDIR 2 struct direct root_dir[] = { { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, }; struct odirect { u_int32_t d_ino; u_int16_t d_reclen; u_int16_t d_namlen; u_char d_name[MAXNAMLEN + 1]; } oroot_dir[] = { { ROOTINO, sizeof(struct direct), 1, "." }, { ROOTINO, sizeof(struct direct), 2, ".." }, }; int fsinit1(time_t utime, mode_t mfsmode, uid_t mfsuid, gid_t mfsgid) { union dinode node; /* * Initialize the node */ memset(&node, 0, sizeof(node)); node.dp1.di_atime = utime; node.dp1.di_mtime = utime; node.dp1.di_ctime = utime; /* * Create the root directory. */ if (mfs) { node.dp1.di_mode = IFDIR | mfsmode; node.dp1.di_uid = mfsuid; node.dp1.di_gid = mfsgid; } else { node.dp1.di_mode = IFDIR | UMASK; node.dp1.di_uid = geteuid(); node.dp1.di_gid = getegid(); } node.dp1.di_nlink = PREDEFDIR; if (Oflag == 0) node.dp1.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR); else node.dp1.di_size = makedir(root_dir, PREDEFDIR); node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); if (node.dp1.di_db[0] == 0) return (1); node.dp1.di_blocks = btodb(fragroundup(&sblock, node.dp1.di_size)); wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, iobuf); iput(&node, ROOTINO); #ifdef notyet /* * Create the .snap directory. */ node.dp1.di_mode |= 020; node.dp1.di_gid = gid; node.dp1.di_nlink = SNAPLINKCNT; node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); if (node.dp1.di_db[0] == 0) return (1); node.dp1.di_blocks = btodb(fragroundup(&sblock, node.dp1.di_size)); wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, iobuf); iput(&node, ROOTINO + 1); #endif return (0); } int fsinit2(time_t utime) { union dinode node; /* * Initialize the node. */ memset(&node, 0, sizeof(node)); node.dp2.di_atime = utime; node.dp2.di_mtime = utime; node.dp2.di_ctime = utime; /* * Create the root directory. */ node.dp2.di_mode = IFDIR | UMASK; node.dp2.di_uid = geteuid(); node.dp2.di_gid = getegid(); node.dp2.di_nlink = PREDEFDIR; node.dp2.di_size = makedir(root_dir, PREDEFDIR); node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); if (node.dp2.di_db[0] == 0) return (1); node.dp2.di_blocks = btodb(fragroundup(&sblock, node.dp2.di_size)); wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, iobuf); iput(&node, ROOTINO); #ifdef notyet /* * Create the .snap directory. */ node.dp2.di_mode |= 020; node.dp2.di_gid = gid; node.dp2.di_nlink = SNAPLINKCNT; node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); if (node.dp2.di_db[0] == 0) return (1); node.dp2.di_blocks = btodb(fragroundup(&sblock, node.dp2.di_size)); wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, iobuf); iput(&node, ROOTINO + 1); #endif return (0); } /* * construct a set of directory entries in "buf". * return size of directory. */ int makedir(struct direct *protodir, int entries) { char *cp; int i, spcleft; spcleft = DIRBLKSIZ; for (cp = iobuf, i = 0; i < entries - 1; i++) { protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); memcpy(cp, &protodir[i], protodir[i].d_reclen); cp += protodir[i].d_reclen; spcleft -= protodir[i].d_reclen; } protodir[i].d_reclen = spcleft; memcpy(cp, &protodir[i], DIRSIZ(0, &protodir[i])); return (DIRBLKSIZ); } /* * allocate a block or frag */ daddr64_t alloc(int size, int mode) { int i, frag; daddr64_t d, blkno; rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, (char *)&acg); if (acg.cg_magic != CG_MAGIC) { warnx("cg 0: bad magic number"); return (0); } if (acg.cg_cs.cs_nbfree == 0) { warnx("first cylinder group ran out of space"); return (0); } for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) goto goth; warnx("internal error: can't find block in cyl 0"); return (0); goth: blkno = fragstoblks(&sblock, d); clrblock(&sblock, cg_blksfree(&acg), blkno); acg.cg_cs.cs_nbfree--; sblock.fs_cstotal.cs_nbfree--; fscs[0].cs_nbfree--; if (mode & IFDIR) { acg.cg_cs.cs_ndir++; sblock.fs_cstotal.cs_ndir++; fscs[0].cs_ndir++; } if (Oflag <= 1) { cg_blktot(&acg)[cbtocylno(&sblock, d)]--; cg_blks(&sblock, &acg, cbtocylno(&sblock, d)) [cbtorpos(&sblock, d)]--; } if (size != sblock.fs_bsize) { frag = howmany(size, sblock.fs_fsize); fscs[0].cs_nffree += sblock.fs_frag - frag; sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; acg.cg_cs.cs_nffree += sblock.fs_frag - frag; acg.cg_frsum[sblock.fs_frag - frag]++; for (i = frag; i < sblock.fs_frag; i++) setbit(cg_blksfree(&acg), d + i); } wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, (char *)&acg); return (d); } /* * Allocate an inode on the disk */ void iput(union dinode *ip, ino_t ino) { daddr64_t d; if (Oflag <= 1) ip->dp1.di_gen = (u_int32_t)arc4random(); else ip->dp2.di_gen = (u_int32_t)arc4random(); rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, (char *)&acg); if (acg.cg_magic != CG_MAGIC) errx(41, "cg 0: bad magic number"); acg.cg_cs.cs_nifree--; setbit(cg_inosused(&acg), ino); wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, (char *)&acg); sblock.fs_cstotal.cs_nifree--; fscs[0].cs_nifree--; if (ino >= sblock.fs_ipg * sblock.fs_ncg) errx(32, "fsinit: inode value %d out of range", ino); d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); rdfs(d, sblock.fs_bsize, iobuf); if (Oflag <= 1) ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = ip->dp1; else ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = ip->dp2; wtfs(d, sblock.fs_bsize, iobuf); } /* * read a block from the file system */ void rdfs(daddr64_t bno, int size, void *bf) { int n; if (mfs) { memcpy(bf, membase + bno * sectorsize, size); return; } n = pread(fsi, bf, size, (off_t)bno * sectorsize); if (n != size) { err(34, "rdfs: read error on block %lld", bno); } } /* * write a block to the file system */ void wtfs(daddr64_t bno, int size, void *bf) { int n; if (mfs) { memcpy(membase + bno * sectorsize, bf, size); return; } if (Nflag) return; n = pwrite(fso, bf, size, (off_t)bno * sectorsize); if (n != size) { err(36, "wtfs: write error on block %lld", bno); } } /* * check if a block is available */ int isblock(struct fs *fs, unsigned char *cp, int h) { unsigned char mask; switch (fs->fs_frag) { case 8: return (cp[h] == 0xff); case 4: mask = 0x0f << ((h & 0x1) << 2); return ((cp[h >> 1] & mask) == mask); case 2: mask = 0x03 << ((h & 0x3) << 1); return ((cp[h >> 2] & mask) == mask); case 1: mask = 0x01 << (h & 0x7); return ((cp[h >> 3] & mask) == mask); default: #ifdef STANDALONE printf("isblock bad fs_frag %d\n", fs->fs_frag); #else warnx("isblock bad fs_frag %d", fs->fs_frag); #endif return (0); } } /* * take a block out of the map */ void clrblock(struct fs *fs, unsigned char *cp, int h) { switch ((fs)->fs_frag) { case 8: cp[h] = 0; return; case 4: cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); return; case 2: cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); return; case 1: cp[h >> 3] &= ~(0x01 << (h & 0x7)); return; default: #ifdef STANDALONE printf("clrblock bad fs_frag %d\n", fs->fs_frag); #else warnx("clrblock bad fs_frag %d", fs->fs_frag); #endif return; } } /* * put a block into the map */ void setblock(struct fs *fs, unsigned char *cp, int h) { switch (fs->fs_frag) { case 8: cp[h] = 0xff; return; case 4: cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); return; case 2: cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); return; case 1: cp[h >> 3] |= (0x01 << (h & 0x7)); return; default: #ifdef STANDALONE printf("setblock bad fs_frag %d\n", fs->fs_frag); #else warnx("setblock bad fs_frag %d", fs->fs_frag); #endif return; } } /* * Determine the number of characters in a * single line. */ static int charsperline(void) { int columns; char *cp; struct winsize ws; columns = 0; if (ioctl(0, TIOCGWINSZ, &ws) != -1) columns = ws.ws_col; if (columns == 0 && (cp = getenv("COLUMNS"))) columns = atoi(cp); if (columns == 0) columns = 80; /* last resort */ return columns; } static int ilog2(int val) { int n; for (n = 0; n < sizeof(n) * CHAR_BIT; n++) if (1 << n == val) return (n); errx(1, "ilog2: %d is not a power of 2\n", val); }