/* $OpenBSD: pfctl.c,v 1.395 2024/07/14 19:51:08 sashan Exp $ */ /* * Copyright (c) 2001 Daniel Hartmeier * Copyright (c) 2002 - 2013 Henning Brauer * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pfctl_parser.h" #include "pfctl.h" void usage(void); int pfctl_enable(int, int); int pfctl_disable(int, int); void pfctl_clear_queues(struct pf_qihead *); void pfctl_clear_stats(int, const char *, int); void pfctl_clear_interface_flags(int, int); int pfctl_clear_rules(int, int, char *); void pfctl_clear_src_nodes(int, int); void pfctl_clear_states(int, const char *, int); struct addrinfo * pfctl_addrprefix(char *, struct pf_addr *, int); void pfctl_kill_src_nodes(int, int); void pfctl_net_kill_states(int, const char *, int, int); void pfctl_label_kill_states(int, const char *, int, int); void pfctl_id_kill_states(int, int); void pfctl_key_kill_states(int, const char *, int, int); int pfctl_parse_host(char *, struct pf_rule_addr *); void pfctl_init_options(struct pfctl *); int pfctl_load_options(struct pfctl *); int pfctl_load_limit(struct pfctl *, unsigned int, unsigned int); int pfctl_load_timeout(struct pfctl *, unsigned int, unsigned int); int pfctl_load_debug(struct pfctl *, unsigned int); int pfctl_load_logif(struct pfctl *, char *); int pfctl_load_hostid(struct pfctl *, unsigned int); int pfctl_load_reassembly(struct pfctl *, u_int32_t); int pfctl_load_syncookies(struct pfctl *, u_int8_t); int pfctl_set_synflwats(struct pfctl *, u_int32_t, u_int32_t); void pfctl_print_rule_counters(struct pf_rule *, int); int pfctl_show_rules(int, char *, int, enum pfctl_show, char *, int, int, long); int pfctl_show_src_nodes(int, int); int pfctl_show_states(int, const char *, int, long); int pfctl_show_status(int, int); int pfctl_show_timeouts(int, int); int pfctl_show_limits(int, int); void pfctl_debug(int, u_int32_t, int); int pfctl_show_anchors(int, int, char *); int pfctl_ruleset_trans(struct pfctl *, char *, struct pf_anchor *); u_int pfctl_find_childqs(struct pfctl_qsitem *); void pfctl_load_queue(struct pfctl *, u_int32_t, struct pfctl_qsitem *); int pfctl_load_queues(struct pfctl *); u_int pfctl_leafqueue_check(char *); u_int pfctl_check_qassignments(struct pf_ruleset *); int pfctl_load_ruleset(struct pfctl *, char *, struct pf_ruleset *, int); int pfctl_load_rule(struct pfctl *, char *, struct pf_rule *, int); const char *pfctl_lookup_option(char *, const char **); void pfctl_state_store(int, const char *); void pfctl_state_load(int, const char *); void pfctl_reset(int, int); int pfctl_walk_show(int, struct pfioc_ruleset *, void *); int pfctl_walk_get(int, struct pfioc_ruleset *, void *); int pfctl_walk_anchors(int, int, const char *, int(*)(int, struct pfioc_ruleset *, void *), void *); struct pfr_anchors * pfctl_get_anchors(int, const char *, int); int pfctl_recurse(int, int, const char *, int(*)(int, int, struct pfr_anchoritem *)); int pfctl_call_clearrules(int, int, struct pfr_anchoritem *); int pfctl_call_cleartables(int, int, struct pfr_anchoritem *); int pfctl_call_clearanchors(int, int, struct pfr_anchoritem *); int pfctl_call_showtables(int, int, struct pfr_anchoritem *); const char *clearopt; char *rulesopt; const char *showopt; const char *debugopt; char *anchoropt; const char *optiopt = NULL; char *pf_device = "/dev/pf"; char *ifaceopt; char *tableopt; const char *tblcmdopt; int src_node_killers; char *src_node_kill[2]; int state_killers; char *state_kill[2]; int dev = -1; int first_title = 1; int labels = 0; int exit_val = 0; #define INDENT(d, o) do { \ if (o) { \ int i; \ for (i=0; i < d; i++) \ printf(" "); \ } \ } while (0) \ static const struct { const char *name; int index; } pf_limits[] = { { "states", PF_LIMIT_STATES }, { "src-nodes", PF_LIMIT_SRC_NODES }, { "frags", PF_LIMIT_FRAGS }, { "tables", PF_LIMIT_TABLES }, { "table-entries", PF_LIMIT_TABLE_ENTRIES }, { "pktdelay-pkts", PF_LIMIT_PKTDELAY_PKTS }, { "anchors", PF_LIMIT_ANCHORS }, { NULL, 0 } }; struct pf_hint { const char *name; int timeout; }; static const struct pf_hint pf_hint_normal[] = { { "tcp.first", 2 * 60 }, { "tcp.opening", 30 }, { "tcp.established", 24 * 60 * 60 }, { "tcp.closing", 15 * 60 }, { "tcp.finwait", 45 }, { "tcp.closed", 90 }, { "tcp.tsdiff", 30 }, { NULL, 0 } }; static const struct pf_hint pf_hint_satellite[] = { { "tcp.first", 3 * 60 }, { "tcp.opening", 30 + 5 }, { "tcp.established", 24 * 60 * 60 }, { "tcp.closing", 15 * 60 + 5 }, { "tcp.finwait", 45 + 5 }, { "tcp.closed", 90 + 5 }, { "tcp.tsdiff", 60 }, { NULL, 0 } }; static const struct pf_hint pf_hint_conservative[] = { { "tcp.first", 60 * 60 }, { "tcp.opening", 15 * 60 }, { "tcp.established", 5 * 24 * 60 * 60 }, { "tcp.closing", 60 * 60 }, { "tcp.finwait", 10 * 60 }, { "tcp.closed", 3 * 60 }, { "tcp.tsdiff", 60 }, { NULL, 0 } }; static const struct pf_hint pf_hint_aggressive[] = { { "tcp.first", 30 }, { "tcp.opening", 5 }, { "tcp.established", 5 * 60 * 60 }, { "tcp.closing", 60 }, { "tcp.finwait", 30 }, { "tcp.closed", 30 }, { "tcp.tsdiff", 10 }, { NULL, 0 } }; static const struct { const char *name; const struct pf_hint *hint; } pf_hints[] = { { "normal", pf_hint_normal }, { "satellite", pf_hint_satellite }, { "high-latency", pf_hint_satellite }, { "conservative", pf_hint_conservative }, { "aggressive", pf_hint_aggressive }, { NULL, NULL } }; static const char *clearopt_list[] = { "rules", "Sources", "states", "info", "Tables", "osfp", "Reset", "all", NULL }; static const char *showopt_list[] = { "queue", "rules", "Anchors", "Sources", "states", "info", "Interfaces", "labels", "timeouts", "memory", "Tables", "osfp", "all", NULL }; static const char *tblcmdopt_list[] = { "kill", "flush", "add", "delete", "replace", "show", "test", "zero", "expire", NULL }; static const char *debugopt_list[] = { "debug", "info", "notice", "warning", "error", "crit", "alert", "emerg", NULL }; static const char *optiopt_list[] = { "none", "basic", "profile", NULL }; struct pf_qihead qspecs = TAILQ_HEAD_INITIALIZER(qspecs); struct pf_qihead rootqs = TAILQ_HEAD_INITIALIZER(rootqs); __dead void usage(void) { extern char *__progname; fprintf(stderr, "usage: %s [-deghNnPqrvz] ", __progname); fprintf(stderr, "[-a anchor] [-D macro=value] [-F modifier]"); fprintf(stderr, " [-f file]\n"); fprintf(stderr, "\t[-i interface] [-K key] [-k key] [-L statefile]"); fprintf(stderr, " [-o level]\n"); fprintf(stderr, "\t[-p device] [-S statefile] [-s modifier [-R id]]\n"); fprintf(stderr, "\t[-t table -T command [address ...]]"); fprintf(stderr, " [-V rdomain] [-x level]\n"); exit(1); } void pfctl_err(int opts, int eval, const char *fmt, ...) { va_list ap; va_start(ap, fmt); if ((opts & PF_OPT_IGNFAIL) == 0) verr(eval, fmt, ap); else vwarn(fmt, ap); va_end(ap); exit_val = eval; } void pfctl_errx(int opts, int eval, const char *fmt, ...) { va_list ap; va_start(ap, fmt); if ((opts & PF_OPT_IGNFAIL) == 0) verrx(eval, fmt, ap); else vwarnx(fmt, ap); va_end(ap); exit_val = eval; } int pfctl_enable(int dev, int opts) { if (ioctl(dev, DIOCSTART) == -1) { if (errno == EEXIST) errx(1, "pf already enabled"); else err(1, "DIOCSTART"); } if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "pf enabled\n"); return (0); } int pfctl_disable(int dev, int opts) { if (ioctl(dev, DIOCSTOP) == -1) { if (errno == ENOENT) errx(1, "pf not enabled"); else err(1, "DIOCSTOP"); } if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "pf disabled\n"); return (0); } void pfctl_clear_stats(int dev, const char *iface, int opts) { struct pfioc_iface pi; memset(&pi, 0, sizeof(pi)); if (iface != NULL && strlcpy(pi.pfiio_name, iface, sizeof(pi.pfiio_name)) >= sizeof(pi.pfiio_name)) pfctl_errx(opts, 1, "invalid interface: %s", iface); if (ioctl(dev, DIOCCLRSTATUS, &pi) == -1) pfctl_err(opts, 1, "DIOCCLRSTATUS"); if ((opts & PF_OPT_QUIET) == 0) { fprintf(stderr, "pf: statistics cleared"); if (iface != NULL) fprintf(stderr, " for interface %s", iface); fprintf(stderr, "\n"); } } void pfctl_clear_interface_flags(int dev, int opts) { struct pfioc_iface pi; if ((opts & PF_OPT_NOACTION) == 0) { bzero(&pi, sizeof(pi)); pi.pfiio_flags = PFI_IFLAG_SKIP; if (ioctl(dev, DIOCCLRIFFLAG, &pi) == -1) pfctl_err(opts, 1, "DIOCCLRIFFLAG"); if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "pf: interface flags reset\n"); } } int pfctl_clear_rules(int dev, int opts, char *anchorname) { struct pfr_buffer t; memset(&t, 0, sizeof(t)); t.pfrb_type = PFRB_TRANS; if (pfctl_add_trans(&t, PF_TRANS_RULESET, anchorname) || pfctl_trans(dev, &t, DIOCXBEGIN, 0) || pfctl_trans(dev, &t, DIOCXCOMMIT, 0)) { pfctl_err(opts, 1, "%s", __func__); return (1); } else if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "rules cleared\n"); return (0); } void pfctl_clear_src_nodes(int dev, int opts) { if (ioctl(dev, DIOCCLRSRCNODES) == -1) pfctl_err(opts, 1, "DIOCCLRSRCNODES"); if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "source tracking entries cleared\n"); } void pfctl_clear_states(int dev, const char *iface, int opts) { struct pfioc_state_kill psk; memset(&psk, 0, sizeof(psk)); if (iface != NULL && strlcpy(psk.psk_ifname, iface, sizeof(psk.psk_ifname)) >= sizeof(psk.psk_ifname)) pfctl_errx(opts, 1, "invalid interface: %s", iface); if (ioctl(dev, DIOCCLRSTATES, &psk) == -1) pfctl_err(opts, 1, "DIOCCLRSTATES"); if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "%d states cleared\n", psk.psk_killed); } struct addrinfo * pfctl_addrprefix(char *addr, struct pf_addr *mask, int numeric) { char *p; const char *errstr; int prefix, ret_ga, q, r; struct addrinfo hints, *res; bzero(&hints, sizeof(hints)); hints.ai_socktype = SOCK_DGRAM; /* dummy */ if (numeric) hints.ai_flags = AI_NUMERICHOST; if ((p = strchr(addr, '/')) != NULL) { *p++ = '\0'; /* prefix only with numeric addresses */ hints.ai_flags |= AI_NUMERICHOST; } if ((ret_ga = getaddrinfo(addr, NULL, &hints, &res))) { errx(1, "getaddrinfo: %s", gai_strerror(ret_ga)); /* NOTREACHED */ } if (p == NULL) return res; prefix = strtonum(p, 0, res->ai_family == AF_INET6 ? 128 : 32, &errstr); if (errstr) errx(1, "prefix is %s: %s", errstr, p); q = prefix >> 3; r = prefix & 7; switch (res->ai_family) { case AF_INET: bzero(&mask->v4, sizeof(mask->v4)); mask->v4.s_addr = htonl((u_int32_t) (0xffffffffffULL << (32 - prefix))); break; case AF_INET6: bzero(&mask->v6, sizeof(mask->v6)); if (q > 0) memset((void *)&mask->v6, 0xff, q); if (r > 0) *((u_char *)&mask->v6 + q) = (0xff00 >> r) & 0xff; break; } return res; } void pfctl_kill_src_nodes(int dev, int opts) { struct pfioc_src_node_kill psnk; struct addrinfo *res[2], *resp[2]; struct sockaddr last_src, last_dst; int killed, sources, dests; killed = sources = dests = 0; memset(&psnk, 0, sizeof(psnk)); memset(&psnk.psnk_src.addr.v.a.mask, 0xff, sizeof(psnk.psnk_src.addr.v.a.mask)); memset(&last_src, 0xff, sizeof(last_src)); memset(&last_dst, 0xff, sizeof(last_dst)); res[0] = pfctl_addrprefix(src_node_kill[0], &psnk.psnk_src.addr.v.a.mask, (opts & PF_OPT_NODNS)); for (resp[0] = res[0]; resp[0]; resp[0] = resp[0]->ai_next) { if (resp[0]->ai_addr == NULL) continue; /* We get lots of duplicates. Catch the easy ones */ if (memcmp(&last_src, resp[0]->ai_addr, sizeof(last_src)) == 0) continue; last_src = *(struct sockaddr *)resp[0]->ai_addr; psnk.psnk_af = resp[0]->ai_family; sources++; copy_satopfaddr(&psnk.psnk_src.addr.v.a.addr, resp[0]->ai_addr); if (src_node_killers > 1) { dests = 0; memset(&psnk.psnk_dst.addr.v.a.mask, 0xff, sizeof(psnk.psnk_dst.addr.v.a.mask)); memset(&last_dst, 0xff, sizeof(last_dst)); res[1] = pfctl_addrprefix(src_node_kill[1], &psnk.psnk_dst.addr.v.a.mask, (opts & PF_OPT_NODNS)); for (resp[1] = res[1]; resp[1]; resp[1] = resp[1]->ai_next) { if (resp[1]->ai_addr == NULL) continue; if (psnk.psnk_af != resp[1]->ai_family) continue; if (memcmp(&last_dst, resp[1]->ai_addr, sizeof(last_dst)) == 0) continue; last_dst = *(struct sockaddr *)resp[1]->ai_addr; dests++; copy_satopfaddr(&psnk.psnk_dst.addr.v.a.addr, resp[1]->ai_addr); if (ioctl(dev, DIOCKILLSRCNODES, &psnk) == -1) err(1, "DIOCKILLSRCNODES"); killed += psnk.psnk_killed; } freeaddrinfo(res[1]); } else { if (ioctl(dev, DIOCKILLSRCNODES, &psnk) == -1) err(1, "DIOCKILLSRCNODES"); killed += psnk.psnk_killed; } } freeaddrinfo(res[0]); if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "killed %d src nodes from %d sources and %d " "destinations\n", killed, sources, dests); } void pfctl_net_kill_states(int dev, const char *iface, int opts, int rdomain) { struct pfioc_state_kill psk; struct addrinfo *res[2], *resp[2]; struct sockaddr last_src, last_dst; int killed, sources, dests; killed = sources = dests = 0; memset(&psk, 0, sizeof(psk)); memset(&psk.psk_src.addr.v.a.mask, 0xff, sizeof(psk.psk_src.addr.v.a.mask)); memset(&last_src, 0xff, sizeof(last_src)); memset(&last_dst, 0xff, sizeof(last_dst)); if (iface != NULL && strlcpy(psk.psk_ifname, iface, sizeof(psk.psk_ifname)) >= sizeof(psk.psk_ifname)) errx(1, "invalid interface: %s", iface); psk.psk_rdomain = rdomain; res[0] = pfctl_addrprefix(state_kill[0], &psk.psk_src.addr.v.a.mask, (opts & PF_OPT_NODNS)); for (resp[0] = res[0]; resp[0]; resp[0] = resp[0]->ai_next) { if (resp[0]->ai_addr == NULL) continue; /* We get lots of duplicates. Catch the easy ones */ if (memcmp(&last_src, resp[0]->ai_addr, sizeof(last_src)) == 0) continue; last_src = *(struct sockaddr *)resp[0]->ai_addr; psk.psk_af = resp[0]->ai_family; sources++; copy_satopfaddr(&psk.psk_src.addr.v.a.addr, resp[0]->ai_addr); if (state_killers > 1) { dests = 0; memset(&psk.psk_dst.addr.v.a.mask, 0xff, sizeof(psk.psk_dst.addr.v.a.mask)); memset(&last_dst, 0xff, sizeof(last_dst)); res[1] = pfctl_addrprefix(state_kill[1], &psk.psk_dst.addr.v.a.mask, (opts & PF_OPT_NODNS)); for (resp[1] = res[1]; resp[1]; resp[1] = resp[1]->ai_next) { if (resp[1]->ai_addr == NULL) continue; if (psk.psk_af != resp[1]->ai_family) continue; if (memcmp(&last_dst, resp[1]->ai_addr, sizeof(last_dst)) == 0) continue; last_dst = *(struct sockaddr *)resp[1]->ai_addr; dests++; copy_satopfaddr(&psk.psk_dst.addr.v.a.addr, resp[1]->ai_addr); if (ioctl(dev, DIOCKILLSTATES, &psk) == -1) err(1, "DIOCKILLSTATES"); killed += psk.psk_killed; } freeaddrinfo(res[1]); } else { if (ioctl(dev, DIOCKILLSTATES, &psk) == -1) err(1, "DIOCKILLSTATES"); killed += psk.psk_killed; } } freeaddrinfo(res[0]); if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "killed %d states from %d sources and %d " "destinations\n", killed, sources, dests); } void pfctl_label_kill_states(int dev, const char *iface, int opts, int rdomain) { struct pfioc_state_kill psk; if (state_killers != 2 || (strlen(state_kill[1]) == 0)) { warnx("no label specified"); usage(); } memset(&psk, 0, sizeof(psk)); if (iface != NULL && strlcpy(psk.psk_ifname, iface, sizeof(psk.psk_ifname)) >= sizeof(psk.psk_ifname)) errx(1, "invalid interface: %s", iface); if (strlcpy(psk.psk_label, state_kill[1], sizeof(psk.psk_label)) >= sizeof(psk.psk_label)) errx(1, "label too long: %s", state_kill[1]); psk.psk_rdomain = rdomain; if (ioctl(dev, DIOCKILLSTATES, &psk) == -1) err(1, "DIOCKILLSTATES"); if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "killed %d states\n", psk.psk_killed); } void pfctl_id_kill_states(int dev, int opts) { struct pfioc_state_kill psk; if (state_killers != 2 || (strlen(state_kill[1]) == 0)) { warnx("no id specified"); usage(); } memset(&psk, 0, sizeof(psk)); if ((sscanf(state_kill[1], "%llx/%x", &psk.psk_pfcmp.id, &psk.psk_pfcmp.creatorid)) == 2) HTONL(psk.psk_pfcmp.creatorid); else if ((sscanf(state_kill[1], "%llx", &psk.psk_pfcmp.id)) == 1) { psk.psk_pfcmp.creatorid = 0; } else { warnx("wrong id format specified"); usage(); } if (psk.psk_pfcmp.id == 0) { warnx("cannot kill id 0"); usage(); } psk.psk_pfcmp.id = htobe64(psk.psk_pfcmp.id); if (ioctl(dev, DIOCKILLSTATES, &psk) == -1) err(1, "DIOCKILLSTATES"); if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "killed %d states\n", psk.psk_killed); } void pfctl_key_kill_states(int dev, const char *iface, int opts, int rdomain) { struct pfioc_state_kill psk; char *s, *token, *tokens[4]; struct protoent *p; u_int i, sidx, didx; if (state_killers != 2 || (strlen(state_kill[1]) == 0)) { warnx("no key specified"); usage(); } memset(&psk, 0, sizeof(psk)); if (iface != NULL && strlcpy(psk.psk_ifname, iface, sizeof(psk.psk_ifname)) >= sizeof(psk.psk_ifname)) errx(1, "invalid interface: %s", iface); psk.psk_rdomain = rdomain; s = strdup(state_kill[1]); if (!s) errx(1, "pfctl_key_kill_states: strdup"); i = 0; while ((token = strsep(&s, " \t")) != NULL) if (*token != '\0') { if (i < 4) tokens[i] = token; i++; } if (i != 4) errx(1, "pfctl_key_kill_states: key must be " "\"protocol host1:port1 direction host2:port2\" format"); if ((p = getprotobyname(tokens[0])) == NULL) errx(1, "invalid protocol: %s", tokens[0]); psk.psk_proto = p->p_proto; if (strcmp(tokens[2], "->") == 0) { sidx = 1; didx = 3; } else if (strcmp(tokens[2], "<-") == 0) { sidx = 3; didx = 1; } else errx(1, "invalid direction: %s", tokens[2]); if (pfctl_parse_host(tokens[sidx], &psk.psk_src) == -1) errx(1, "invalid host: %s", tokens[sidx]); if (pfctl_parse_host(tokens[didx], &psk.psk_dst) == -1) errx(1, "invalid host: %s", tokens[didx]); if (ioctl(dev, DIOCKILLSTATES, &psk) == -1) err(1, "DIOCKILLSTATES"); if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "killed %d states\n", psk.psk_killed); } int pfctl_parse_host(char *str, struct pf_rule_addr *addr) { char *s = NULL, *sbs, *sbe; struct addrinfo hints, *ai; s = strdup(str); if (!s) errx(1, "pfctl_parse_host: strdup"); memset(&hints, 0, sizeof(hints)); hints.ai_socktype = SOCK_DGRAM; /* dummy */ hints.ai_flags = AI_NUMERICHOST; if ((sbs = strchr(s, '[')) != NULL && (sbe = strrchr(s, ']')) != NULL) { hints.ai_family = AF_INET6; *(sbs++) = *sbe = '\0'; } else if ((sbs = strchr(s, ':')) != NULL) { hints.ai_family = AF_INET; *(sbs++) = '\0'; } else goto error; if (getaddrinfo(s, sbs, &hints, &ai) != 0) goto error; copy_satopfaddr(&addr->addr.v.a.addr, ai->ai_addr); addr->port[0] = ai->ai_family == AF_INET6 ? ((struct sockaddr_in6 *)ai->ai_addr)->sin6_port : ((struct sockaddr_in *)ai->ai_addr)->sin_port; freeaddrinfo(ai); free(s); memset(&addr->addr.v.a.mask, 0xff, sizeof(struct pf_addr)); addr->port_op = PF_OP_EQ; addr->addr.type = PF_ADDR_ADDRMASK; return (0); error: free(s); return (-1); } void pfctl_print_rule_counters(struct pf_rule *rule, int opts) { if ((rule->rule_flag & PFRULE_EXPIRED) && !(opts & (PF_OPT_VERBOSE2 | PF_OPT_DEBUG))) return; if (opts & PF_OPT_DEBUG) { const char *t[PF_SKIP_COUNT] = { "i", "d", "r", "f", "p", "sa", "da", "sp", "dp" }; int i; printf(" [ Skip steps: "); for (i = 0; i < PF_SKIP_COUNT; ++i) { if (rule->skip[i].nr == rule->nr + 1) continue; printf("%s=", t[i]); if (rule->skip[i].nr == -1) printf("end "); else printf("%u ", rule->skip[i].nr); } printf("]\n"); printf(" [ queue: qname=%s qid=%u pqname=%s pqid=%u ]\n", rule->qname, rule->qid, rule->pqname, rule->pqid); } if (opts & PF_OPT_VERBOSE) { printf(" [ Evaluations: %-8llu Packets: %-8llu " "Bytes: %-10llu States: %-6u]\n", (unsigned long long)rule->evaluations, (unsigned long long)(rule->packets[0] + rule->packets[1]), (unsigned long long)(rule->bytes[0] + rule->bytes[1]), rule->states_cur); if (!(opts & PF_OPT_DEBUG)) printf(" [ Inserted: uid %lu pid %lu " "State Creations: %-6u]\n", (unsigned long)rule->cuid, (unsigned long)rule->cpid, rule->states_tot); } } void pfctl_print_title(char *title) { if (!first_title) printf("\n"); first_title = 0; printf("%s\n", title); } int pfctl_show_rules(int dev, char *path, int opts, enum pfctl_show format, char *anchorname, int depth, int wildcard, long shownr) { struct pfioc_rule pr; u_int32_t header = 0; int len = strlen(path), ret = 0; char *npath, *p; if (depth > PF_ANCHOR_STACK_MAX) { warnx("%s: max stack depth exceeded for %s", __func__, path); return (-1); } /* * Truncate a trailing / and * on an anchorname before searching for * the ruleset, this is syntactic sugar that doesn't actually make it * to the kernel. */ if ((p = strrchr(anchorname, '/')) != NULL && p[1] == '*' && p[2] == '\0') { p[0] = '\0'; } memset(&pr, 0, sizeof(pr)); if (anchorname[0] == '/') { if ((npath = calloc(1, PATH_MAX)) == NULL) err(1, "calloc"); strlcpy(npath, anchorname, PATH_MAX); } else { if (path[0]) snprintf(&path[len], PATH_MAX - len, "/%s", anchorname); else snprintf(&path[len], PATH_MAX - len, "%s", anchorname); npath = path; } memcpy(pr.anchor, npath, sizeof(pr.anchor)); if (opts & PF_OPT_SHOWALL) { pr.rule.action = PF_PASS; if (ioctl(dev, DIOCGETRULES, &pr) == -1) { warnx("%s", pf_strerror(errno)); ret = -1; goto error; } header++; if (format == PFCTL_SHOW_RULES && (pr.nr > 0 || header)) pfctl_print_title("FILTER RULES:"); else if (format == PFCTL_SHOW_LABELS && labels) pfctl_print_title("LABEL COUNTERS:"); } if (opts & PF_OPT_CLRRULECTRS) pr.action = PF_GET_CLR_CNTR; pr.rule.action = PF_PASS; if (ioctl(dev, DIOCGETRULES, &pr) == -1) { warnx("%s", pf_strerror(errno)); ret = -1; goto error; } while (ioctl(dev, DIOCGETRULE, &pr) != -1) { if (shownr != -1 && shownr != pr.nr) continue; /* anchor is the same for all rules in it */ if (pr.rule.anchor_wildcard == 0) wildcard = 0; switch (format) { case PFCTL_SHOW_LABELS: if (pr.rule.label[0]) { INDENT(depth, !(opts & PF_OPT_VERBOSE)); printf("%s %llu %llu %llu %llu" " %llu %llu %llu %llu\n", pr.rule.label, (unsigned long long)pr.rule.evaluations, (unsigned long long)(pr.rule.packets[0] + pr.rule.packets[1]), (unsigned long long)(pr.rule.bytes[0] + pr.rule.bytes[1]), (unsigned long long)pr.rule.packets[0], (unsigned long long)pr.rule.bytes[0], (unsigned long long)pr.rule.packets[1], (unsigned long long)pr.rule.bytes[1], (unsigned long long)pr.rule.states_tot); } break; case PFCTL_SHOW_RULES: if (pr.rule.label[0] && (opts & PF_OPT_SHOWALL)) labels = 1; INDENT(depth, !(opts & PF_OPT_VERBOSE)); print_rule(&pr.rule, pr.anchor_call, opts); /* * If this is an 'unnamed' brace notation anchor OR * the user has explicitly requested recursion, * print it recursively. */ if (pr.anchor_call[0] && (((p = strrchr(pr.anchor_call, '/')) ? p[1] == '_' : pr.anchor_call[0] == '_') || opts & PF_OPT_RECURSE)) { printf(" {\n"); pfctl_print_rule_counters(&pr.rule, opts); pfctl_show_rules(dev, npath, opts, format, pr.anchor_call, depth + 1, pr.rule.anchor_wildcard, -1); INDENT(depth, !(opts & PF_OPT_VERBOSE)); printf("}\n"); } else { if ((pr.rule.rule_flag & PFRULE_EXPIRED) && !(opts & (PF_OPT_VERBOSE2 | PF_OPT_DEBUG))) break; printf("\n"); pfctl_print_rule_counters(&pr.rule, opts); } break; case PFCTL_SHOW_NOTHING: break; } errno = 0; } if (errno != 0 && errno != ENOENT) { warn("DIOCGETRULE"); ret = -1; goto error; } /* * If this anchor was called with a wildcard path, go through * the rulesets in the anchor rather than the rules. */ if (wildcard && (opts & PF_OPT_RECURSE)) { struct pfioc_ruleset prs; u_int32_t mnr, nr; memset(&prs, 0, sizeof(prs)); memcpy(prs.path, npath, sizeof(prs.path)); if (ioctl(dev, DIOCGETRULESETS, &prs) == -1) errx(1, "%s", pf_strerror(errno)); mnr = prs.nr; for (nr = 0; nr < mnr; ++nr) { prs.nr = nr; if (ioctl(dev, DIOCGETRULESET, &prs) == -1) errx(1, "%s", pf_strerror(errno)); INDENT(depth, !(opts & PF_OPT_VERBOSE)); printf("anchor \"%s\" all {\n", prs.name); pfctl_show_rules(dev, npath, opts, format, prs.name, depth + 1, 0, shownr); INDENT(depth, !(opts & PF_OPT_VERBOSE)); printf("}\n"); } path[len] = '\0'; return (0); } error: if (path != npath) free(npath); path[len] = '\0'; return (ret); } int pfctl_show_src_nodes(int dev, int opts) { struct pfioc_src_nodes psn; struct pf_src_node *p; char *inbuf = NULL, *newinbuf = NULL; size_t i, len = 0; memset(&psn, 0, sizeof(psn)); for (;;) { psn.psn_len = len; if (len) { newinbuf = realloc(inbuf, len); if (newinbuf == NULL) err(1, "realloc"); psn.psn_buf = inbuf = newinbuf; } if (ioctl(dev, DIOCGETSRCNODES, &psn) == -1) { warn("DIOCGETSRCNODES"); free(inbuf); return (-1); } if (psn.psn_len + sizeof(struct pfioc_src_nodes) < len) break; if (len == 0 && psn.psn_len == 0) goto done; if (len == 0 && psn.psn_len != 0) len = psn.psn_len; if (psn.psn_len == 0) goto done; /* no src_nodes */ len *= 2; } p = psn.psn_src_nodes; if (psn.psn_len > 0 && (opts & PF_OPT_SHOWALL)) pfctl_print_title("SOURCE TRACKING NODES:"); for (i = 0; i < psn.psn_len; i += sizeof(*p)) { print_src_node(p, opts); p++; } done: free(inbuf); return (0); } int pfctl_show_states(int dev, const char *iface, int opts, long shownr) { struct pfioc_states ps; struct pfsync_state *p; char *inbuf = NULL, *newinbuf = NULL; size_t i, len = 0; int dotitle = (opts & PF_OPT_SHOWALL); memset(&ps, 0, sizeof(ps)); for (;;) { ps.ps_len = len; if (len) { newinbuf = realloc(inbuf, len); if (newinbuf == NULL) err(1, "realloc"); ps.ps_buf = inbuf = newinbuf; } if (ioctl(dev, DIOCGETSTATES, &ps) == -1) { warn("DIOCGETSTATES"); free(inbuf); return (-1); } if (ps.ps_len + sizeof(struct pfioc_states) < len) break; if (len == 0 && ps.ps_len == 0) goto done; if (len == 0 && ps.ps_len != 0) len = ps.ps_len; if (ps.ps_len == 0) goto done; /* no states */ len *= 2; } p = ps.ps_states; for (i = 0; i < ps.ps_len; i += sizeof(*p), p++) { if (iface != NULL && strcmp(p->ifname, iface)) continue; if (dotitle) { pfctl_print_title("STATES:"); dotitle = 0; } if (shownr < 0 || ntohl(p->rule) == shownr) print_state(p, opts); } done: free(inbuf); return (0); } int pfctl_show_status(int dev, int opts) { struct pf_status status; struct pfctl_watermarks wats; struct pfioc_synflwats iocwats; if (ioctl(dev, DIOCGETSTATUS, &status) == -1) { warn("DIOCGETSTATUS"); return (-1); } if (ioctl(dev, DIOCGETSYNFLWATS, &iocwats) == -1) { warn("DIOCGETSYNFLWATS"); return (-1); } wats.hi = iocwats.hiwat; wats.lo = iocwats.lowat; if (opts & PF_OPT_SHOWALL) pfctl_print_title("INFO:"); print_status(&status, &wats, opts); return (0); } int pfctl_show_timeouts(int dev, int opts) { struct pfioc_tm pt; int i; if (opts & PF_OPT_SHOWALL) pfctl_print_title("TIMEOUTS:"); memset(&pt, 0, sizeof(pt)); for (i = 0; pf_timeouts[i].name; i++) { pt.timeout = pf_timeouts[i].timeout; if (ioctl(dev, DIOCGETTIMEOUT, &pt) == -1) err(1, "DIOCGETTIMEOUT"); printf("%-20s %10d", pf_timeouts[i].name, pt.seconds); if (pf_timeouts[i].timeout >= PFTM_ADAPTIVE_START && pf_timeouts[i].timeout <= PFTM_ADAPTIVE_END) printf(" states"); else printf("s"); printf("\n"); } return (0); } int pfctl_show_limits(int dev, int opts) { struct pfioc_limit pl; int i; if (opts & PF_OPT_SHOWALL) pfctl_print_title("LIMITS:"); memset(&pl, 0, sizeof(pl)); for (i = 0; pf_limits[i].name; i++) { pl.index = pf_limits[i].index; if (ioctl(dev, DIOCGETLIMIT, &pl) == -1) err(1, "DIOCGETLIMIT"); printf("%-13s ", pf_limits[i].name); if (pl.limit == UINT_MAX) printf("unlimited\n"); else printf("hard limit %8u\n", pl.limit); } return (0); } /* callbacks for rule/nat/rdr/addr */ void pfctl_add_rule(struct pfctl *pf, struct pf_rule *r) { struct pf_rule *rule; struct pf_ruleset *rs; rs = &pf->anchor->ruleset; if ((rule = calloc(1, sizeof(*rule))) == NULL) err(1, "calloc"); bcopy(r, rule, sizeof(*rule)); TAILQ_INSERT_TAIL(rs->rules.active.ptr, rule, entries); } int pfctl_ruleset_trans(struct pfctl *pf, char *path, struct pf_anchor *a) { int osize = pf->trans->pfrb_size; if (pfctl_add_trans(pf->trans, PF_TRANS_RULESET, path)) return (3); if (pfctl_add_trans(pf->trans, PF_TRANS_TABLE, path)) return (4); if (pfctl_trans(pf->dev, pf->trans, DIOCXBEGIN, osize)) return (5); return (0); } int pfctl_add_queue(struct pfctl *pf, struct pf_queuespec *q) { struct pfctl_qsitem *qi; if (pf->anchor->name[0]) { printf("must not have queue definitions in an anchor\n"); return (1); } if (q->parent[0] == '\0') { TAILQ_FOREACH(qi, &rootqs, entries) { if (strcmp(q->ifname, qi->qs.ifname)) continue; printf("A root queue is already defined on %s\n", qi->qs.ifname); return (1); } } if ((qi = calloc(1, sizeof(*qi))) == NULL) err(1, "calloc"); bcopy(q, &qi->qs, sizeof(qi->qs)); TAILQ_INIT(&qi->children); if (qi->qs.parent[0]) TAILQ_INSERT_TAIL(&qspecs, qi, entries); else TAILQ_INSERT_TAIL(&rootqs, qi, entries); return (0); } struct pfctl_qsitem * pfctl_find_queue(char *what, struct pf_qihead *where) { struct pfctl_qsitem *q; TAILQ_FOREACH(q, where, entries) if (strcmp(q->qs.qname, what) == 0) return (q); return (NULL); } u_int pfctl_find_childqs(struct pfctl_qsitem *qi) { struct pfctl_qsitem *n, *p, *q; u_int flags = qi->qs.flags; TAILQ_FOREACH(p, &qspecs, entries) { if (strcmp(p->qs.parent, qi->qs.qname)) continue; if (p->qs.ifname[0] && strcmp(p->qs.ifname, qi->qs.ifname)) continue; if (++p->matches > 10000) errx(1, "pfctl_find_childqs: excessive matches, loop?"); if ((q = pfctl_find_queue(p->qs.qname, &qi->children)) == NULL) { /* insert */ if ((n = calloc(1, sizeof(*n))) == NULL) err(1, "calloc"); TAILQ_INIT(&n->children); bcopy(&p->qs, &n->qs, sizeof(n->qs)); TAILQ_INSERT_TAIL(&qi->children, n, entries); } else { if ((q->qs.ifname[0] && p->qs.ifname[0])) errx(1, "queue %s on %s respecified", q->qs.qname, q->qs.ifname); if (!q->qs.ifname[0] && !p->qs.ifname[0]) errx(1, "queue %s respecified", q->qs.qname); /* ifbound beats floating */ if (!q->qs.ifname[0]) bcopy(&p->qs, &q->qs, sizeof(q->qs)); } } TAILQ_FOREACH(p, &qi->children, entries) flags |= pfctl_find_childqs(p); if (!TAILQ_EMPTY(&qi->children)) { if (qi->qs.flags & PFQS_DEFAULT) errx(1, "default queue %s is not a leaf queue", qi->qs.qname); if (qi->qs.flags & PFQS_FLOWQUEUE) errx(1, "flow queue %s is not a leaf queue", qi->qs.qname); } return (flags); } void pfctl_load_queue(struct pfctl *pf, u_int32_t ticket, struct pfctl_qsitem *qi) { struct pfioc_queue q; struct pfctl_qsitem *p; q.ticket = ticket; bcopy(&qi->qs, &q.queue, sizeof(q.queue)); if ((pf->opts & PF_OPT_NOACTION) == 0) if (ioctl(pf->dev, DIOCADDQUEUE, &q) == -1) err(1, "DIOCADDQUEUE"); if (pf->opts & PF_OPT_VERBOSE) print_queuespec(&qi->qs); TAILQ_FOREACH(p, &qi->children, entries) { strlcpy(p->qs.ifname, qi->qs.ifname, IFNAMSIZ); pfctl_load_queue(pf, ticket, p); } } int pfctl_load_queues(struct pfctl *pf) { struct pfctl_qsitem *qi, *tempqi; struct pf_queue_scspec *rtsc, *lssc, *ulsc; u_int32_t ticket; TAILQ_FOREACH(qi, &qspecs, entries) { if (qi->matches == 0) errx(1, "queue %s: parent %s not found", qi->qs.qname, qi->qs.parent); rtsc = &qi->qs.realtime; lssc = &qi->qs.linkshare; ulsc = &qi->qs.upperlimit; if (rtsc->m1.percent || rtsc->m2.percent || lssc->m1.percent || lssc->m2.percent || ulsc->m1.percent || ulsc->m2.percent) errx(1, "only absolute bandwidth specs for now"); /* Link sharing policy must be specified for child classes */ if (qi->qs.parent[0] != '\0' && lssc->m1.absolute == 0 && lssc->m2.absolute == 0) errx(1, "queue %s: no bandwidth was specified", qi->qs.qname); } if ((pf->opts & PF_OPT_NOACTION) == 0) ticket = pfctl_get_ticket(pf->trans, PF_TRANS_RULESET, ""); TAILQ_FOREACH_SAFE(qi, &rootqs, entries, tempqi) { TAILQ_REMOVE(&rootqs, qi, entries); pfctl_load_queue(pf, ticket, qi); TAILQ_INSERT_HEAD(&rootqs, qi, entries); } return (0); } void pfctl_clear_queues(struct pf_qihead *head) { struct pfctl_qsitem *qi; while ((qi = TAILQ_FIRST(head)) != NULL) { TAILQ_REMOVE(head, qi, entries); pfctl_clear_queues(&qi->children); free(qi); } } u_int pfctl_leafqueue_check(char *qname) { struct pfctl_qsitem *qi; if (qname == NULL || qname[0] == 0) return (0); TAILQ_FOREACH(qi, &rootqs, entries) { if (strcmp(qname, qi->qs.qname)) continue; if (!TAILQ_EMPTY(&qi->children)) { printf("queue %s: packets must be assigned to leaf " "queues only\n", qname); return (1); } } TAILQ_FOREACH(qi, &qspecs, entries) { if (strcmp(qname, qi->qs.qname)) continue; if (!TAILQ_EMPTY(&qi->children)) { printf("queue %s: packets must be assigned to leaf " "queues only\n", qname); return (1); } } return (0); } u_int pfctl_check_qassignments(struct pf_ruleset *rs) { struct pf_rule *r; struct pfctl_qsitem *qi; u_int flags, errs = 0; /* main ruleset: need find_childqs to populate qi->children */ if (rs->anchor->path[0] == 0) { TAILQ_FOREACH(qi, &rootqs, entries) { flags = pfctl_find_childqs(qi); if (!(qi->qs.flags & PFQS_ROOTCLASS) && !TAILQ_EMPTY(&qi->children)) { if (qi->qs.flags & PFQS_FLOWQUEUE) errx(1, "root queue %s doesn't " "support hierarchy", qi->qs.qname); else errx(1, "no bandwidth was specified " "for root queue %s", qi->qs.qname); } if ((qi->qs.flags & PFQS_ROOTCLASS) && !(flags & PFQS_DEFAULT)) errx(1, "no default queue specified"); } } TAILQ_FOREACH(r, rs->rules.active.ptr, entries) { if (r->anchor) errs += pfctl_check_qassignments(&r->anchor->ruleset); if (pfctl_leafqueue_check(r->qname) || pfctl_leafqueue_check(r->pqname)) errs++; } return (errs); } static int pfctl_load_tables(struct pfctl *pf, char *path, struct pf_anchor *a) { struct pfr_ktable *kt, *ktw; struct pfr_uktable *ukt; uint32_t ticket; char anchor_path[PF_ANCHOR_MAXPATH]; int e; RB_FOREACH_SAFE(kt, pfr_ktablehead, &pfr_ktables, ktw) { if (strcmp(kt->pfrkt_anchor, a->path) != 0) continue; if (path != NULL && *path) { strlcpy(anchor_path, kt->pfrkt_anchor, sizeof (anchor_path)); snprintf(kt->pfrkt_anchor, PF_ANCHOR_MAXPATH, "%s/%s", path, anchor_path); } ukt = (struct pfr_uktable *) kt; ticket = pfctl_get_ticket(pf->trans, PF_TRANS_TABLE, path); e = pfr_ina_define(&ukt->pfrukt_t, ukt->pfrukt_addrs.pfrb_caddr, ukt->pfrukt_addrs.pfrb_size, NULL, NULL, ticket, ukt->pfrukt_init_addr ? PFR_FLAG_ADDRSTOO : 0); if (e != 0) err(1, "%s pfr_ina_define() %s@%s", __func__, kt->pfrkt_name, kt->pfrkt_anchor); RB_REMOVE(pfr_ktablehead, &pfr_ktables, kt); pfr_buf_clear(&ukt->pfrukt_addrs); free(ukt); } return (0); } int pfctl_load_ruleset(struct pfctl *pf, char *path, struct pf_ruleset *rs, int depth) { struct pf_rule *r; int error, len = strlen(path); int brace = 0; unsigned int rno = 0; pf->anchor = rs->anchor; if (path[0]) snprintf(&path[len], PATH_MAX - len, "/%s", pf->anchor->name); else snprintf(&path[len], PATH_MAX - len, "%s", pf->anchor->path); if (depth) { if (TAILQ_FIRST(rs->rules.active.ptr) != NULL) { brace++; if (pf->opts & PF_OPT_VERBOSE) printf(" {\n"); if ((pf->opts & PF_OPT_NOACTION) == 0 && (error = pfctl_ruleset_trans(pf, path, rs->anchor))) { printf("pfctl_load_ruleset: " "pfctl_ruleset_trans %d\n", error); goto error; } } else if (pf->opts & PF_OPT_VERBOSE) printf("\n"); } if (pf->optimize) pfctl_optimize_ruleset(pf, rs); while ((r = TAILQ_FIRST(rs->rules.active.ptr)) != NULL) { TAILQ_REMOVE(rs->rules.active.ptr, r, entries); pfctl_expand_label_nr(r, rno); rno++; if ((error = pfctl_load_rule(pf, path, r, depth))) goto error; if (r->anchor) { if ((error = pfctl_load_ruleset(pf, path, &r->anchor->ruleset, depth + 1))) goto error; if ((error = pfctl_load_tables(pf, path, r->anchor))) goto error; } else if (pf->opts & PF_OPT_VERBOSE) printf("\n"); free(r); } if (brace && pf->opts & PF_OPT_VERBOSE) { INDENT(depth - 1, (pf->opts & PF_OPT_VERBOSE)); printf("}\n"); } path[len] = '\0'; return (0); error: path[len] = '\0'; return (error); } int pfctl_load_rule(struct pfctl *pf, char *path, struct pf_rule *r, int depth) { char *name; struct pfioc_rule pr; int len = strlen(path); bzero(&pr, sizeof(pr)); /* set up anchor before adding to path for anchor_call */ if ((pf->opts & PF_OPT_NOACTION) == 0) { if (pf->trans == NULL) errx(1, "pfctl_load_rule: no transaction"); pr.ticket = pfctl_get_ticket(pf->trans, PF_TRANS_RULESET, path); } if (strlcpy(pr.anchor, path, sizeof(pr.anchor)) >= sizeof(pr.anchor)) errx(1, "pfctl_load_rule: strlcpy"); if (r->anchor) { if (r->anchor->match) { if (path[0]) snprintf(&path[len], PATH_MAX - len, "/%s", r->anchor->name); else snprintf(&path[len], PATH_MAX - len, "%s", r->anchor->name); name = r->anchor->name; } else name = r->anchor->path; } else name = ""; if ((pf->opts & PF_OPT_NOACTION) == 0) { memcpy(&pr.rule, r, sizeof(pr.rule)); if (r->anchor && strlcpy(pr.anchor_call, name, sizeof(pr.anchor_call)) >= sizeof(pr.anchor_call)) errx(1, "pfctl_load_rule: strlcpy"); if (ioctl(pf->dev, DIOCADDRULE, &pr) == -1) err(1, "DIOCADDRULE"); } if (pf->opts & PF_OPT_VERBOSE) { INDENT(depth, !(pf->opts & PF_OPT_VERBOSE2)); print_rule(r, name, pf->opts); } path[len] = '\0'; return (0); } int pfctl_rules(int dev, char *filename, int opts, int optimize, char *anchorname, struct pfr_buffer *trans) { #define ERR(...) do { warn(__VA_ARGS__); goto _error; } while(0) #define ERRX(...) do { warnx(__VA_ARGS__); goto _error; } while(0) struct pfr_buffer *t, buf; struct pfctl pf; struct pf_ruleset *rs; struct pfr_table trs; char *path = NULL; int osize; char *p; RB_INIT(&pf_anchors); memset(&pf_main_anchor, 0, sizeof(pf_main_anchor)); pf_init_ruleset(&pf_main_anchor.ruleset); memset(&pf, 0, sizeof(pf)); memset(&trs, 0, sizeof(trs)); if (trans == NULL) { bzero(&buf, sizeof(buf)); buf.pfrb_type = PFRB_TRANS; pf.trans = &buf; t = &buf; osize = 0; } else { t = trans; osize = t->pfrb_size; } if ((path = calloc(1, PATH_MAX)) == NULL) ERR("%s: calloc", __func__); if (strlcpy(trs.pfrt_anchor, anchorname, sizeof(trs.pfrt_anchor)) >= sizeof(trs.pfrt_anchor)) ERRX("%s: strlcpy", __func__); pf.dev = dev; pf.opts = opts; pf.optimize = optimize; /* non-brace anchor, create without resolving the path */ if ((pf.anchor = calloc(1, sizeof(*pf.anchor))) == NULL) ERR("%s: calloc", __func__); rs = &pf.anchor->ruleset; pf_init_ruleset(rs); rs->anchor = pf.anchor; if (strlcpy(pf.anchor->path, anchorname, sizeof(pf.anchor->path)) >= sizeof(pf.anchor->path)) errx(1, "%s: strlcpy", __func__); if ((p = strrchr(anchorname, '/')) != NULL) { if (strlen(p) == 1) errx(1, "%s: bad anchor name %s", __func__, anchorname); } else p = anchorname; if (strlcpy(pf.anchor->name, p, sizeof(pf.anchor->name)) >= sizeof(pf.anchor->name)) errx(1, "%s: strlcpy", __func__); pf.astack[0] = pf.anchor; pf.asd = 0; pf.trans = t; pfctl_init_options(&pf); if ((opts & PF_OPT_NOACTION) == 0) { /* * XXX For the time being we need to open transactions for * the main ruleset before parsing, because tables are still * loaded at parse time. */ if (pfctl_ruleset_trans(&pf, anchorname, pf.anchor)) ERRX("pfctl_rules"); pf.astack[0]->ruleset.tticket = pfctl_get_ticket(t, PF_TRANS_TABLE, anchorname); } if (parse_config(filename, &pf) < 0) { if ((opts & PF_OPT_NOACTION) == 0) ERRX("Syntax error in config file: " "pf rules not loaded"); else goto _error; } if (!anchorname[0] && (pfctl_check_qassignments(&pf.anchor->ruleset) || pfctl_load_queues(&pf))) { if ((opts & PF_OPT_NOACTION) == 0) ERRX("Unable to load queues into kernel"); else goto _error; } if (pfctl_load_ruleset(&pf, path, rs, 0)) { if ((opts & PF_OPT_NOACTION) == 0) ERRX("Unable to load rules into kernel"); else goto _error; } free(path); path = NULL; if (trans == NULL) { /* * process "load anchor" directives that might have used queues */ if (pfctl_load_anchors(dev, &pf) == -1) ERRX("load anchors"); pfctl_clear_queues(&qspecs); pfctl_clear_queues(&rootqs); if ((opts & PF_OPT_NOACTION) == 0) { if (!anchorname[0] && pfctl_load_options(&pf)) goto _error; if (pfctl_trans(dev, t, DIOCXCOMMIT, osize)) ERR("DIOCXCOMMIT"); } } return (0); _error: if (trans == NULL) { /* main ruleset */ if ((opts & PF_OPT_NOACTION) == 0) if (pfctl_trans(dev, t, DIOCXROLLBACK, osize)) err(1, "DIOCXROLLBACK"); exit(1); } else { /* sub ruleset */ free(path); return (-1); } #undef ERR #undef ERRX } FILE * pfctl_fopen(const char *name, const char *mode) { struct stat st; FILE *fp; fp = fopen(name, mode); if (fp == NULL) return (NULL); if (fstat(fileno(fp), &st) == -1) { fclose(fp); return (NULL); } if (S_ISDIR(st.st_mode)) { fclose(fp); errno = EISDIR; return (NULL); } return (fp); } void pfctl_init_options(struct pfctl *pf) { int64_t mem; int mib[2], mcl; size_t size; pf->timeout[PFTM_TCP_FIRST_PACKET] = PFTM_TCP_FIRST_PACKET_VAL; pf->timeout[PFTM_TCP_OPENING] = PFTM_TCP_OPENING_VAL; pf->timeout[PFTM_TCP_ESTABLISHED] = PFTM_TCP_ESTABLISHED_VAL; pf->timeout[PFTM_TCP_CLOSING] = PFTM_TCP_CLOSING_VAL; pf->timeout[PFTM_TCP_FIN_WAIT] = PFTM_TCP_FIN_WAIT_VAL; pf->timeout[PFTM_TCP_CLOSED] = PFTM_TCP_CLOSED_VAL; pf->timeout[PFTM_UDP_FIRST_PACKET] = PFTM_UDP_FIRST_PACKET_VAL; pf->timeout[PFTM_UDP_SINGLE] = PFTM_UDP_SINGLE_VAL; pf->timeout[PFTM_UDP_MULTIPLE] = PFTM_UDP_MULTIPLE_VAL; pf->timeout[PFTM_ICMP_FIRST_PACKET] = PFTM_ICMP_FIRST_PACKET_VAL; pf->timeout[PFTM_ICMP_ERROR_REPLY] = PFTM_ICMP_ERROR_REPLY_VAL; pf->timeout[PFTM_OTHER_FIRST_PACKET] = PFTM_OTHER_FIRST_PACKET_VAL; pf->timeout[PFTM_OTHER_SINGLE] = PFTM_OTHER_SINGLE_VAL; pf->timeout[PFTM_OTHER_MULTIPLE] = PFTM_OTHER_MULTIPLE_VAL; pf->timeout[PFTM_FRAG] = PFTM_FRAG_VAL; pf->timeout[PFTM_INTERVAL] = PFTM_INTERVAL_VAL; pf->timeout[PFTM_SRC_NODE] = PFTM_SRC_NODE_VAL; pf->timeout[PFTM_TS_DIFF] = PFTM_TS_DIFF_VAL; pf->timeout[PFTM_ADAPTIVE_START] = PFSTATE_ADAPT_START; pf->timeout[PFTM_ADAPTIVE_END] = PFSTATE_ADAPT_END; pf->limit[PF_LIMIT_STATES] = PFSTATE_HIWAT; pf->syncookieswat[0] = PF_SYNCOOKIES_LOWATPCT; pf->syncookieswat[1] = PF_SYNCOOKIES_HIWATPCT; mib[0] = CTL_KERN; mib[1] = KERN_MAXCLUSTERS; size = sizeof(mcl); if (sysctl(mib, 2, &mcl, &size, NULL, 0) == -1) err(1, "sysctl"); pf->limit[PF_LIMIT_FRAGS] = mcl / 4; pf->limit[PF_LIMIT_SRC_NODES] = PFSNODE_HIWAT; pf->limit[PF_LIMIT_TABLES] = PFR_KTABLE_HIWAT; pf->limit[PF_LIMIT_TABLE_ENTRIES] = PFR_KENTRY_HIWAT; pf->limit[PF_LIMIT_PKTDELAY_PKTS] = PF_PKTDELAY_MAXPKTS; pf->limit[PF_LIMIT_ANCHORS] = PF_ANCHOR_HIWAT; mib[0] = CTL_HW; mib[1] = HW_PHYSMEM64; size = sizeof(mem); if (sysctl(mib, 2, &mem, &size, NULL, 0) == -1) err(1, "sysctl"); if (mem <= 100*1024*1024) pf->limit[PF_LIMIT_TABLE_ENTRIES] = PFR_KENTRY_HIWAT_SMALL; pf->debug = LOG_ERR; pf->debug_set = 0; pf->reassemble = PF_REASS_ENABLED; } int pfctl_load_options(struct pfctl *pf) { int i, error = 0; /* load limits */ for (i = 0; i < PF_LIMIT_MAX; i++) if (pfctl_load_limit(pf, i, pf->limit[i])) error = 1; /* * If we've set the states limit, but haven't explicitly set adaptive * timeouts, do it now with a start of 60% and end of 120%. */ if (pf->limit_set[PF_LIMIT_STATES] && !pf->timeout_set[PFTM_ADAPTIVE_START] && !pf->timeout_set[PFTM_ADAPTIVE_END]) { pf->timeout[PFTM_ADAPTIVE_START] = (pf->limit[PF_LIMIT_STATES] / 10) * 6; pf->timeout_set[PFTM_ADAPTIVE_START] = 1; pf->timeout[PFTM_ADAPTIVE_END] = (pf->limit[PF_LIMIT_STATES] / 10) * 12; pf->timeout_set[PFTM_ADAPTIVE_END] = 1; } /* load timeouts */ for (i = 0; i < PFTM_MAX; i++) if (pfctl_load_timeout(pf, i, pf->timeout[i])) error = 1; /* load debug */ if (pf->debug_set && pfctl_load_debug(pf, pf->debug)) error = 1; /* load logif */ if (pf->ifname_set && pfctl_load_logif(pf, pf->ifname)) error = 1; /* load hostid */ if (pf->hostid_set && pfctl_load_hostid(pf, pf->hostid)) error = 1; /* load reassembly settings */ if (pf->reass_set && pfctl_load_reassembly(pf, pf->reassemble)) error = 1; /* load syncookies settings */ if (pf->syncookies_set && pfctl_load_syncookies(pf, pf->syncookies)) error = 1; if (pf->syncookieswat_set) { struct pfioc_limit pl; unsigned curlim; if (pf->limit_set[PF_LIMIT_STATES]) curlim = pf->limit[PF_LIMIT_STATES]; else { memset(&pl, 0, sizeof(pl)); pl.index = pf_limits[PF_LIMIT_STATES].index; if (ioctl(dev, DIOCGETLIMIT, &pl) == -1) err(1, "DIOCGETLIMIT"); curlim = pl.limit; } if (pfctl_set_synflwats(pf, curlim * pf->syncookieswat[0]/100, curlim * pf->syncookieswat[1]/100)) error = 1; } return (error); } int pfctl_set_limit(struct pfctl *pf, const char *opt, unsigned int limit) { int i; for (i = 0; pf_limits[i].name; i++) { if (strcasecmp(opt, pf_limits[i].name) == 0) { pf->limit[pf_limits[i].index] = limit; pf->limit_set[pf_limits[i].index] = 1; break; } } if (pf_limits[i].name == NULL) { warnx("Bad pool name."); return (1); } if (pf->opts & PF_OPT_VERBOSE) printf("set limit %s %d\n", opt, limit); return (0); } int pfctl_load_limit(struct pfctl *pf, unsigned int index, unsigned int limit) { struct pfioc_limit pl; memset(&pl, 0, sizeof(pl)); pl.index = index; pl.limit = limit; if (ioctl(pf->dev, DIOCSETLIMIT, &pl) == -1) { if (errno == EBUSY) warnx("Current pool size exceeds requested %s limit %u", pf_limits[index].name, limit); else warnx("Cannot set %s limit to %u", pf_limits[index].name, limit); return (1); } return (0); } int pfctl_set_timeout(struct pfctl *pf, const char *opt, int seconds, int quiet) { int i; for (i = 0; pf_timeouts[i].name; i++) { if (strcasecmp(opt, pf_timeouts[i].name) == 0) { pf->timeout[pf_timeouts[i].timeout] = seconds; pf->timeout_set[pf_timeouts[i].timeout] = 1; break; } } if (pf_timeouts[i].name == NULL) { warnx("Bad timeout name."); return (1); } if (pf->opts & PF_OPT_VERBOSE && ! quiet) printf("set timeout %s %d\n", opt, seconds); return (0); } int pfctl_load_timeout(struct pfctl *pf, unsigned int timeout, unsigned int seconds) { struct pfioc_tm pt; memset(&pt, 0, sizeof(pt)); pt.timeout = timeout; pt.seconds = seconds; if (ioctl(pf->dev, DIOCSETTIMEOUT, &pt) == -1) { warnx("DIOCSETTIMEOUT"); return (1); } return (0); } int pfctl_set_synflwats(struct pfctl *pf, u_int32_t lowat, u_int32_t hiwat) { struct pfioc_synflwats ps; memset(&ps, 0, sizeof(ps)); ps.hiwat = hiwat; ps.lowat = lowat; if (ioctl(pf->dev, DIOCSETSYNFLWATS, &ps) == -1) { warnx("Cannot set synflood detection watermarks"); return (1); } return (0); } int pfctl_set_reassembly(struct pfctl *pf, int on, int nodf) { pf->reass_set = 1; if (on) { pf->reassemble = PF_REASS_ENABLED; if (nodf) pf->reassemble |= PF_REASS_NODF; } else { pf->reassemble = 0; } if (pf->opts & PF_OPT_VERBOSE) printf("set reassemble %s %s\n", on ? "yes" : "no", nodf ? "no-df" : ""); return (0); } int pfctl_set_syncookies(struct pfctl *pf, u_int8_t val, struct pfctl_watermarks *w) { if (val != PF_SYNCOOKIES_ADAPTIVE && w != NULL) { warnx("syncookies start/end only apply to adaptive"); return (1); } if (val == PF_SYNCOOKIES_ADAPTIVE && w != NULL) { if (!w->hi) w->hi = PF_SYNCOOKIES_HIWATPCT; if (!w->lo) w->lo = w->hi / 2; if (w->lo >= w->hi) { warnx("start must be higher than end"); return (1); } pf->syncookieswat[0] = w->lo; pf->syncookieswat[1] = w->hi; pf->syncookieswat_set = 1; } if (pf->opts & PF_OPT_VERBOSE) { if (val == PF_SYNCOOKIES_NEVER) printf("set syncookies never\n"); else if (val == PF_SYNCOOKIES_ALWAYS) printf("set syncookies always\n"); else if (val == PF_SYNCOOKIES_ADAPTIVE) { if (pf->syncookieswat_set) printf("set syncookies adaptive (start %u%%, " "end %u%%)\n", pf->syncookieswat[1], pf->syncookieswat[0]); else printf("set syncookies adaptive\n"); } else { /* cannot happen */ warnx("king bula ate all syncookies"); return (1); } } pf->syncookies_set = 1; pf->syncookies = val; return (0); } int pfctl_set_optimization(struct pfctl *pf, const char *opt) { const struct pf_hint *hint; int i, r; for (i = 0; pf_hints[i].name; i++) if (strcasecmp(opt, pf_hints[i].name) == 0) break; hint = pf_hints[i].hint; if (hint == NULL) { warnx("invalid state timeouts optimization"); return (1); } for (i = 0; hint[i].name; i++) if ((r = pfctl_set_timeout(pf, hint[i].name, hint[i].timeout, 1))) return (r); if (pf->opts & PF_OPT_VERBOSE) printf("set optimization %s\n", opt); return (0); } int pfctl_set_logif(struct pfctl *pf, char *ifname) { if (!strcmp(ifname, "none")) { free(pf->ifname); pf->ifname = NULL; } else { pf->ifname = strdup(ifname); if (!pf->ifname) errx(1, "pfctl_set_logif: strdup"); } pf->ifname_set = 1; if (pf->opts & PF_OPT_VERBOSE) printf("set loginterface %s\n", ifname); return (0); } int pfctl_load_logif(struct pfctl *pf, char *ifname) { struct pfioc_iface pi; memset(&pi, 0, sizeof(pi)); if (ifname && strlcpy(pi.pfiio_name, ifname, sizeof(pi.pfiio_name)) >= sizeof(pi.pfiio_name)) { warnx("pfctl_load_logif: strlcpy"); return (1); } if (ioctl(pf->dev, DIOCSETSTATUSIF, &pi) == -1) { warnx("DIOCSETSTATUSIF"); return (1); } return (0); } void pfctl_set_hostid(struct pfctl *pf, u_int32_t hostid) { HTONL(hostid); pf->hostid = hostid; pf->hostid_set = 1; if (pf->opts & PF_OPT_VERBOSE) printf("set hostid 0x%08x\n", ntohl(hostid)); } int pfctl_load_hostid(struct pfctl *pf, u_int32_t hostid) { if (ioctl(dev, DIOCSETHOSTID, &hostid) == -1) { warnx("DIOCSETHOSTID"); return (1); } return (0); } int pfctl_load_reassembly(struct pfctl *pf, u_int32_t reassembly) { if (ioctl(dev, DIOCSETREASS, &reassembly) == -1) { warnx("DIOCSETREASS"); return (1); } return (0); } int pfctl_load_syncookies(struct pfctl *pf, u_int8_t val) { if (ioctl(dev, DIOCSETSYNCOOKIES, &val) == -1) { warnx("DIOCSETSYNCOOKIES"); return (1); } return (0); } int pfctl_set_debug(struct pfctl *pf, char *d) { u_int32_t level; int loglevel; if ((loglevel = string_to_loglevel(d)) >= 0) level = loglevel; else { warnx("unknown debug level \"%s\"", d); return (-1); } pf->debug = level; pf->debug_set = 1; if ((pf->opts & PF_OPT_NOACTION) == 0) if (ioctl(dev, DIOCSETDEBUG, &level) == -1) err(1, "DIOCSETDEBUG"); if (pf->opts & PF_OPT_VERBOSE) printf("set debug %s\n", d); return (0); } int pfctl_load_debug(struct pfctl *pf, unsigned int level) { if (ioctl(pf->dev, DIOCSETDEBUG, &level) == -1) { warnx("DIOCSETDEBUG"); return (1); } return (0); } int pfctl_set_interface_flags(struct pfctl *pf, char *ifname, int flags, int how) { struct pfioc_iface pi; bzero(&pi, sizeof(pi)); pi.pfiio_flags = flags; if (strlcpy(pi.pfiio_name, ifname, sizeof(pi.pfiio_name)) >= sizeof(pi.pfiio_name)) errx(1, "pfctl_set_interface_flags: strlcpy"); if ((pf->opts & PF_OPT_NOACTION) == 0) { if (how == 0) { if (ioctl(pf->dev, DIOCCLRIFFLAG, &pi) == -1) err(1, "DIOCCLRIFFLAG"); } else { if (ioctl(pf->dev, DIOCSETIFFLAG, &pi) == -1) err(1, "DIOCSETIFFLAG"); } } return (0); } void pfctl_debug(int dev, u_int32_t level, int opts) { struct pfr_buffer t; memset(&t, 0, sizeof(t)); t.pfrb_type = PFRB_TRANS; if (pfctl_trans(dev, &t, DIOCXBEGIN, 0) || ioctl(dev, DIOCSETDEBUG, &level) == -1|| pfctl_trans(dev, &t, DIOCXCOMMIT, 0)) err(1, "pfctl_debug ioctl"); if ((opts & PF_OPT_QUIET) == 0) fprintf(stderr, "debug level set to '%s'\n", loglevel_to_string(level)); } int pfctl_walk_show(int opts, struct pfioc_ruleset *pr, void *warg) { if (pr->path[0]) { if (pr->path[0] != '_' || (opts & PF_OPT_VERBOSE)) printf(" %s/%s\n", pr->path, pr->name); } else if (pr->name[0] != '_' || (opts & PF_OPT_VERBOSE)) printf(" %s\n", pr->name); return (0); } int pfctl_walk_get(int opts, struct pfioc_ruleset *pr, void *warg) { struct pfr_anchoritem *pfra; struct pfr_anchors *anchors; int e; anchors = (struct pfr_anchors *) warg; pfra = malloc(sizeof(*pfra)); if (pfra == NULL) err(1, "%s", __func__); if (pr->path[0]) e = asprintf(&pfra->pfra_anchorname, "%s/%s", pr->path, pr->name); else e = asprintf(&pfra->pfra_anchorname, "%s", pr->name); if (e == -1) err(1, "%s", __func__); SLIST_INSERT_HEAD(anchors, pfra, pfra_sle); return (0); } int pfctl_walk_anchors(int dev, int opts, const char *anchor, int(walkf)(int, struct pfioc_ruleset *, void *), void *warg) { struct pfioc_ruleset pr; u_int32_t mnr, nr; memset(&pr, 0, sizeof(pr)); strlcpy(pr.path, anchor, sizeof(pr.path)); if (ioctl(dev, DIOCGETRULESETS, &pr) == -1) errx(1, "%s", pf_strerror(errno)); mnr = pr.nr; for (nr = 0; nr < mnr; ++nr) { char sub[PATH_MAX]; pr.nr = nr; if (ioctl(dev, DIOCGETRULESET, &pr) == -1) errx(1, "%s", pf_strerror(errno)); if (!strcmp(pr.name, PF_RESERVED_ANCHOR)) continue; sub[0] = '\0'; if (walkf(opts, &pr, warg)) return (-1); if (pr.path[0]) snprintf(sub, sizeof(sub), "%s/%s", pr.path, pr.name); else snprintf(sub, sizeof(sub), "%s", pr.name); if (pfctl_walk_anchors(dev, opts, sub, walkf, warg)) return (-1); } return (0); } int pfctl_show_anchors(int dev, int opts, char *anchor) { return ( pfctl_walk_anchors(dev, opts, anchor, pfctl_walk_show, NULL)); } struct pfr_anchors * pfctl_get_anchors(int dev, const char *anchor, int opts) { struct pfioc_ruleset pr; static struct pfr_anchors anchors; char anchorbuf[PATH_MAX]; char *n; SLIST_INIT(&anchors); memset(&pr, 0, sizeof(pr)); if (*anchor != '\0') { strlcpy(anchorbuf, anchor, sizeof(anchorbuf)); n = dirname(anchorbuf); if (n[0] != '.' && n[1] != '\0') strlcpy(pr.path, n, sizeof(pr.path)); strlcpy(anchorbuf, anchor, sizeof(anchorbuf)); n = basename(anchorbuf); if (n != NULL) strlcpy(pr.name, n, sizeof(pr.name)); } /* insert a root anchor first. */ pfctl_walk_get(opts, &pr, &anchors); if (pfctl_walk_anchors(dev, opts, anchor, pfctl_walk_get, &anchors)) errx(1, "%s failed to retrieve list of anchors, can't continue", __func__); return (&anchors); } int pfctl_call_cleartables(int dev, int opts, struct pfr_anchoritem *pfra) { /* * PF_OPT_QUIET makes pfctl_clear_tables() to stop printing number of * tables cleared for given anchor. */ opts |= PF_OPT_QUIET; return ((pfctl_clear_tables(pfra->pfra_anchorname, opts) == -1) ? 1 : 0); } int pfctl_call_clearrules(int dev, int opts, struct pfr_anchoritem *pfra) { /* * PF_OPT_QUIET makes pfctl_clear_rules() to stop printing a 'rules * cleared' message for every anchor it deletes. */ opts |= PF_OPT_QUIET; return (pfctl_clear_rules(dev, opts, pfra->pfra_anchorname)); } int pfctl_call_showtables(int dev, int opts, struct pfr_anchoritem *pfra) { pfctl_show_tables(pfra->pfra_anchorname, opts); return (0); } int pfctl_call_clearanchors(int dev, int opts, struct pfr_anchoritem *pfra) { int rv = 0; rv |= pfctl_call_cleartables(dev, opts, pfra); rv |= pfctl_call_clearrules(dev, opts, pfra); return (rv); } int pfctl_recurse(int dev, int opts, const char *anchorname, int(*walkf)(int, int, struct pfr_anchoritem *)) { int rv = 0; struct pfr_anchors *anchors; struct pfr_anchoritem *pfra, *pfra_save; anchors = pfctl_get_anchors(dev, anchorname, opts); /* * While traversing the list, pfctl_clear_*() must always return * so that failures on one anchor do not prevent clearing others. */ opts |= PF_OPT_IGNFAIL; if ((opts & PF_OPT_CALLSHOW) == 0) printf("Removing:\n"); SLIST_FOREACH_SAFE(pfra, anchors, pfra_sle, pfra_save) { if ((opts & PF_OPT_CALLSHOW) == 0) printf(" %s\n", (*pfra->pfra_anchorname == '\0') ? "/" : pfra->pfra_anchorname); rv |= walkf(dev, opts, pfra); SLIST_REMOVE(anchors, pfra, pfr_anchoritem, pfra_sle); free(pfra->pfra_anchorname); free(pfra); } return (rv); } const char * pfctl_lookup_option(char *cmd, const char **list) { const char *item = NULL; if (cmd != NULL && *cmd) for (; *list; list++) if (!strncmp(cmd, *list, strlen(cmd))) { if (item == NULL) item = *list; else errx(1, "%s is ambigious", cmd); } return (item); } void pfctl_state_store(int dev, const char *file) { FILE *f; struct pfioc_states ps; char *inbuf = NULL, *newinbuf = NULL; size_t n, len = 0; f = fopen(file, "w"); if (f == NULL) err(1, "open: %s", file); memset(&ps, 0, sizeof(ps)); for (;;) { ps.ps_len = len; if (len) { newinbuf = realloc(inbuf, len); if (newinbuf == NULL) err(1, "realloc"); ps.ps_buf = inbuf = newinbuf; } if (ioctl(dev, DIOCGETSTATES, &ps) == -1) err(1, "DIOCGETSTATES"); if (ps.ps_len + sizeof(struct pfioc_states) < len) break; if (len == 0 && ps.ps_len == 0) goto done; if (len == 0 && ps.ps_len != 0) len = ps.ps_len; if (ps.ps_len == 0) goto done; /* no states */ len *= 2; } n = ps.ps_len / sizeof(struct pfsync_state); if (fwrite(inbuf, sizeof(struct pfsync_state), n, f) < n) err(1, "fwrite"); done: free(inbuf); fclose(f); } void pfctl_state_load(int dev, const char *file) { FILE *f; struct pfioc_state ps; f = fopen(file, "r"); if (f == NULL) err(1, "open: %s", file); while (fread(&ps.state, sizeof(ps.state), 1, f) == 1) { if (ioctl(dev, DIOCADDSTATE, &ps) == -1) { switch (errno) { case EEXIST: case EINVAL: break; default: err(1, "DIOCADDSTATE"); } } } fclose(f); } void pfctl_reset(int dev, int opts) { struct pfctl pf; struct pfr_buffer t; int i; memset(&pf, 0, sizeof(pf)); pf.dev = dev; pfctl_init_options(&pf); /* Force reset upon pfctl_load_options() */ pf.debug_set = 1; pf.reass_set = 1; pf.syncookieswat_set = 1; pf.syncookies_set = 1; pf.ifname = strdup("none"); if (pf.ifname == NULL) err(1, "%s: strdup", __func__); pf.ifname_set = 1; memset(&t, 0, sizeof(t)); t.pfrb_type = PFRB_TRANS; if (pfctl_trans(dev, &t, DIOCXBEGIN, 0)) err(1, "%s: DIOCXBEGIN", __func__); for (i = 0; pf_limits[i].name; i++) pf.limit_set[pf_limits[i].index] = 1; for (i = 0; pf_timeouts[i].name; i++) pf.timeout_set[pf_timeouts[i].timeout] = 1; pfctl_load_options(&pf); if (pfctl_trans(dev, &t, DIOCXCOMMIT, 0)) err(1, "%s: DIOCXCOMMIT", __func__); pfctl_clear_interface_flags(dev, opts); } #ifndef REGRESS_NOMAIN int main(int argc, char *argv[]) { int ch; int mode = O_RDONLY; int opts = 0; int optimize = PF_OPTIMIZE_BASIC; int level; int rdomain = 0; char anchorname[PATH_MAX]; int anchor_wildcard = 0; char *path; char *lfile = NULL, *sfile = NULL; const char *errstr; long shownr = -1; if (argc < 2) usage(); while ((ch = getopt(argc, argv, "a:dD:eqf:F:ghi:k:K:L:Nno:Pp:R:rS:s:t:T:vV:x:z")) != -1) { switch (ch) { case 'a': anchoropt = optarg; break; case 'd': opts |= PF_OPT_DISABLE; mode = O_RDWR; break; case 'D': if (pfctl_cmdline_symset(optarg) < 0) warnx("could not parse macro definition %s", optarg); break; case 'e': opts |= PF_OPT_ENABLE; mode = O_RDWR; break; case 'q': opts |= PF_OPT_QUIET; break; case 'F': clearopt = pfctl_lookup_option(optarg, clearopt_list); if (clearopt == NULL) { warnx("Unknown flush modifier '%s'", optarg); usage(); } mode = O_RDWR; break; case 'i': ifaceopt = optarg; break; case 'k': if (state_killers >= 2) { warnx("can only specify -k twice"); usage(); /* NOTREACHED */ } state_kill[state_killers++] = optarg; mode = O_RDWR; break; case 'K': if (src_node_killers >= 2) { warnx("can only specify -K twice"); usage(); /* NOTREACHED */ } src_node_kill[src_node_killers++] = optarg; mode = O_RDWR; break; case 'N': opts |= PF_OPT_NODNS; break; case 'n': opts |= PF_OPT_NOACTION; break; case 'r': opts |= PF_OPT_USEDNS; break; case 'R': shownr = strtonum(optarg, -1, LONG_MAX, &errstr); if (errstr) { warnx("invalid rule id: %s", errstr); usage(); } break; case 'f': rulesopt = optarg; mode = O_RDWR; break; case 'g': opts |= PF_OPT_DEBUG; break; case 'o': optiopt = pfctl_lookup_option(optarg, optiopt_list); if (optiopt == NULL) { warnx("Unknown optimization '%s'", optarg); usage(); } opts |= PF_OPT_OPTIMIZE; break; case 'P': opts |= PF_OPT_PORTNAMES; break; case 'p': pf_device = optarg; break; case 's': showopt = pfctl_lookup_option(optarg, showopt_list); if (showopt == NULL) { warnx("Unknown show modifier '%s'", optarg); usage(); } break; case 't': tableopt = optarg; break; case 'T': tblcmdopt = pfctl_lookup_option(optarg, tblcmdopt_list); if (tblcmdopt == NULL) { warnx("Unknown table command '%s'", optarg); usage(); } break; case 'v': if (opts & PF_OPT_VERBOSE) opts |= PF_OPT_VERBOSE2; opts |= PF_OPT_VERBOSE; break; case 'V': rdomain = strtonum(optarg, 0, RT_TABLEID_MAX, &errstr); if (errstr) { warnx("Invalid rdomain: %s", errstr); usage(); } break; case 'x': debugopt = pfctl_lookup_option(optarg, debugopt_list); if (debugopt == NULL) { warnx("Unknown debug level '%s'", optarg); usage(); } mode = O_RDWR; break; case 'z': opts |= PF_OPT_CLRRULECTRS; mode = O_RDWR; break; case 'S': sfile = optarg; break; case 'L': mode = O_RDWR; lfile = optarg; break; case 'h': /* FALLTHROUGH */ default: usage(); /* NOTREACHED */ } } if ((opts & PF_OPT_NODNS) && (opts & PF_OPT_USEDNS)) errx(1, "-N and -r are mutually exclusive"); if ((tblcmdopt == NULL) ^ (tableopt == NULL)) usage(); if (tblcmdopt != NULL) { argc -= optind; argv += optind; ch = *tblcmdopt; mode = strchr("st", ch) ? O_RDONLY : O_RDWR; } else if (argc != optind) { warnx("unknown command line argument: %s ...", argv[optind]); usage(); /* NOTREACHED */ } memset(anchorname, 0, sizeof(anchorname)); if (anchoropt != NULL) { if (anchoropt[0] == '\0') errx(1, "anchor name must not be empty"); if (mode == O_RDONLY && showopt == NULL && tblcmdopt == NULL) { warnx("anchors apply to -f, -F, -s, and -T only"); usage(); } if (mode == O_RDWR && tblcmdopt == NULL && (anchoropt[0] == '_' || strstr(anchoropt, "/_") != NULL)) errx(1, "anchor names beginning with '_' cannot " "be modified from the command line"); int len = strlen(anchoropt); if (anchoropt[len - 1] == '*') { if (len >= 2 && anchoropt[len - 2] == '/') { anchoropt[len - 2] = '\0'; anchor_wildcard = 1; } else anchoropt[len - 1] = '\0'; opts |= PF_OPT_RECURSE; } if (strlcpy(anchorname, anchoropt, sizeof(anchorname)) >= sizeof(anchorname)) errx(1, "anchor name '%s' too long", anchoropt); } if ((opts & PF_OPT_NOACTION) == 0) { dev = open(pf_device, mode); if (dev == -1) err(1, "%s", pf_device); } else { dev = open(pf_device, O_RDONLY); if (dev >= 0) opts |= PF_OPT_DUMMYACTION; /* turn off options */ opts &= ~ (PF_OPT_DISABLE | PF_OPT_ENABLE); clearopt = showopt = debugopt = NULL; } if (opts & PF_OPT_DISABLE) if (pfctl_disable(dev, opts)) exit_val = 1; if ((path = calloc(1, PATH_MAX)) == NULL) errx(1, "%s: calloc", __func__); if (showopt != NULL) { switch (*showopt) { case 'A': pfctl_show_anchors(dev, opts, anchorname); break; case 'r': pfctl_load_fingerprints(dev, opts); pfctl_show_rules(dev, path, opts, PFCTL_SHOW_RULES, anchorname, 0, anchor_wildcard, shownr); break; case 'l': pfctl_load_fingerprints(dev, opts); pfctl_show_rules(dev, path, opts, PFCTL_SHOW_LABELS, anchorname, 0, anchor_wildcard, shownr); break; case 'q': pfctl_show_queues(dev, ifaceopt, opts, opts & PF_OPT_VERBOSE2); break; case 's': pfctl_show_states(dev, ifaceopt, opts, shownr); break; case 'S': pfctl_show_src_nodes(dev, opts); break; case 'i': pfctl_show_status(dev, opts); break; case 't': pfctl_show_timeouts(dev, opts); break; case 'm': pfctl_show_limits(dev, opts); break; case 'a': opts |= PF_OPT_SHOWALL; pfctl_load_fingerprints(dev, opts); pfctl_show_rules(dev, path, opts, PFCTL_SHOW_RULES, anchorname, 0, 0, -1); pfctl_show_queues(dev, ifaceopt, opts, opts & PF_OPT_VERBOSE2); pfctl_show_states(dev, ifaceopt, opts, -1); pfctl_show_src_nodes(dev, opts); pfctl_show_status(dev, opts); pfctl_show_rules(dev, path, opts, PFCTL_SHOW_LABELS, anchorname, 0, 0, -1); pfctl_show_timeouts(dev, opts); pfctl_show_limits(dev, opts); pfctl_show_tables(anchorname, opts); pfctl_show_fingerprints(opts); break; case 'T': if (opts & PF_OPT_RECURSE) { opts |= PF_OPT_CALLSHOW; pfctl_recurse(dev, opts, anchorname, pfctl_call_showtables); } else pfctl_show_tables(anchorname, opts); break; case 'o': pfctl_load_fingerprints(dev, opts); pfctl_show_fingerprints(opts); break; case 'I': pfctl_show_ifaces(ifaceopt, opts); break; } } if ((opts & PF_OPT_CLRRULECTRS) && showopt == NULL) pfctl_show_rules(dev, path, opts, PFCTL_SHOW_NOTHING, anchorname, 0, 0, -1); if (clearopt != NULL) { switch (*clearopt) { case 'r': if (opts & PF_OPT_RECURSE) pfctl_recurse(dev, opts, anchorname, pfctl_call_clearrules); else pfctl_clear_rules(dev, opts, anchorname); break; case 's': pfctl_clear_states(dev, ifaceopt, opts); break; case 'S': pfctl_clear_src_nodes(dev, opts); break; case 'i': pfctl_clear_stats(dev, ifaceopt, opts); break; case 'a': if (ifaceopt) { warnx("don't specify an interface with -Fall"); usage(); /* NOTREACHED */ } if (opts & PF_OPT_RECURSE) pfctl_recurse(dev, opts, anchorname, pfctl_call_clearanchors); else { pfctl_clear_tables(anchorname, opts); pfctl_clear_rules(dev, opts, anchorname); } if (!*anchorname) { pfctl_clear_states(dev, ifaceopt, opts); pfctl_clear_src_nodes(dev, opts); pfctl_clear_stats(dev, ifaceopt, opts); pfctl_clear_fingerprints(dev, opts); pfctl_reset(dev, opts); } break; case 'o': pfctl_clear_fingerprints(dev, opts); break; case 'T': if ((opts & PF_OPT_RECURSE) == 0) pfctl_clear_tables(anchorname, opts); else pfctl_recurse(dev, opts, anchorname, pfctl_call_cleartables); break; case 'R': pfctl_reset(dev, opts); break; } } if (state_killers) { if (!strcmp(state_kill[0], "label")) pfctl_label_kill_states(dev, ifaceopt, opts, rdomain); else if (!strcmp(state_kill[0], "id")) pfctl_id_kill_states(dev, opts); else if (!strcmp(state_kill[0], "key")) pfctl_key_kill_states(dev, ifaceopt, opts, rdomain); else pfctl_net_kill_states(dev, ifaceopt, opts, rdomain); } if (src_node_killers) pfctl_kill_src_nodes(dev, opts); if (tblcmdopt != NULL) { exit_val = pfctl_table(argc, argv, tableopt, tblcmdopt, rulesopt, anchorname, opts); rulesopt = NULL; } if (optiopt != NULL) { switch (*optiopt) { case 'n': optimize = 0; break; case 'b': optimize |= PF_OPTIMIZE_BASIC; break; case 'o': case 'p': optimize |= PF_OPTIMIZE_PROFILE; break; } } if (rulesopt != NULL && !anchorname[0]) { pfctl_clear_interface_flags(dev, opts | PF_OPT_QUIET); if (pfctl_file_fingerprints(dev, opts, PF_OSFP_FILE)) exit_val = 1; } if (rulesopt != NULL) { if (pfctl_rules(dev, rulesopt, opts, optimize, anchorname, NULL)) exit_val = 1; } if (opts & PF_OPT_ENABLE) if (pfctl_enable(dev, opts)) exit_val = 1; if (debugopt != NULL) { if ((level = string_to_loglevel((char *)debugopt)) < 0) { switch (*debugopt) { case 'n': level = LOG_CRIT; break; case 'u': level = LOG_ERR; break; case 'm': level = LOG_NOTICE; break; case 'l': level = LOG_DEBUG; break; } } if (level >= 0) pfctl_debug(dev, level, opts); } if (sfile != NULL) pfctl_state_store(dev, sfile); if (lfile != NULL) pfctl_state_load(dev, lfile); exit(exit_val); } #endif /* REGRESS_NOMAIN */ char * pf_strerror(int errnum) { switch (errnum) { case ESRCH: return "Table does not exist"; case EINVAL: case ENOENT: return "Anchor does not exist"; default: return strerror(errnum); } }