/* $OpenBSD: pfctl_optimize.c,v 1.38 2017/11/25 22:20:06 sashan Exp $ */ /* * Copyright (c) 2004 Mike Frantzen * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pfctl_parser.h" #include "pfctl.h" /* The size at which a table becomes faster than individual rules */ #define TABLE_THRESHOLD 6 /* #define OPT_DEBUG 1 */ #ifdef OPT_DEBUG # define DEBUG(str, v...) \ printf("%s: " str "\n", __FUNCTION__ , ## v) #else # define DEBUG(str, v...) ((void)0) #endif /* * A container that lets us sort a superblock to optimize the skip step jumps */ struct pf_skip_step { int ps_count; /* number of items */ TAILQ_HEAD( , pf_opt_rule) ps_rules; TAILQ_ENTRY(pf_skip_step) ps_entry; }; /* * A superblock is a block of adjacent rules of similar action. If there * are five PASS rules in a row, they all become members of a superblock. * Once we have a superblock, we are free to re-order any rules within it * in order to improve performance; if a packet is passed, it doesn't matter * who passed it. */ struct superblock { TAILQ_HEAD( , pf_opt_rule) sb_rules; TAILQ_ENTRY(superblock) sb_entry; struct superblock *sb_profiled_block; TAILQ_HEAD(skiplist, pf_skip_step) sb_skipsteps[PF_SKIP_COUNT]; }; TAILQ_HEAD(superblocks, superblock); /* * Description of the PF rule structure. */ enum { BARRIER, /* the presence of the field puts the rule in it's own block */ BREAK, /* the field may not differ between rules in a superblock */ NOMERGE, /* the field may not differ between rules when combined */ COMBINED, /* the field may itself be combined with other rules */ DC, /* we just don't care about the field */ NEVER}; /* we should never see this field set?!? */ struct pf_rule_field { const char *prf_name; int prf_type; size_t prf_offset; size_t prf_size; } pf_rule_desc[] = { #define PF_RULE_FIELD(field, ty) \ {#field, \ ty, \ offsetof(struct pf_rule, field), \ sizeof(((struct pf_rule *)0)->field)} /* * The presence of these fields in a rule put the rule in it's own * superblock. Thus it will not be optimized. It also prevents the * rule from being re-ordered at all. */ PF_RULE_FIELD(label, BARRIER), PF_RULE_FIELD(prob, BARRIER), PF_RULE_FIELD(max_states, BARRIER), PF_RULE_FIELD(max_src_nodes, BARRIER), PF_RULE_FIELD(max_src_states, BARRIER), PF_RULE_FIELD(max_src_conn, BARRIER), PF_RULE_FIELD(max_src_conn_rate, BARRIER), PF_RULE_FIELD(anchor, BARRIER), /* for now */ /* * These fields must be the same between all rules in the same superblock. * These rules are allowed to be re-ordered but only among like rules. * For instance we can re-order all 'tag "foo"' rules because they have the * same tag. But we can not re-order between a 'tag "foo"' and a * 'tag "bar"' since that would change the meaning of the ruleset. */ PF_RULE_FIELD(tagname, BREAK), PF_RULE_FIELD(keep_state, BREAK), PF_RULE_FIELD(qname, BREAK), PF_RULE_FIELD(pqname, BREAK), PF_RULE_FIELD(rt, BREAK), PF_RULE_FIELD(allow_opts, BREAK), PF_RULE_FIELD(rule_flag, BREAK), PF_RULE_FIELD(action, BREAK), PF_RULE_FIELD(log, BREAK), PF_RULE_FIELD(quick, BREAK), PF_RULE_FIELD(return_ttl, BREAK), PF_RULE_FIELD(overload_tblname, BREAK), PF_RULE_FIELD(flush, BREAK), PF_RULE_FIELD(rdr, BREAK), PF_RULE_FIELD(nat, BREAK), PF_RULE_FIELD(logif, BREAK), PF_RULE_FIELD(route, BREAK), PF_RULE_FIELD(rtableid, BREAK), /* * Any fields not listed in this structure act as BREAK fields */ /* * These fields must not differ when we merge two rules together but * their difference isn't enough to put the rules in different superblocks. * There are no problems re-ordering any rules with these fields. */ PF_RULE_FIELD(af, NOMERGE), PF_RULE_FIELD(ifnot, NOMERGE), PF_RULE_FIELD(ifname, NOMERGE), /* hack for IF groups */ PF_RULE_FIELD(match_tag_not, NOMERGE), PF_RULE_FIELD(match_tagname, NOMERGE), PF_RULE_FIELD(os_fingerprint, NOMERGE), PF_RULE_FIELD(timeout, NOMERGE), PF_RULE_FIELD(return_icmp, NOMERGE), PF_RULE_FIELD(return_icmp6, NOMERGE), PF_RULE_FIELD(uid, NOMERGE), PF_RULE_FIELD(gid, NOMERGE), PF_RULE_FIELD(direction, NOMERGE), PF_RULE_FIELD(proto, NOMERGE), PF_RULE_FIELD(type, NOMERGE), PF_RULE_FIELD(code, NOMERGE), PF_RULE_FIELD(flags, NOMERGE), PF_RULE_FIELD(flagset, NOMERGE), PF_RULE_FIELD(tos, NOMERGE), PF_RULE_FIELD(src.port, NOMERGE), PF_RULE_FIELD(dst.port, NOMERGE), PF_RULE_FIELD(src.port_op, NOMERGE), PF_RULE_FIELD(dst.port_op, NOMERGE), PF_RULE_FIELD(src.neg, NOMERGE), PF_RULE_FIELD(dst.neg, NOMERGE), PF_RULE_FIELD(onrdomain, NOMERGE), PF_RULE_FIELD(naf, NOMERGE), /* These fields can be merged */ PF_RULE_FIELD(src.addr, COMBINED), PF_RULE_FIELD(dst.addr, COMBINED), /* We just don't care about these fields. They're set by the kernel */ PF_RULE_FIELD(skip, DC), PF_RULE_FIELD(evaluations, DC), PF_RULE_FIELD(packets, DC), PF_RULE_FIELD(bytes, DC), PF_RULE_FIELD(kif, DC), PF_RULE_FIELD(states_cur, DC), PF_RULE_FIELD(states_tot, DC), PF_RULE_FIELD(src_nodes, DC), PF_RULE_FIELD(nr, DC), PF_RULE_FIELD(entries, DC), PF_RULE_FIELD(qid, DC), PF_RULE_FIELD(pqid, DC), PF_RULE_FIELD(anchor_relative, DC), PF_RULE_FIELD(anchor_wildcard, DC), PF_RULE_FIELD(tag, DC), PF_RULE_FIELD(match_tag, DC), PF_RULE_FIELD(overload_tbl, DC), /* These fields should never be set in a PASS/BLOCK rule XXX fix*/ PF_RULE_FIELD(max_mss, NEVER), PF_RULE_FIELD(min_ttl, NEVER), PF_RULE_FIELD(set_tos, NEVER), }; int addrs_combineable(struct pf_rule_addr *, struct pf_rule_addr *); int addrs_equal(struct pf_rule_addr *, struct pf_rule_addr *); int block_feedback(struct pfctl *, struct superblock *); int combine_rules(struct pfctl *, struct superblock *); void comparable_rule(struct pf_rule *, const struct pf_rule *, int); int construct_superblocks(struct pfctl *, struct pf_opt_queue *, struct superblocks *); void exclude_supersets(struct pf_rule *, struct pf_rule *); int interface_group(const char *); int load_feedback_profile(struct pfctl *, struct superblocks *); int optimize_superblock(struct pfctl *, struct superblock *); void remove_from_skipsteps(struct skiplist *, struct superblock *, struct pf_opt_rule *, struct pf_skip_step *); int remove_identical_rules(struct pfctl *, struct superblock *); int reorder_rules(struct pfctl *, struct superblock *, int); int rules_combineable(struct pf_rule *, struct pf_rule *); void skip_append(struct superblock *, int, struct pf_skip_step *, struct pf_opt_rule *); int skip_compare(int, struct pf_skip_step *, struct pf_opt_rule *); void skip_init(void); int skip_cmp_af(struct pf_rule *, struct pf_rule *); int skip_cmp_dir(struct pf_rule *, struct pf_rule *); int skip_cmp_rdom(struct pf_rule *, struct pf_rule *); int skip_cmp_dst_addr(struct pf_rule *, struct pf_rule *); int skip_cmp_dst_port(struct pf_rule *, struct pf_rule *); int skip_cmp_ifp(struct pf_rule *, struct pf_rule *); int skip_cmp_proto(struct pf_rule *, struct pf_rule *); int skip_cmp_src_addr(struct pf_rule *, struct pf_rule *); int skip_cmp_src_port(struct pf_rule *, struct pf_rule *); int superblock_inclusive(struct superblock *, struct pf_opt_rule *); void superblock_free(struct pfctl *, struct superblock *); struct pf_opt_tbl *pf_opt_table_ref(struct pf_opt_tbl *); void pf_opt_table_unref(struct pf_opt_tbl *); int (*skip_comparitors[PF_SKIP_COUNT])(struct pf_rule *, struct pf_rule *); const char *skip_comparitors_names[PF_SKIP_COUNT]; #define PF_SKIP_COMPARITORS { \ { "ifp", PF_SKIP_IFP, skip_cmp_ifp }, \ { "dir", PF_SKIP_DIR, skip_cmp_dir }, \ { "rdomain", PF_SKIP_RDOM, skip_cmp_rdom }, \ { "af", PF_SKIP_AF, skip_cmp_af }, \ { "proto", PF_SKIP_PROTO, skip_cmp_proto }, \ { "saddr", PF_SKIP_SRC_ADDR, skip_cmp_src_addr }, \ { "daddr", PF_SKIP_DST_ADDR, skip_cmp_dst_addr }, \ { "sport", PF_SKIP_SRC_PORT, skip_cmp_src_port }, \ { "dport", PF_SKIP_DST_PORT, skip_cmp_dst_port } \ } struct pfr_buffer table_buffer; int table_identifier; int pfctl_optimize_ruleset(struct pfctl *pf, struct pf_ruleset *rs) { struct superblocks superblocks; struct pf_opt_queue opt_queue; struct superblock *block; struct pf_opt_rule *por; struct pf_rule *r; struct pf_rulequeue *old_rules; DEBUG("optimizing ruleset"); memset(&table_buffer, 0, sizeof(table_buffer)); skip_init(); TAILQ_INIT(&opt_queue); old_rules = rs->rules.active.ptr; rs->rules.active.ptr = rs->rules.inactive.ptr; rs->rules.inactive.ptr = old_rules; /* * XXX expanding the pf_opt_rule format throughout pfctl might allow * us to avoid all this copying. */ while ((r = TAILQ_FIRST(rs->rules.inactive.ptr)) != NULL) { TAILQ_REMOVE(rs->rules.inactive.ptr, r, entries); if ((por = calloc(1, sizeof(*por))) == NULL) err(1, "calloc"); memcpy(&por->por_rule, r, sizeof(*r)); TAILQ_INSERT_TAIL(&opt_queue, por, por_entry); } TAILQ_INIT(&superblocks); if (construct_superblocks(pf, &opt_queue, &superblocks)) goto error; if (pf->optimize & PF_OPTIMIZE_PROFILE) { if (load_feedback_profile(pf, &superblocks)) goto error; } TAILQ_FOREACH(block, &superblocks, sb_entry) { if (optimize_superblock(pf, block)) goto error; } rs->anchor->refcnt = 0; while ((block = TAILQ_FIRST(&superblocks))) { TAILQ_REMOVE(&superblocks, block, sb_entry); while ((por = TAILQ_FIRST(&block->sb_rules))) { TAILQ_REMOVE(&block->sb_rules, por, por_entry); por->por_rule.nr = rs->anchor->refcnt++; if ((r = calloc(1, sizeof(*r))) == NULL) err(1, "calloc"); memcpy(r, &por->por_rule, sizeof(*r)); TAILQ_INSERT_TAIL(rs->rules.active.ptr, r, entries); pf_opt_table_unref(por->por_src_tbl); pf_opt_table_unref(por->por_dst_tbl); free(por); } superblock_free(pf, block); } return (0); error: while ((por = TAILQ_FIRST(&opt_queue))) { TAILQ_REMOVE(&opt_queue, por, por_entry); pf_opt_table_unref(por->por_src_tbl); pf_opt_table_unref(por->por_dst_tbl); free(por); } while ((block = TAILQ_FIRST(&superblocks))) { TAILQ_REMOVE(&superblocks, block, sb_entry); superblock_free(pf, block); } return (1); } /* * Go ahead and optimize a superblock */ int optimize_superblock(struct pfctl *pf, struct superblock *block) { #ifdef OPT_DEBUG struct pf_opt_rule *por; #endif /* OPT_DEBUG */ /* We have a few optimization passes: * 1) remove duplicate rules or rules that are a subset of other * rules * 2) combine otherwise identical rules with different IP addresses * into a single rule and put the addresses in a table. * 3) re-order the rules to improve kernel skip steps * 4) re-order the 'quick' rules based on feedback from the * active ruleset statistics * * XXX combine_rules() doesn't combine v4 and v6 rules. would just * have to keep af in the table container, make af 'COMBINE' and * twiddle the af on the merged rule * XXX maybe add a weighting to the metric on skipsteps when doing * reordering. sometimes two sequential tables will be better * that four consecutive interfaces. * XXX need to adjust the skipstep count of everything after PROTO, * since they aren't actually checked on a proto mismatch in * pf_test_{tcp, udp, icmp}() * XXX should i treat proto=0, af=0 or dir=0 special in skepstep * calculation since they are a DC? * XXX keep last skiplist of last superblock to influence this * superblock. '5 inet6 log' should make '3 inet6' come before '4 * inet' in the next superblock. * XXX would be useful to add tables for ports * XXX we can also re-order some mutually exclusive superblocks to * try merging superblocks before any of these optimization passes. * for instance a single 'log in' rule in the middle of non-logging * out rules. */ /* shortcut. there will be a lot of 1-rule superblocks */ if (!TAILQ_NEXT(TAILQ_FIRST(&block->sb_rules), por_entry)) return (0); #ifdef OPT_DEBUG printf("--- Superblock ---\n"); TAILQ_FOREACH(por, &block->sb_rules, por_entry) { printf(" "); print_rule(&por->por_rule, por->por_rule.anchor ? por->por_rule.anchor->name : "", PF_OPT_DEBUG); } #endif /* OPT_DEBUG */ if (remove_identical_rules(pf, block)) return (1); if (combine_rules(pf, block)) return (1); if ((pf->optimize & PF_OPTIMIZE_PROFILE) && TAILQ_FIRST(&block->sb_rules)->por_rule.quick && block->sb_profiled_block) { if (block_feedback(pf, block)) return (1); } else if (reorder_rules(pf, block, 0)) { return (1); } /* * Don't add any optimization passes below reorder_rules(). It will * have divided superblocks into smaller blocks for further refinement * and doesn't put them back together again. What once was a true * superblock might have been split into multiple superblocks. */ #ifdef OPT_DEBUG printf("--- END Superblock ---\n"); #endif /* OPT_DEBUG */ return (0); } /* * Optimization pass #1: remove identical rules */ int remove_identical_rules(struct pfctl *pf, struct superblock *block) { struct pf_opt_rule *por1, *por2, *por_next, *por2_next; struct pf_rule a, a2, b, b2; for (por1 = TAILQ_FIRST(&block->sb_rules); por1; por1 = por_next) { por_next = TAILQ_NEXT(por1, por_entry); for (por2 = por_next; por2; por2 = por2_next) { por2_next = TAILQ_NEXT(por2, por_entry); comparable_rule(&a, &por1->por_rule, DC); comparable_rule(&b, &por2->por_rule, DC); memcpy(&a2, &a, sizeof(a2)); memcpy(&b2, &b, sizeof(b2)); exclude_supersets(&a, &b); exclude_supersets(&b2, &a2); if (memcmp(&a, &b, sizeof(a)) == 0) { DEBUG("removing identical rule nr%d = *nr%d*", por1->por_rule.nr, por2->por_rule.nr); TAILQ_REMOVE(&block->sb_rules, por2, por_entry); if (por_next == por2) por_next = TAILQ_NEXT(por1, por_entry); free(por2); } else if (memcmp(&a2, &b2, sizeof(a2)) == 0) { DEBUG("removing identical rule *nr%d* = nr%d", por1->por_rule.nr, por2->por_rule.nr); TAILQ_REMOVE(&block->sb_rules, por1, por_entry); free(por1); break; } } } return (0); } /* * Optimization pass #2: combine similar rules with different addresses * into a single rule and a table */ int combine_rules(struct pfctl *pf, struct superblock *block) { struct pf_opt_rule *p1, *p2, *por_next; int src_eq, dst_eq; /* First we make a pass to combine the rules. O(n log n) */ TAILQ_FOREACH(p1, &block->sb_rules, por_entry) { for (p2 = TAILQ_NEXT(p1, por_entry); p2; p2 = por_next) { por_next = TAILQ_NEXT(p2, por_entry); src_eq = addrs_equal(&p1->por_rule.src, &p2->por_rule.src); dst_eq = addrs_equal(&p1->por_rule.dst, &p2->por_rule.dst); if (src_eq && !dst_eq && p1->por_src_tbl == NULL && p2->por_dst_tbl == NULL && p2->por_src_tbl == NULL && rules_combineable(&p1->por_rule, &p2->por_rule) && addrs_combineable(&p1->por_rule.dst, &p2->por_rule.dst)) { DEBUG("can combine rules nr%d = nr%d", p1->por_rule.nr, p2->por_rule.nr); if (p1->por_dst_tbl == NULL && add_opt_table(pf, &p1->por_dst_tbl, p1->por_rule.af, &p1->por_rule.dst, NULL)) return (1); if (add_opt_table(pf, &p1->por_dst_tbl, p1->por_rule.af, &p2->por_rule.dst, NULL)) return (1); if (p1->por_dst_tbl->pt_rulecount >= TABLE_THRESHOLD) { TAILQ_REMOVE(&block->sb_rules, p2, por_entry); free(p2); } else p2->por_dst_tbl = pf_opt_table_ref(p1->por_dst_tbl); } else if (!src_eq && dst_eq && p1->por_dst_tbl == NULL && p2->por_src_tbl == NULL && p2->por_dst_tbl == NULL && rules_combineable(&p1->por_rule, &p2->por_rule) && addrs_combineable(&p1->por_rule.src, &p2->por_rule.src)) { DEBUG("can combine rules nr%d = nr%d", p1->por_rule.nr, p2->por_rule.nr); if (p1->por_src_tbl == NULL && add_opt_table(pf, &p1->por_src_tbl, p1->por_rule.af, &p1->por_rule.src, NULL)) return (1); if (add_opt_table(pf, &p1->por_src_tbl, p1->por_rule.af, &p2->por_rule.src, NULL)) return (1); if (p1->por_src_tbl->pt_rulecount >= TABLE_THRESHOLD) { TAILQ_REMOVE(&block->sb_rules, p2, por_entry); free(p2); } else p2->por_src_tbl = pf_opt_table_ref(p1->por_src_tbl); } } } /* * Then we make a final pass to create a valid table name and * insert the name into the rules. * Convert translation/routing mapping pools to tables as well. */ for (p1 = TAILQ_FIRST(&block->sb_rules); p1; p1 = por_next) { por_next = TAILQ_NEXT(p1, por_entry); assert(p1->por_src_tbl == NULL || p1->por_dst_tbl == NULL); if (p1->por_src_tbl && p1->por_src_tbl->pt_rulecount >= TABLE_THRESHOLD) { if (p1->por_src_tbl->pt_generated) { /* This rule is included in a table */ TAILQ_REMOVE(&block->sb_rules, p1, por_entry); free(p1); continue; } p1->por_src_tbl->pt_generated = 1; if ((pf->opts & PF_OPT_NOACTION) == 0 && pf_opt_create_table(pf, p1->por_src_tbl)) return (1); pf->tdirty = 1; if (pf->opts & PF_OPT_VERBOSE) print_tabledef(p1->por_src_tbl->pt_name, PFR_TFLAG_CONST, 1, &p1->por_src_tbl->pt_nodes); memset(&p1->por_rule.src.addr, 0, sizeof(p1->por_rule.src.addr)); p1->por_rule.src.addr.type = PF_ADDR_TABLE; strlcpy(p1->por_rule.src.addr.v.tblname, p1->por_src_tbl->pt_name, sizeof(p1->por_rule.src.addr.v.tblname)); pfr_buf_clear(p1->por_src_tbl->pt_buf); free(p1->por_src_tbl->pt_buf); p1->por_src_tbl->pt_buf = NULL; } if (p1->por_dst_tbl && p1->por_dst_tbl->pt_rulecount >= TABLE_THRESHOLD) { if (p1->por_dst_tbl->pt_generated) { /* This rule is included in a table */ TAILQ_REMOVE(&block->sb_rules, p1, por_entry); free(p1); continue; } p1->por_dst_tbl->pt_generated = 1; if ((pf->opts & PF_OPT_NOACTION) == 0 && pf_opt_create_table(pf, p1->por_dst_tbl)) return (1); pf->tdirty = 1; if (pf->opts & PF_OPT_VERBOSE) print_tabledef(p1->por_dst_tbl->pt_name, PFR_TFLAG_CONST, 1, &p1->por_dst_tbl->pt_nodes); memset(&p1->por_rule.dst.addr, 0, sizeof(p1->por_rule.dst.addr)); p1->por_rule.dst.addr.type = PF_ADDR_TABLE; strlcpy(p1->por_rule.dst.addr.v.tblname, p1->por_dst_tbl->pt_name, sizeof(p1->por_rule.dst.addr.v.tblname)); pfr_buf_clear(p1->por_dst_tbl->pt_buf); free(p1->por_dst_tbl->pt_buf); p1->por_dst_tbl->pt_buf = NULL; } } return (0); } /* * Optimization pass #3: re-order rules to improve skip steps */ int reorder_rules(struct pfctl *pf, struct superblock *block, int depth) { struct superblock *newblock; struct pf_skip_step *skiplist; struct pf_opt_rule *por; int i, largest, largest_list, rule_count = 0; TAILQ_HEAD( , pf_opt_rule) head; /* * Calculate the best-case skip steps. We put each rule in a list * of other rules with common fields */ for (i = 0; i < PF_SKIP_COUNT; i++) { TAILQ_FOREACH(por, &block->sb_rules, por_entry) { TAILQ_FOREACH(skiplist, &block->sb_skipsteps[i], ps_entry) { if (skip_compare(i, skiplist, por) == 0) break; } if (skiplist == NULL) { if ((skiplist = calloc(1, sizeof(*skiplist))) == NULL) err(1, "calloc"); TAILQ_INIT(&skiplist->ps_rules); TAILQ_INSERT_TAIL(&block->sb_skipsteps[i], skiplist, ps_entry); } skip_append(block, i, skiplist, por); } } TAILQ_FOREACH(por, &block->sb_rules, por_entry) rule_count++; /* * Now we're going to ignore any fields that are identical between * all of the rules in the superblock and those fields which differ * between every rule in the superblock. */ largest = 0; for (i = 0; i < PF_SKIP_COUNT; i++) { skiplist = TAILQ_FIRST(&block->sb_skipsteps[i]); if (skiplist->ps_count == rule_count) { DEBUG("(%d) original skipstep '%s' is all rules", depth, skip_comparitors_names[i]); skiplist->ps_count = 0; } else if (skiplist->ps_count == 1) { skiplist->ps_count = 0; } else { DEBUG("(%d) original skipstep '%s' largest jump is %d", depth, skip_comparitors_names[i], skiplist->ps_count); if (skiplist->ps_count > largest) largest = skiplist->ps_count; } } if (largest == 0) { /* Ugh. There is NO commonality in the superblock on which * optimize the skipsteps optimization. */ goto done; } /* * Now we're going to empty the superblock rule list and re-create * it based on a more optimal skipstep order. */ TAILQ_INIT(&head); while ((por = TAILQ_FIRST(&block->sb_rules))) { TAILQ_REMOVE(&block->sb_rules, por, por_entry); TAILQ_INSERT_TAIL(&head, por, por_entry); } while (!TAILQ_EMPTY(&head)) { largest = 1; /* * Find the most useful skip steps remaining */ for (i = 0; i < PF_SKIP_COUNT; i++) { skiplist = TAILQ_FIRST(&block->sb_skipsteps[i]); if (skiplist->ps_count > largest) { largest = skiplist->ps_count; largest_list = i; } } if (largest <= 1) { /* * Nothing useful left. Leave remaining rules in order. */ DEBUG("(%d) no more commonality for skip steps", depth); while ((por = TAILQ_FIRST(&head))) { TAILQ_REMOVE(&head, por, por_entry); TAILQ_INSERT_TAIL(&block->sb_rules, por, por_entry); } } else { /* * There is commonality. Extract those common rules * and place them in the ruleset adjacent to each * other. */ skiplist = TAILQ_FIRST(&block->sb_skipsteps[ largest_list]); DEBUG("(%d) skipstep '%s' largest jump is %d @ #%d", depth, skip_comparitors_names[largest_list], largest, TAILQ_FIRST(&TAILQ_FIRST(&block-> sb_skipsteps [largest_list])->ps_rules)-> por_rule.nr); TAILQ_REMOVE(&block->sb_skipsteps[largest_list], skiplist, ps_entry); /* * There may be further commonality inside these * rules. So we'll split them off into they're own * superblock and pass it back into the optimizer. */ if (skiplist->ps_count > 2) { if ((newblock = calloc(1, sizeof(*newblock))) == NULL) { warn("calloc"); return (1); } TAILQ_INIT(&newblock->sb_rules); for (i = 0; i < PF_SKIP_COUNT; i++) TAILQ_INIT(&newblock->sb_skipsteps[i]); TAILQ_INSERT_BEFORE(block, newblock, sb_entry); DEBUG("(%d) splitting off %d rules from superblock @ #%d", depth, skiplist->ps_count, TAILQ_FIRST(&skiplist->ps_rules)-> por_rule.nr); } else { newblock = block; } while ((por = TAILQ_FIRST(&skiplist->ps_rules))) { TAILQ_REMOVE(&head, por, por_entry); TAILQ_REMOVE(&skiplist->ps_rules, por, por_skip_entry[largest_list]); TAILQ_INSERT_TAIL(&newblock->sb_rules, por, por_entry); /* Remove this rule from all other skiplists */ remove_from_skipsteps(&block->sb_skipsteps[ largest_list], block, por, skiplist); } free(skiplist); if (newblock != block) if (reorder_rules(pf, newblock, depth + 1)) return (1); } } done: for (i = 0; i < PF_SKIP_COUNT; i++) { while ((skiplist = TAILQ_FIRST(&block->sb_skipsteps[i]))) { TAILQ_REMOVE(&block->sb_skipsteps[i], skiplist, ps_entry); free(skiplist); } } return (0); } /* * Optimization pass #4: re-order 'quick' rules based on feedback from the * currently running ruleset */ int block_feedback(struct pfctl *pf, struct superblock *block) { TAILQ_HEAD( , pf_opt_rule) queue; struct pf_opt_rule *por1, *por2; u_int64_t total_count = 0; struct pf_rule a, b; /* * Walk through all of the profiled superblock's rules and copy * the counters onto our rules. */ TAILQ_FOREACH(por1, &block->sb_profiled_block->sb_rules, por_entry) { comparable_rule(&a, &por1->por_rule, DC); total_count += por1->por_rule.packets[0] + por1->por_rule.packets[1]; TAILQ_FOREACH(por2, &block->sb_rules, por_entry) { if (por2->por_profile_count) continue; comparable_rule(&b, &por2->por_rule, DC); if (memcmp(&a, &b, sizeof(a)) == 0) { por2->por_profile_count = por1->por_rule.packets[0] + por1->por_rule.packets[1]; break; } } } superblock_free(pf, block->sb_profiled_block); block->sb_profiled_block = NULL; /* * Now we pull all of the rules off the superblock and re-insert them * in sorted order. */ TAILQ_INIT(&queue); while ((por1 = TAILQ_FIRST(&block->sb_rules)) != NULL) { TAILQ_REMOVE(&block->sb_rules, por1, por_entry); TAILQ_INSERT_TAIL(&queue, por1, por_entry); } while ((por1 = TAILQ_FIRST(&queue)) != NULL) { TAILQ_REMOVE(&queue, por1, por_entry); /* XXX I should sort all of the unused rules based on skip steps */ TAILQ_FOREACH(por2, &block->sb_rules, por_entry) { if (por1->por_profile_count > por2->por_profile_count) { TAILQ_INSERT_BEFORE(por2, por1, por_entry); break; } } if (por2 == NULL) TAILQ_INSERT_TAIL(&block->sb_rules, por1, por_entry); } return (0); } /* * Load the current ruleset from the kernel and try to associate them with * the ruleset we're optimizing. */ int load_feedback_profile(struct pfctl *pf, struct superblocks *superblocks) { struct superblock *block, *blockcur; struct superblocks prof_superblocks; struct pf_opt_rule *por; struct pf_opt_queue queue; struct pfioc_rule pr; struct pf_rule a, b; int nr, mnr; TAILQ_INIT(&queue); TAILQ_INIT(&prof_superblocks); memset(&pr, 0, sizeof(pr)); pr.rule.action = PF_PASS; if (ioctl(pf->dev, DIOCGETRULES, &pr)) { warn("DIOCGETRULES"); return (1); } mnr = pr.nr; DEBUG("Loading %d active rules for a feedback profile", mnr); for (nr = 0; nr < mnr; ++nr) { struct pf_ruleset *rs; if ((por = calloc(1, sizeof(*por))) == NULL) { warn("calloc"); return (1); } pr.nr = nr; if (ioctl(pf->dev, DIOCGETRULE, &pr)) { warn("DIOCGETRULES"); free(por); return (1); } memcpy(&por->por_rule, &pr.rule, sizeof(por->por_rule)); rs = pf_find_or_create_ruleset(pr.anchor_call); por->por_rule.anchor = rs->anchor; TAILQ_INSERT_TAIL(&queue, por, por_entry); /* XXX pfctl_get_pool(pf->dev, &pr.rule.rpool, nr, pr.ticket, * PF_PASS, pf->anchor) ??? * ... pfctl_clear_pool(&pr.rule.rpool) */ } if (construct_superblocks(pf, &queue, &prof_superblocks)) return (1); /* * Now we try to associate the active ruleset's superblocks with * the superblocks we're compiling. */ block = TAILQ_FIRST(superblocks); blockcur = TAILQ_FIRST(&prof_superblocks); while (block && blockcur) { comparable_rule(&a, &TAILQ_FIRST(&block->sb_rules)->por_rule, BREAK); comparable_rule(&b, &TAILQ_FIRST(&blockcur->sb_rules)->por_rule, BREAK); if (memcmp(&a, &b, sizeof(a)) == 0) { /* The two superblocks lined up */ block->sb_profiled_block = blockcur; } else { DEBUG("superblocks don't line up between #%d and #%d", TAILQ_FIRST(&block->sb_rules)->por_rule.nr, TAILQ_FIRST(&blockcur->sb_rules)->por_rule.nr); break; } block = TAILQ_NEXT(block, sb_entry); blockcur = TAILQ_NEXT(blockcur, sb_entry); } /* Free any superblocks we couldn't link */ while (blockcur) { block = TAILQ_NEXT(blockcur, sb_entry); superblock_free(pf, blockcur); blockcur = block; } return (0); } /* * Compare a rule to a skiplist to see if the rule is a member */ int skip_compare(int skipnum, struct pf_skip_step *skiplist, struct pf_opt_rule *por) { struct pf_rule *a, *b; if (skipnum >= PF_SKIP_COUNT || skipnum < 0) errx(1, "skip_compare() out of bounds"); a = &por->por_rule; b = &TAILQ_FIRST(&skiplist->ps_rules)->por_rule; return ((skip_comparitors[skipnum])(a, b)); } /* * Add a rule to a skiplist */ void skip_append(struct superblock *superblock, int skipnum, struct pf_skip_step *skiplist, struct pf_opt_rule *por) { struct pf_skip_step *prev; skiplist->ps_count++; TAILQ_INSERT_TAIL(&skiplist->ps_rules, por, por_skip_entry[skipnum]); /* Keep the list of skiplists sorted by whichever is larger */ while ((prev = TAILQ_PREV(skiplist, skiplist, ps_entry)) && prev->ps_count < skiplist->ps_count) { TAILQ_REMOVE(&superblock->sb_skipsteps[skipnum], skiplist, ps_entry); TAILQ_INSERT_BEFORE(prev, skiplist, ps_entry); } } /* * Remove a rule from the other skiplist calculations. */ void remove_from_skipsteps(struct skiplist *head, struct superblock *block, struct pf_opt_rule *por, struct pf_skip_step *active_list) { struct pf_skip_step *sk, *next; struct pf_opt_rule *p2; int i, found; for (i = 0; i < PF_SKIP_COUNT; i++) { sk = TAILQ_FIRST(&block->sb_skipsteps[i]); if (sk == NULL || sk == active_list || sk->ps_count <= 1) continue; found = 0; do { TAILQ_FOREACH(p2, &sk->ps_rules, por_skip_entry[i]) if (p2 == por) { TAILQ_REMOVE(&sk->ps_rules, p2, por_skip_entry[i]); found = 1; sk->ps_count--; break; } } while (!found && (sk = TAILQ_NEXT(sk, ps_entry))); if (found && sk) { /* Does this change the sorting order? */ while ((next = TAILQ_NEXT(sk, ps_entry)) && next->ps_count > sk->ps_count) { TAILQ_REMOVE(head, sk, ps_entry); TAILQ_INSERT_AFTER(head, next, sk, ps_entry); } #ifdef OPT_DEBUG next = TAILQ_NEXT(sk, ps_entry); assert(next == NULL || next->ps_count <= sk->ps_count); #endif /* OPT_DEBUG */ } } } /* Compare two rules AF field for skiplist construction */ int skip_cmp_af(struct pf_rule *a, struct pf_rule *b) { if (a->af != b->af || a->af == 0) return (1); return (0); } /* Compare two rules DIRECTION field for skiplist construction */ int skip_cmp_dir(struct pf_rule *a, struct pf_rule *b) { if (a->direction == 0 || a->direction != b->direction) return (1); return (0); } /* Compare two rules ON RDOMAIN field for skiplist construction */ int skip_cmp_rdom(struct pf_rule *a, struct pf_rule *b) { if (a->onrdomain == -1 || a->onrdomain != b->onrdomain) return (1); return (a->ifnot != b->ifnot); } /* Compare two rules DST Address field for skiplist construction */ int skip_cmp_dst_addr(struct pf_rule *a, struct pf_rule *b) { if (a->dst.neg != b->dst.neg || a->dst.addr.type != b->dst.addr.type) return (1); /* XXX if (a->proto != b->proto && a->proto != 0 && b->proto != 0 * && (a->proto == IPPROTO_TCP || a->proto == IPPROTO_UDP || * a->proto == IPPROTO_ICMP * return (1); */ switch (a->dst.addr.type) { case PF_ADDR_ADDRMASK: if (memcmp(&a->dst.addr.v.a.addr, &b->dst.addr.v.a.addr, sizeof(a->dst.addr.v.a.addr)) || memcmp(&a->dst.addr.v.a.mask, &b->dst.addr.v.a.mask, sizeof(a->dst.addr.v.a.mask)) || (a->dst.addr.v.a.addr.addr32[0] == 0 && a->dst.addr.v.a.addr.addr32[1] == 0 && a->dst.addr.v.a.addr.addr32[2] == 0 && a->dst.addr.v.a.addr.addr32[3] == 0)) return (1); return (0); case PF_ADDR_DYNIFTL: if (strcmp(a->dst.addr.v.ifname, b->dst.addr.v.ifname) != 0 || a->dst.addr.iflags != b->dst.addr.iflags || memcmp(&a->dst.addr.v.a.mask, &b->dst.addr.v.a.mask, sizeof(a->dst.addr.v.a.mask))) return (1); return (0); case PF_ADDR_NOROUTE: case PF_ADDR_URPFFAILED: return (0); case PF_ADDR_TABLE: return (strcmp(a->dst.addr.v.tblname, b->dst.addr.v.tblname)); } return (1); } /* Compare two rules DST port field for skiplist construction */ int skip_cmp_dst_port(struct pf_rule *a, struct pf_rule *b) { /* XXX if (a->proto != b->proto && a->proto != 0 && b->proto != 0 * && (a->proto == IPPROTO_TCP || a->proto == IPPROTO_UDP || * a->proto == IPPROTO_ICMP * return (1); */ if (a->dst.port_op == PF_OP_NONE || a->dst.port_op != b->dst.port_op || a->dst.port[0] != b->dst.port[0] || a->dst.port[1] != b->dst.port[1]) return (1); return (0); } /* Compare two rules IFP field for skiplist construction */ int skip_cmp_ifp(struct pf_rule *a, struct pf_rule *b) { if (strcmp(a->ifname, b->ifname) || a->ifname[0] == '\0') return (1); return (a->ifnot != b->ifnot); } /* Compare two rules PROTO field for skiplist construction */ int skip_cmp_proto(struct pf_rule *a, struct pf_rule *b) { return (a->proto != b->proto || a->proto == 0); } /* Compare two rules SRC addr field for skiplist construction */ int skip_cmp_src_addr(struct pf_rule *a, struct pf_rule *b) { if (a->src.neg != b->src.neg || a->src.addr.type != b->src.addr.type) return (1); /* XXX if (a->proto != b->proto && a->proto != 0 && b->proto != 0 * && (a->proto == IPPROTO_TCP || a->proto == IPPROTO_UDP || * a->proto == IPPROTO_ICMP * return (1); */ switch (a->src.addr.type) { case PF_ADDR_ADDRMASK: if (memcmp(&a->src.addr.v.a.addr, &b->src.addr.v.a.addr, sizeof(a->src.addr.v.a.addr)) || memcmp(&a->src.addr.v.a.mask, &b->src.addr.v.a.mask, sizeof(a->src.addr.v.a.mask)) || (a->src.addr.v.a.addr.addr32[0] == 0 && a->src.addr.v.a.addr.addr32[1] == 0 && a->src.addr.v.a.addr.addr32[2] == 0 && a->src.addr.v.a.addr.addr32[3] == 0)) return (1); return (0); case PF_ADDR_DYNIFTL: if (strcmp(a->src.addr.v.ifname, b->src.addr.v.ifname) != 0 || a->src.addr.iflags != b->src.addr.iflags || memcmp(&a->src.addr.v.a.mask, &b->src.addr.v.a.mask, sizeof(a->src.addr.v.a.mask))) return (1); return (0); case PF_ADDR_NOROUTE: case PF_ADDR_URPFFAILED: return (0); case PF_ADDR_TABLE: return (strcmp(a->src.addr.v.tblname, b->src.addr.v.tblname)); } return (1); } /* Compare two rules SRC port field for skiplist construction */ int skip_cmp_src_port(struct pf_rule *a, struct pf_rule *b) { if (a->src.port_op == PF_OP_NONE || a->src.port_op != b->src.port_op || a->src.port[0] != b->src.port[0] || a->src.port[1] != b->src.port[1]) return (1); /* XXX if (a->proto != b->proto && a->proto != 0 && b->proto != 0 * && (a->proto == IPPROTO_TCP || a->proto == IPPROTO_UDP || * a->proto == IPPROTO_ICMP * return (1); */ return (0); } void skip_init(void) { struct { char *name; int skipnum; int (*func)(struct pf_rule *, struct pf_rule *); } comps[] = PF_SKIP_COMPARITORS; int skipnum, i; for (skipnum = 0; skipnum < PF_SKIP_COUNT; skipnum++) { for (i = 0; i < sizeof(comps)/sizeof(*comps); i++) if (comps[i].skipnum == skipnum) { skip_comparitors[skipnum] = comps[i].func; skip_comparitors_names[skipnum] = comps[i].name; } } for (skipnum = 0; skipnum < PF_SKIP_COUNT; skipnum++) if (skip_comparitors[skipnum] == NULL) errx(1, "Need to add skip step comparitor to pfctl?!"); } /* * Add a host/netmask to a table */ int add_opt_table(struct pfctl *pf, struct pf_opt_tbl **tbl, sa_family_t af, struct pf_rule_addr *addr, char *ifname) { #ifdef OPT_DEBUG char buf[128]; #endif /* OPT_DEBUG */ static int tablenum = 0; struct node_host node_host; if (*tbl == NULL) { if ((*tbl = calloc(1, sizeof(**tbl))) == NULL || ((*tbl)->pt_buf = calloc(1, sizeof(*(*tbl)->pt_buf))) == NULL) err(1, "calloc"); (*tbl)->pt_refcnt = 1; (*tbl)->pt_buf->pfrb_type = PFRB_ADDRS; SIMPLEQ_INIT(&(*tbl)->pt_nodes); /* This is just a temporary table name */ snprintf((*tbl)->pt_name, sizeof((*tbl)->pt_name), "%s%d", PF_OPT_TABLE_PREFIX, tablenum++); DEBUG("creating table <%s>", (*tbl)->pt_name); } memset(&node_host, 0, sizeof(node_host)); node_host.af = af; node_host.addr = addr->addr; node_host.ifname = ifname; node_host.weight = addr->weight; #ifdef OPT_DEBUG DEBUG("<%s> adding %s/%d", (*tbl)->pt_name, inet_ntop(af, &node_host.addr.v.a.addr, buf, sizeof(buf)), unmask(&node_host.addr.v.a.mask, af)); #endif /* OPT_DEBUG */ if (append_addr_host((*tbl)->pt_buf, &node_host, 0, 0)) { warn("failed to add host"); return (1); } if (pf->opts & PF_OPT_VERBOSE) { struct node_tinit *ti; if ((ti = calloc(1, sizeof(*ti))) == NULL) err(1, "malloc"); if ((ti->host = malloc(sizeof(*ti->host))) == NULL) err(1, "malloc"); memcpy(ti->host, &node_host, sizeof(*ti->host)); SIMPLEQ_INSERT_TAIL(&(*tbl)->pt_nodes, ti, entries); } (*tbl)->pt_rulecount++; if ((*tbl)->pt_rulecount == TABLE_THRESHOLD) DEBUG("table <%s> now faster than skip steps", (*tbl)->pt_name); return (0); } /* * Do the dirty work of choosing an unused table name and creating it. * (be careful with the table name, it might already be used in another anchor) */ int pf_opt_create_table(struct pfctl *pf, struct pf_opt_tbl *tbl) { static int tablenum; struct pfr_table *t; if (table_buffer.pfrb_type == 0) { /* Initialize the list of tables */ table_buffer.pfrb_type = PFRB_TABLES; for (;;) { pfr_buf_grow(&table_buffer, table_buffer.pfrb_size); table_buffer.pfrb_size = table_buffer.pfrb_msize; if (pfr_get_tables(NULL, table_buffer.pfrb_caddr, &table_buffer.pfrb_size, PFR_FLAG_ALLRSETS)) err(1, "pfr_get_tables"); if (table_buffer.pfrb_size <= table_buffer.pfrb_msize) break; } table_identifier = arc4random(); } /* XXX would be *really* nice to avoid duplicating identical tables */ /* Now we have to pick a table name that isn't used */ again: DEBUG("translating temporary table <%s> to <%s%x_%d>", tbl->pt_name, PF_OPT_TABLE_PREFIX, table_identifier, tablenum); snprintf(tbl->pt_name, sizeof(tbl->pt_name), "%s%x_%d", PF_OPT_TABLE_PREFIX, table_identifier, tablenum); PFRB_FOREACH(t, &table_buffer) { if (strcasecmp(t->pfrt_name, tbl->pt_name) == 0) { /* Collision. Try again */ DEBUG("wow, table <%s> in use. trying again", tbl->pt_name); table_identifier = arc4random(); goto again; } } tablenum++; if (pfctl_define_table(tbl->pt_name, PFR_TFLAG_CONST | tbl->pt_flags, 1, pf->astack[0]->path, tbl->pt_buf, pf->astack[0]->ruleset.tticket)) { warn("failed to create table %s in %s", tbl->pt_name, pf->astack[0]->name); return (1); } return (0); } /* * Partition the flat ruleset into a list of distinct superblocks */ int construct_superblocks(struct pfctl *pf, struct pf_opt_queue *opt_queue, struct superblocks *superblocks) { struct superblock *block = NULL; struct pf_opt_rule *por; int i; while (!TAILQ_EMPTY(opt_queue)) { por = TAILQ_FIRST(opt_queue); TAILQ_REMOVE(opt_queue, por, por_entry); if (block == NULL || !superblock_inclusive(block, por)) { if ((block = calloc(1, sizeof(*block))) == NULL) { warn("calloc"); return (1); } TAILQ_INIT(&block->sb_rules); for (i = 0; i < PF_SKIP_COUNT; i++) TAILQ_INIT(&block->sb_skipsteps[i]); TAILQ_INSERT_TAIL(superblocks, block, sb_entry); } TAILQ_INSERT_TAIL(&block->sb_rules, por, por_entry); } return (0); } /* * Compare two rule addresses */ int addrs_equal(struct pf_rule_addr *a, struct pf_rule_addr *b) { if (a->neg != b->neg) return (0); return (memcmp(&a->addr, &b->addr, sizeof(a->addr)) == 0); } /* * The addresses are not equal, but can we combine them into one table? */ int addrs_combineable(struct pf_rule_addr *a, struct pf_rule_addr *b) { if (a->addr.type != PF_ADDR_ADDRMASK || b->addr.type != PF_ADDR_ADDRMASK) return (0); if (a->neg != b->neg || a->port_op != b->port_op || a->port[0] != b->port[0] || a->port[1] != b->port[1]) return (0); return (1); } /* * Are we allowed to combine these two rules */ int rules_combineable(struct pf_rule *p1, struct pf_rule *p2) { struct pf_rule a, b; comparable_rule(&a, p1, COMBINED); comparable_rule(&b, p2, COMBINED); return (memcmp(&a, &b, sizeof(a)) == 0); } /* * Can a rule be included inside a superblock */ int superblock_inclusive(struct superblock *block, struct pf_opt_rule *por) { struct pf_rule a, b; int i, j; /* First check for hard breaks */ for (i = 0; i < sizeof(pf_rule_desc)/sizeof(*pf_rule_desc); i++) { if (pf_rule_desc[i].prf_type == BARRIER) { for (j = 0; j < pf_rule_desc[i].prf_size; j++) if (((char *)&por->por_rule)[j + pf_rule_desc[i].prf_offset] != 0) return (0); } } /* per-rule src-track is also a hard break */ if (por->por_rule.rule_flag & PFRULE_RULESRCTRACK) return (0); /* * Have to handle interface groups separately. Consider the following * rules: * block on EXTIFS to any port 22 * pass on em0 to any port 22 * (where EXTIFS is an arbitrary interface group) * The optimizer may decide to re-order the pass rule in front of the * block rule. But what if EXTIFS includes em0??? Such a reordering * would change the meaning of the ruleset. * We can't just lookup the EXTIFS group and check if em0 is a member * because the user is allowed to add interfaces to a group during * runtime. * Ergo interface groups become a defacto superblock break :-( */ if (interface_group(por->por_rule.ifname) || interface_group(TAILQ_FIRST(&block->sb_rules)->por_rule.ifname)) { if (strcasecmp(por->por_rule.ifname, TAILQ_FIRST(&block->sb_rules)->por_rule.ifname) != 0) return (0); } comparable_rule(&a, &TAILQ_FIRST(&block->sb_rules)->por_rule, NOMERGE); comparable_rule(&b, &por->por_rule, NOMERGE); if (memcmp(&a, &b, sizeof(a)) == 0) return (1); #ifdef OPT_DEBUG for (i = 0; i < sizeof(por->por_rule); i++) { int closest = -1; if (((u_int8_t *)&a)[i] != ((u_int8_t *)&b)[i]) { for (j = 0; j < sizeof(pf_rule_desc) / sizeof(*pf_rule_desc); j++) { if (i >= pf_rule_desc[j].prf_offset && i < pf_rule_desc[j].prf_offset + pf_rule_desc[j].prf_size) { DEBUG("superblock break @ %d due to %s", por->por_rule.nr, pf_rule_desc[j].prf_name); return (0); } if (i > pf_rule_desc[j].prf_offset) { if (closest == -1 || i-pf_rule_desc[j].prf_offset < i-pf_rule_desc[closest].prf_offset) closest = j; } } if (closest >= 0) DEBUG("superblock break @ %d on %s+%lxh", por->por_rule.nr, pf_rule_desc[closest].prf_name, i - pf_rule_desc[closest].prf_offset - pf_rule_desc[closest].prf_size); else DEBUG("superblock break @ %d on field @ %d", por->por_rule.nr, i); return (0); } } #endif /* OPT_DEBUG */ return (0); } /* * Figure out if an interface name is an actual interface or actually a * group of interfaces. */ int interface_group(const char *ifname) { if (ifname == NULL || !ifname[0]) return (0); /* Real interfaces must end in a number, interface groups do not */ if (isdigit((unsigned char)ifname[strlen(ifname) - 1])) return (0); else return (1); } /* * Make a rule that can directly compared by memcmp() */ void comparable_rule(struct pf_rule *dst, const struct pf_rule *src, int type) { int i; /* * To simplify the comparison, we just zero out the fields that are * allowed to be different and then do a simple memcmp() */ memcpy(dst, src, sizeof(*dst)); for (i = 0; i < sizeof(pf_rule_desc)/sizeof(*pf_rule_desc); i++) if (pf_rule_desc[i].prf_type >= type) { #ifdef OPT_DEBUG assert(pf_rule_desc[i].prf_type != NEVER || *(((char *)dst) + pf_rule_desc[i].prf_offset) == 0); #endif /* OPT_DEBUG */ memset(((char *)dst) + pf_rule_desc[i].prf_offset, 0, pf_rule_desc[i].prf_size); } } /* * Remove superset information from two rules so we can directly compare them * with memcmp() */ void exclude_supersets(struct pf_rule *super, struct pf_rule *sub) { if (super->ifname[0] == '\0') memset(sub->ifname, 0, sizeof(sub->ifname)); if (super->direction == PF_INOUT) sub->direction = PF_INOUT; if ((super->proto == 0 || super->proto == sub->proto) && super->flags == 0 && super->flagset == 0 && (sub->flags || sub->flagset)) { sub->flags = super->flags; sub->flagset = super->flagset; } if (super->proto == 0) sub->proto = 0; if (super->src.port_op == 0) { sub->src.port_op = 0; sub->src.port[0] = 0; sub->src.port[1] = 0; } if (super->dst.port_op == 0) { sub->dst.port_op = 0; sub->dst.port[0] = 0; sub->dst.port[1] = 0; } if (super->src.addr.type == PF_ADDR_ADDRMASK && !super->src.neg && !sub->src.neg && super->src.addr.v.a.mask.addr32[0] == 0 && super->src.addr.v.a.mask.addr32[1] == 0 && super->src.addr.v.a.mask.addr32[2] == 0 && super->src.addr.v.a.mask.addr32[3] == 0) memset(&sub->src.addr, 0, sizeof(sub->src.addr)); else if (super->src.addr.type == PF_ADDR_ADDRMASK && sub->src.addr.type == PF_ADDR_ADDRMASK && super->src.neg == sub->src.neg && super->af == sub->af && unmask(&super->src.addr.v.a.mask, super->af) < unmask(&sub->src.addr.v.a.mask, sub->af) && super->src.addr.v.a.addr.addr32[0] == (sub->src.addr.v.a.addr.addr32[0] & super->src.addr.v.a.mask.addr32[0]) && super->src.addr.v.a.addr.addr32[1] == (sub->src.addr.v.a.addr.addr32[1] & super->src.addr.v.a.mask.addr32[1]) && super->src.addr.v.a.addr.addr32[2] == (sub->src.addr.v.a.addr.addr32[2] & super->src.addr.v.a.mask.addr32[2]) && super->src.addr.v.a.addr.addr32[3] == (sub->src.addr.v.a.addr.addr32[3] & super->src.addr.v.a.mask.addr32[3])) { /* sub->src.addr is a subset of super->src.addr/mask */ memcpy(&sub->src.addr, &super->src.addr, sizeof(sub->src.addr)); } if (super->dst.addr.type == PF_ADDR_ADDRMASK && !super->dst.neg && !sub->dst.neg && super->dst.addr.v.a.mask.addr32[0] == 0 && super->dst.addr.v.a.mask.addr32[1] == 0 && super->dst.addr.v.a.mask.addr32[2] == 0 && super->dst.addr.v.a.mask.addr32[3] == 0) memset(&sub->dst.addr, 0, sizeof(sub->dst.addr)); else if (super->dst.addr.type == PF_ADDR_ADDRMASK && sub->dst.addr.type == PF_ADDR_ADDRMASK && super->dst.neg == sub->dst.neg && super->af == sub->af && unmask(&super->dst.addr.v.a.mask, super->af) < unmask(&sub->dst.addr.v.a.mask, sub->af) && super->dst.addr.v.a.addr.addr32[0] == (sub->dst.addr.v.a.addr.addr32[0] & super->dst.addr.v.a.mask.addr32[0]) && super->dst.addr.v.a.addr.addr32[1] == (sub->dst.addr.v.a.addr.addr32[1] & super->dst.addr.v.a.mask.addr32[1]) && super->dst.addr.v.a.addr.addr32[2] == (sub->dst.addr.v.a.addr.addr32[2] & super->dst.addr.v.a.mask.addr32[2]) && super->dst.addr.v.a.addr.addr32[3] == (sub->dst.addr.v.a.addr.addr32[3] & super->dst.addr.v.a.mask.addr32[3])) { /* sub->dst.addr is a subset of super->dst.addr/mask */ memcpy(&sub->dst.addr, &super->dst.addr, sizeof(sub->dst.addr)); } if (super->af == 0) sub->af = 0; } void superblock_free(struct pfctl *pf, struct superblock *block) { struct pf_opt_rule *por; while ((por = TAILQ_FIRST(&block->sb_rules))) { TAILQ_REMOVE(&block->sb_rules, por, por_entry); pf_opt_table_unref(por->por_src_tbl); pf_opt_table_unref(por->por_dst_tbl); free(por); } if (block->sb_profiled_block) superblock_free(pf, block->sb_profiled_block); free(block); } struct pf_opt_tbl * pf_opt_table_ref(struct pf_opt_tbl *pt) { /* parser does not run concurrently, we don't need atomic ops. */ if (pt != NULL) pt->pt_refcnt++; return (pt); } void pf_opt_table_unref(struct pf_opt_tbl *pt) { if ((pt != NULL) && ((--pt->pt_refcnt) == 0)) { if (pt->pt_buf != NULL) { pfr_buf_clear(pt->pt_buf); free(pt->pt_buf); } free(pt); } }