.\" $NetBSD: queue.3,v 1.4 1995/07/03 00:25:36 mycroft Exp $ .\" .\" Copyright (c) 1993 The Regents of the University of California. .\" All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" 3. All advertising materials mentioning features or use of this software .\" must display the following acknowledgement: .\" This product includes software developed by the University of .\" California, Berkeley and its contributors. .\" 4. Neither the name of the University nor the names of its contributors .\" may be used to endorse or promote products derived from this software .\" without specific prior written permission. .\" .\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" @(#)queue.3 8.1 (Berkeley) 12/13/93 .\" .Dd December, 13, 1993 .Dt QUEUE 3 .Os BSD 4 .Sh NAME .Nm LIST_ENTRY , .Nm LIST_HEAD , .Nm LIST_INIT , .Nm LIST_INSERT_AFTER , .Nm LIST_INSERT_BEFORE , .Nm LIST_INSERT_HEAD , .Nm LIST_REMOVE , .Nm TAILQ_ENTRY , .Nm TAILQ_HEAD , .Nm TAILQ_INIT , .Nm TAILQ_INSERT_AFTER , .Nm TAILQ_INSERT_BEFORE , .Nm TAILQ_INSERT_HEAD , .Nm TAILQ_INSERT_TAIL , .Nm TAILQ_REMOVE , .Nm CIRCLEQ_ENTRY , .Nm CIRCLEQ_HEAD , .Nm CIRCLEQ_INIT , .Nm CIRCLEQ_INSERT_AFTER , .Nm CIRCLEQ_INSERT_BEFORE , .Nm CIRCLEQ_INSERT_HEAD , .Nm CIRCLEQ_INSERT_TAIL , .Nm CIRCLEQ_REMOVE .Nd implementations of lists, tail queues, and circular queues .Sh SYNOPSIS .Fd #include .sp .Fn LIST_ENTRY "TYPE" .Fn LIST_HEAD "HEADNAME" "TYPE" .Fn LIST_INIT "LIST_HEAD *head" .Fn LIST_INSERT_AFTER "TYPE *listelm" "TYPE *elm" "LIST_ENTRY NAME" .Fn LIST_INSERT_BEFORE "TYPE *listelm" "TYPE *elm" "LIST_ENTRY NAME" .Fn LIST_INSERT_HEAD "LIST_HEAD *head" "TYPE *elm" "LIST_ENTRY NAME" .Fn LIST_REMOVE "TYPE *elm" "LIST_ENTRY NAME" .sp .Fn TAILQ_ENTRY "TYPE" .Fn TAILQ_HEAD "HEADNAME" "TYPE" .Fn TAILQ_INIT "TAILQ_HEAD *head" .Fn TAILQ_INSERT_AFTER "TAILQ_HEAD *head" "TYPE *listelm" "TYPE *elm" "TAILQ_ENTRY NAME" .Fn TAILQ_INSERT_BEFORE "TYPE *listelm" "TYPE *elm" "TAILQ_ENTRY NAME" .Fn TAILQ_INSERT_HEAD "TAILQ_HEAD *head" "TYPE *elm" "TAILQ_ENTRY NAME" .Fn TAILQ_INSERT_TAIL "TAILQ_HEAD *head" "TYPE *elm" "TAILQ_ENTRY NAME" .Fn TAILQ_REMOVE "TAILQ_HEAD *head" "TYPE *elm" "TAILQ_ENTRY NAME" .sp .Fn CIRCLEQ_ENTRY "TYPE" .Fn CIRCLEQ_HEAD "HEADNAME" "TYPE" .Fn CIRCLEQ_INIT "CIRCLEQ_HEAD *head" .Fn CIRCLEQ_INSERT_AFTER "CIRCLEQ_HEAD *head" "TYPE *listelm" "TYPE *elm" "CIRCLEQ_ENTRY NAME" .Fn CIRCLEQ_INSERT_BEFORE "CIRCLEQ_HEAD *head" "TYPE *listelm" "TYPE *elm" "CIRCLEQ_ENTRY NAME" .Fn CIRCLEQ_INSERT_HEAD "CIRCLEQ_HEAD *head" "TYPE *elm" "CIRCLEQ_ENTRY NAME" .Fn CIRCLEQ_INSERT_TAIL "CIRCLEQ_HEAD *head" "TYPE *elm" "CIRCLEQ_ENTRY NAME" .Fn CIRCLEQ_REMOVE "CIRCLEQ_HEAD *head" "TYPE *elm" "CIRCLEQ_ENTRY NAME" .Sh DESCRIPTION These macros define and operate on three types of data structures: lists, tail queues, and circular queues. All three structures support the following functionality: .Bl -enum -compact -offset indent .It Insertion of a new entry at the head of the list. .It Insertion of a new entry before or after any element in the list. .It Removal of any entry in the list. .It Forward traversal through the list. .El .Pp Lists are the simplest of the three data structures and support only the above functionality. .Pp Tail queues add the following functionality: .Bl -enum -compact -offset indent .It Entries can be added at the end of a list. .El However: .Bl -enum -compact -offset indent .It All list insertions and removals, except insertion before another element, must specify the head of the list. .It Each head entry requires two pointers rather than one. .It Code size is about 15% greater and operations run about 20% slower than lists. .El .Pp Circular queues add the following functionality: .Bl -enum -compact -offset indent .It Entries can be added at the end of a list. .It They may be traversed backwards, from tail to head. .El However: .Bl -enum -compact -offset indent .It All list insertions and removals must specify the head of the list. .It Each head entry requires two pointers rather than one. .It The termination condition for traversal is more complex. .It Code size is about 40% greater and operations run about 45% slower than lists. .El .Pp In the macro definitions, .Fa TYPE is the name of a user defined structure, that must contain a field of type .Li LIST_ENTRY , .Li TAILQ_ENTRY , or .Li CIRCLEQ_ENTRY , named .Fa NAME . The argument .Fa HEADNAME is the name of a user defined structure that must be declared using the macros .Li LIST_HEAD , .Li TAILQ_HEAD , or .Li CIRCLEQ_HEAD . See the examples below for further explanation of how these macros are used. .Sh LISTS A list is headed by a structure defined by the .Nm LIST_HEAD macro. This structure contains a single pointer to the first element on the list. The elements are doubly linked so that an arbitrary element can be removed without traversing the list. New elements can be added to the list after an existing element, before an existing element, or at the head of the list. A .Fa LIST_HEAD structure is declared as follows: .Bd -literal -offset indent LIST_HEAD(HEADNAME, TYPE) head; .Ed .sp where .Fa HEADNAME is the name of the structure to be defined, and .Fa TYPE is the type of the elements to be linked into the list. A pointer to the head of the list can later be declared as: .Bd -literal -offset indent struct HEADNAME *headp; .Ed .sp (The names .Li head and .Li headp are user selectable.) .Pp The macro .Nm LIST_ENTRY declares a structure that connects the elements in the list. .Pp The macro .Nm LIST_INIT initializes the list referenced by .Fa head . .Pp The macro .Nm LIST_INSERT_HEAD inserts the new element .Fa elm at the head of the list. .Pp The macro .Nm LIST_INSERT_AFTER inserts the new element .Fa elm after the element .Fa listelm . .Pp The macro .Nm LIST_INSERT_BEFORE inserts the new element .Fa elm before the element .Fa listelm . .Pp The macro .Nm LIST_REMOVE removes the element .Fa elm from the list. .Sh LIST EXAMPLE .Bd -literal LIST_HEAD(listhead, entry) head; struct listhead *headp; /* List head. */ struct entry { ... LIST_ENTRY(entry) entries; /* List. */ ... } *n1, *n2, *np; LIST_INIT(&head); /* Initialize the list. */ n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ LIST_INSERT_HEAD(&head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ LIST_INSERT_AFTER(n1, n2, entries); n2 = malloc(sizeof(struct entry)); /* Insert before. */ LIST_INSERT_BEFORE(n1, n2, entries); /* Forward traversal. */ for (np = head.lh_first; np != NULL; np = np->entries.le_next) np-> ... while (head.lh_first != NULL) /* Delete. */ LIST_REMOVE(head.lh_first, entries); .Ed .Sh TAIL QUEUES A tail queue is headed by a structure defined by the .Nm TAILQ_HEAD macro. This structure contains a pair of pointers, one to the first element in the tail queue and the other to the last element in the tail queue. The elements are doubly linked so that an arbitrary element can be removed without traversing the tail queue. New elements can be added to the queue after an existing element, before an existing element, at the head of the queue, or at the end the queue. A .Fa TAILQ_HEAD structure is declared as follows: .Bd -literal -offset indent TAILQ_HEAD(HEADNAME, TYPE) head; .Ed .sp where .Li HEADNAME is the name of the structure to be defined, and .Li TYPE is the type of the elements to be linked into the tail queue. A pointer to the head of the tail queue can later be declared as: .Bd -literal -offset indent struct HEADNAME *headp; .Ed .sp (The names .Li head and .Li headp are user selectable.) .Pp The macro .Nm TAILQ_ENTRY declares a structure that connects the elements in the tail queue. .Pp The macro .Nm TAILQ_INIT initializes the tail queue referenced by .Fa head . .Pp The macro .Nm TAILQ_INSERT_HEAD inserts the new element .Fa elm at the head of the tail queue. .Pp The macro .Nm TAILQ_INSERT_TAIL inserts the new element .Fa elm at the end of the tail queue. .Pp The macro .Nm TAILQ_INSERT_AFTER inserts the new element .Fa elm after the element .Fa listelm . .Pp The macro .Nm TAILQ_INSERT_BEFORE inserts the new element .Fa elm before the element .Fa listelm . .Pp The macro .Nm TAILQ_REMOVE removes the element .Fa elm from the tail queue. .Sh TAIL QUEUE EXAMPLE .Bd -literal TAILQ_HEAD(tailhead, entry) head; struct tailhead *headp; /* Tail queue head. */ struct entry { ... TAILQ_ENTRY(entry) entries; /* Tail queue. */ ... } *n1, *n2, *np; TAILQ_INIT(&head); /* Initialize the queue. */ n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ TAILQ_INSERT_HEAD(&head, n1, entries); n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */ TAILQ_INSERT_TAIL(&head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ TAILQ_INSERT_AFTER(&head, n1, n2, entries); n2 = malloc(sizeof(struct entry)); /* Insert before. */ TAILQ_INSERT_BEFORE(n1, n2, entries); /* Forward traversal. */ for (np = head.tqh_first; np != NULL; np = np->entries.tqe_next) np-> ... /* Delete. */ while (head.tqh_first != NULL) TAILQ_REMOVE(&head, head.tqh_first, entries); .Ed .Sh CIRCULAR QUEUES A circular queue is headed by a structure defined by the .Nm CIRCLEQ_HEAD macro. This structure contains a pair of pointers, one to the first element in the circular queue and the other to the last element in the circular queue. The elements are doubly linked so that an arbitrary element can be removed without traversing the queue. New elements can be added to the queue after an existing element, before an existing element, at the head of the queue, or at the end of the queue. A .Fa CIRCLEQ_HEAD structure is declared as follows: .Bd -literal -offset indent CIRCLEQ_HEAD(HEADNAME, TYPE) head; .Ed .sp where .Li HEADNAME is the name of the structure to be defined, and .Li TYPE is the type of the elements to be linked into the circular queue. A pointer to the head of the circular queue can later be declared as: .Bd -literal -offset indent struct HEADNAME *headp; .Ed .sp (The names .Li head and .Li headp are user selectable.) .Pp The macro .Nm CIRCLEQ_ENTRY declares a structure that connects the elements in the circular queue. .Pp The macro .Nm CIRCLEQ_INIT initializes the circular queue referenced by .Fa head . .Pp The macro .Nm CIRCLEQ_INSERT_HEAD inserts the new element .Fa elm at the head of the circular queue. .Pp The macro .Nm CIRCLEQ_INSERT_TAIL inserts the new element .Fa elm at the end of the circular queue. .Pp The macro .Nm CIRCLEQ_INSERT_AFTER inserts the new element .Fa elm after the element .Fa listelm . .Pp The macro .Nm CIRCLEQ_INSERT_BEFORE inserts the new element .Fa elm before the element .Fa listelm . .Pp The macro .Nm CIRCLEQ_REMOVE removes the element .Fa elm from the circular queue. .Sh CIRCULAR QUEUE EXAMPLE .Bd -literal CIRCLEQ_HEAD(circleq, entry) head; struct circleq *headp; /* Circular queue head. */ struct entry { ... CIRCLEQ_ENTRY entries; /* Circular queue. */ ... } *n1, *n2, *np; CIRCLEQ_INIT(&head); /* Initialize the circular queue. */ n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ CIRCLEQ_INSERT_HEAD(&head, n1, entries); n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */ CIRCLEQ_INSERT_TAIL(&head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ CIRCLEQ_INSERT_AFTER(&head, n1, n2, entries); n2 = malloc(sizeof(struct entry)); /* Insert before. */ CIRCLEQ_INSERT_BEFORE(&head, n1, n2, entries); /* Forward traversal. */ for (np = head.cqh_first; np != (void *)&head; np = np->entries.cqe_next) np-> ... /* Reverse traversal. */ for (np = head.cqh_last; np != (void *)&head; np = np->entries.cqe_prev) np-> ... /* Delete. */ while (head.cqh_first != (void *)&head) CIRCLEQ_REMOVE(&head, head.cqh_first, entries); .Ed .Sh HISTORY The .Nm queue functions first appeared in .Bx 4.4 .