.\" $OpenBSD: queue.3,v 1.22 2002/02/24 04:35:32 krw Exp $ .\" $NetBSD: queue.3,v 1.4 1995/07/03 00:25:36 mycroft Exp $ .\" .\" Copyright (c) 1993 The Regents of the University of California. .\" All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" 3. All advertising materials mentioning features or use of this software .\" must display the following acknowledgement: .\" This product includes software developed by the University of .\" California, Berkeley and its contributors. .\" 4. Neither the name of the University nor the names of its contributors .\" may be used to endorse or promote products derived from this software .\" without specific prior written permission. .\" .\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" @(#)queue.3 8.1 (Berkeley) 12/13/93 .\" .Dd December 13, 1993 .Dt QUEUE 3 .Os .Sh NAME .Nm SLIST_ENTRY , .Nm SLIST_HEAD , .Nm SLIST_HEAD_INITIALIZER , .Nm SLIST_FIRST , .Nm SLIST_NEXT , .Nm SLIST_END , .Nm SLIST_EMPTY , .Nm SLIST_FOREACH , .Nm SLIST_INIT , .Nm SLIST_INSERT_AFTER , .Nm SLIST_INSERT_HEAD , .Nm SLIST_REMOVE_HEAD , .Nm SLIST_REMOVE , .Nm LIST_ENTRY , .Nm LIST_HEAD , .Nm LIST_HEAD_INITIALIZER , .Nm LIST_FIRST , .Nm LIST_NEXT , .Nm LIST_END , .Nm LIST_EMPTY , .Nm LIST_FOREACH , .Nm LIST_INIT , .Nm LIST_INSERT_AFTER , .Nm LIST_INSERT_BEFORE , .Nm LIST_INSERT_HEAD , .Nm LIST_REMOVE , .Nm LIST_REPLACE , .Nm SIMPLEQ_ENTRY , .Nm SIMPLEQ_HEAD , .Nm SIMPLEQ_HEAD_INITIALIZER , .Nm SIMPLEQ_FIRST , .Nm SIMPLEQ_NEXT , .Nm SIMPLEQ_END , .Nm SIMPLEQ_EMPTY , .Nm SIMPLEQ_FOREACH , .Nm SIMPLEQ_INIT , .Nm SIMPLEQ_INSERT_HEAD , .Nm SIMPLEQ_INSERT_TAIL , .Nm SIMPLEQ_INSERT_AFTER , .Nm SIMPLEQ_REMOVE_HEAD , .Nm TAILQ_ENTRY , .Nm TAILQ_HEAD , .Nm TAILQ_HEAD_INITIALIZER , .Nm TAILQ_FIRST , .Nm TAILQ_NEXT , .Nm TAILQ_END , .Nm TAILQ_LAST , .Nm TAILQ_PREV , .Nm TAILQ_EMPTY , .Nm TAILQ_FOREACH , .Nm TAILQ_FOREACH_REVERSE , .Nm TAILQ_INIT , .Nm TAILQ_INSERT_AFTER , .Nm TAILQ_INSERT_BEFORE , .Nm TAILQ_INSERT_HEAD , .Nm TAILQ_INSERT_TAIL , .Nm TAILQ_REMOVE , .Nm CIRCLEQ_ENTRY , .Nm CIRCLEQ_HEAD , .Nm CIRCLEQ_HEAD_INITIALIZER , .Nm CIRCLEQ_FIRST , .Nm CIRCLEQ_LAST , .Nm CIRCLEQ_END , .Nm CIRCLEQ_NEXT , .Nm CIRCLEQ_PREV , .Nm CIRCLEQ_EMPTY , .Nm CIRCLEQ_FOREACH , .Nm CIRCLEQ_FOREACH_REVERSE , .Nm CIRCLEQ_INIT , .Nm CIRCLEQ_INSERT_AFTER , .Nm CIRCLEQ_INSERT_BEFORE , .Nm CIRCLEQ_INSERT_HEAD , .Nm CIRCLEQ_INSERT_TAIL , .Nm CIRCLEQ_REMOVE .Nd "implementations of singly-linked lists, doubly-linked lists, simple queues, tail queues, and circular queues" .Sh SYNOPSIS .Fd #include .Pp .Fn SLIST_ENTRY "TYPE" .Fn SLIST_HEAD "HEADNAME" "TYPE" .Fn SLIST_HEAD_INITIALIZER "SLIST_HEAD head" .Ft "struct TYPE *" .Fn SLIST_FIRST "SLIST_HEAD *head" .Ft "struct TYPE *" .Fn SLIST_NEXT "struct TYPE *listelm" "SLIST_ENTRY NAME" .Ft "struct TYPE *" .Fn SLIST_END "SLIST_HEAD *head" .Ft "bool" .Fn SLIST_EMPTY "SLIST_HEAD *head" .Fn SLIST_FOREACH "VARNAME" "SLIST_HEAD *head" "SLIST_ENTRY NAME" .Ft void .Fn SLIST_INIT "SLIST_HEAD *head" .Ft void .Fn SLIST_INSERT_AFTER "struct TYPE *listelm" "struct TYPE *elm" "SLIST_ENTRY NAME" .Ft void .Fn SLIST_INSERT_HEAD "SLIST_HEAD *head" "struct TYPE *elm" "SLIST_ENTRY NAME" .Ft void .Fn SLIST_REMOVE_HEAD "SLIST_HEAD *head" "SLIST_ENTRY NAME" .Ft void .Fn SLIST_REMOVE "SLIST_HEAD *head" "TYPE *elm" "TYPE" "SLIST_ENTRY NAME" .Pp .Fn LIST_ENTRY "TYPE" .Fn LIST_HEAD "HEADNAME" "TYPE" .Fn LIST_HEAD_INITIALIZER "LIST_HEAD head" .Ft "struct TYPE *" .Fn LIST_FIRST "LIST_HEAD *head" .Ft "struct TYPE *" .Fn LIST_NEXT "struct TYPE *listelm" "LIST_ENTRY NAME" .Ft "struct TYPE *" .Fn LIST_END "LIST_HEAD *head" .Ft "bool" .Fn LIST_EMPTY "LIST_HEAD *head" .Fn LIST_FOREACH "VARNAME" "LIST_HEAD *head" "LIST_ENTRY NAME" .Ft void .Fn LIST_INIT "LIST_HEAD *head" .Ft void .Fn LIST_INSERT_AFTER "struct TYPE *listelm" "struct TYPE *elm" "LIST_ENTRY NAME" .Ft void .Fn LIST_INSERT_BEFORE "struct TYPE *listelm" "struct TYPE *elm" "LIST_ENTRY NAME" .Ft void .Fn LIST_INSERT_HEAD "LIST_HEAD *head" "struct TYPE *elm" "LIST_ENTRY NAME" .Ft void .Fn LIST_REMOVE "struct TYPE *elm" "LIST_ENTRY NAME" .Ft void .Fn LIST_REPLACE "struct TYPE *elm" "struct TYPE *elm2" "LIST_ENTRY NAME" .Pp .Fn SIMPLEQ_ENTRY "TYPE" .Fn SIMPLEQ_HEAD "HEADNAME" "TYPE" .Fn SIMPLEQ_HEAD_INITIALIZER "SIMPLEQ_HEAD head" .Ft "struct TYPE *" .Fn SIMPLEQ_FIRST "SIMPLEQ_HEAD *head" .Ft "struct TYPE *" .Fn SIMPLEQ_NEXT "struct TYPE *listelm" "SIMPLEQ_ENTRY NAME" .Ft "struct TYPE *" .Fn SIMPLEQ_END "SIMPLEQ_HEAD *head" .Ft void .Fn SIMPLEQ_INIT "SIMPLEQ_HEAD *head" .Ft void .Fn SIMPLEQ_INSERT_HEAD "SIMPLEQ_HEAD *head" "struct TYPE *elm" "SIMPLEQ_ENTRY NAME" .Ft void .Fn SIMPLEQ_INSERT_TAIL "SIMPLEQ_HEAD *head" "struct TYPE *elm" "SIMPLEQ_ENTRY NAME" .Ft void .Fn SIMPLEQ_INSERT_AFTER "struct TYPE *listelm" "struct TYPE *elm" "SIMPLEQ_ENTRY NAME" .Ft void .Fn SIMPLEQ_REMOVE_HEAD "SIMPLEQ_HEAD *head" "struct TYPE *elm" "SIMPLEQ_ENTRY NAME" .Pp .Fn TAILQ_ENTRY "TYPE" .Fn TAILQ_HEAD "HEADNAME" "TYPE" .Fn TAILQ_HEAD_INITIALIZER "TAILQ_HEAD head" .Ft "struct TYPE *" .Fn TAILQ_FIRST "TAILQ_HEAD *head" .Ft "struct TYPE *" .Fn TAILQ_NEXT "struct TYPE *listelm" "TAILQ_ENTRY NAME" .Ft "struct TYPE *" .Fn TAILQ_END "TAILQ_HEAD *head" .Ft "struct TYPE *" .Fn TAILQ_LAST "TAILQ_HEAD *head" "HEADNAME NAME" .Fn TAILQ_PREV "struct TYPE *listelm" "HEADNAME NAME" "TAILQ_ENTRY NAME" .Ft "bool" .Fn TAILQ_EMPTY "TAILQ_HEAD *head" .Fn TAILQ_FOREACH "VARNAME" "TAILQ_HEAD *head" "TAILQ_ENTRY NAME" .Fn TAILQ_FOREACH_REVERSE "VARNAME" "TAILQ_HEAD *head" "TAILQ_ENTRY NAME" .Ft void .Fn TAILQ_INIT "TAILQ_HEAD *head" .Ft void .Fn TAILQ_INSERT_AFTER "TAILQ_HEAD *head" "struct TYPE *listelm" "struct TYPE *elm" "TAILQ_ENTRY NAME" .Ft void .Fn TAILQ_INSERT_BEFORE "struct TYPE *listelm" "struct TYPE *elm" "TAILQ_ENTRY NAME" .Ft void .Fn TAILQ_INSERT_HEAD "TAILQ_HEAD *head" "struct TYPE *elm" "TAILQ_ENTRY NAME" .Ft void .Fn TAILQ_INSERT_TAIL "TAILQ_HEAD *head" "struct TYPE *elm" "TAILQ_ENTRY NAME" .Ft void .Fn TAILQ_REMOVE "TAILQ_HEAD *head" "struct TYPE *elm" "TAILQ_ENTRY NAME" .Pp .Fn CIRCLEQ_ENTRY "TYPE" .Fn CIRCLEQ_HEAD "HEADNAME" "TYPE" .Fn CIRCLEQ_HEAD_INITIALIZER "CIRCLEQ_HEAD head" .Ft "struct TYPE *" .Fn CIRCLEQ_FIRST "CIRCLEQ_HEAD *head" .Ft "struct TYPE *" .Fn CIRCLEQ_LAST "CIRCLEQ_HEAD *head" .Ft "struct TYPE *" .Fn CIRCLEQ_END "CIRCLEQ_HEAD *head" .Ft "struct TYPE *" .Fn CIRCLEQ_NEXT "struct TYPE *listelm" "CIRCLEQ_ENTRY NAME" .Ft "struct TYPE *" .Fn CIRCLEQ_PREV "struct TYPE *listelm" "CIRCLEQ_ENTRY NAME" .Ft "bool" .Fn CIRCLEQ_EMPTY "CIRCLEQ_HEAD *head" .Fn CIRCLEQ_FOREACH "VARNAME" "CIRCLEQ_HEAD *head" "CIRCLEQ_ENTRY NAME" .Fn CIRCLEQ_FOREACH_REVERSE "VARNAME" "CIRCLEQ_HEAD *head" "CIRCLEQ_ENTRY NAME" .Ft void .Fn CIRCLEQ_INIT "CIRCLEQ_HEAD *head" .Ft void .Fn CIRCLEQ_INSERT_AFTER "CIRCLEQ_HEAD *head" "struct TYPE *listelm" "struct TYPE *elm" "CIRCLEQ_ENTRY NAME" .Ft void .Fn CIRCLEQ_INSERT_BEFORE "CIRCLEQ_HEAD *head" "struct TYPE *listelm" "struct TYPE *elm" "CIRCLEQ_ENTRY NAME" .Ft void .Fn CIRCLEQ_INSERT_HEAD "CIRCLEQ_HEAD *head" "struct TYPE *elm" "CIRCLEQ_ENTRY NAME" .Ft void .Fn CIRCLEQ_INSERT_TAIL "CIRCLEQ_HEAD *head" "struct TYPE *elm" "CIRCLEQ_ENTRY NAME" .Ft void .Fn CIRCLEQ_REMOVE "CIRCLEQ_HEAD *head" "struct TYPE *elm" "CIRCLEQ_ENTRY NAME" .Sh DESCRIPTION These macros define and operate on five types of data structures: singly-linked lists, simple queues, lists, tail queues, and circular queues. All five structures support the following functionality: .Pp .Bl -enum -compact -offset indent .It Insertion of a new entry at the head of the list. .It Insertion of a new entry after any element in the list. .It Removal of an entry from the head of the list. .It Forward traversal through the list. .El .Pp Singly-linked lists are the simplest of the five data structures and support only the above functionality. Singly-linked lists are ideal for applications with large datasets and few or no removals, or for implementing a LIFO queue. .Pp Simple queues add the following functionality: .Pp .Bl -enum -compact -offset indent .It Entries can be added at the end of a list. .El .Pp However: .Pp .Bl -enum -compact -offset indent .It All list insertions must specify the head of the list. .It Each head entry requires two pointers rather than one. .It Code size is about 15% greater and operations run about 20% slower than singly-linked lists. .El .Pp Simple queues are ideal for applications with large datasets and few or no removals, or for implementing a FIFO queue. .Pp All doubly linked types of data structures (lists, tail queues, and circle queues) additionally allow: .Pp .Bl -enum -compact -offset indent .It Insertion of a new entry before any element in the list. .It Removal of any entry in the list. .El .Pp However: .Pp .Bl -enum -compact -offset indent .It Each elements requires two pointers rather than one. .It Code size and execution time of operations (except for removal) is about twice that of the singly-linked data-structures. .El .Pp Lists are the simplest of the doubly linked data structures and support only the above functionality over singly-linked lists. .Pp Tail queues add the following functionality: .Pp .Bl -enum -compact -offset indent .It Entries can be added at the end of a list. .It They may be traversed backwards, at a cost. .El .Pp However: .Pp .Bl -enum -compact -offset indent .It All list insertions and removals must specify the head of the list. .It Each head entry requires two pointers rather than one. .It Code size is about 15% greater and operations run about 20% slower than singly-linked lists. .El .Pp Circular queues add the following functionality: .Pp .Bl -enum -compact -offset indent .It Entries can be added at the end of a list. .It They may be traversed backwards, from tail to head. .El .Pp However: .Pp .Bl -enum -compact -offset indent .It All list insertions and removals must specify the head of the list. .It Each head entry requires two pointers rather than one. .It The termination condition for traversal is more complex. .It Code size is about 40% greater and operations run about 45% slower than lists. .El .Pp In the macro definitions, .Fa TYPE is the name tag of a user defined structure that must contain a field of type .Li SLIST_ENTRY , .Li LIST_ENTRY , .Li SIMPLEQ_ENTRY , .Li TAILQ_ENTRY , or .Li CIRCLEQ_ENTRY , named .Fa NAME . The argument .Fa HEADNAME is the name tag of a user defined structure that must be declared using the macros .Fn SLIST_HEAD , .Fn LIST_HEAD , .Fn SIMPLEQ_HEAD , .Fn TAILQ_HEAD , or .Fn CIRCLEQ_HEAD . See the examples below for further explanation of how these macros are used. .Sh SINGLY_LINKED LISTS A singly-linked list is headed by a structure defined by the .Fn SLIST_HEAD macro. This structure contains a single pointer to the first element on the list. The elements are singly linked for minimum space and pointer manipulation overhead at the expense of O(n) removal for arbitrary elements. New elements can be added to the list after an existing element or at the head of the list. A .Fa SLIST_HEAD structure is declared as follows: .Bd -literal -offset indent SLIST_HEAD(HEADNAME, TYPE) head; .Ed .Pp where .Fa HEADNAME is the name of the structure to be defined, and struct .Fa TYPE is the type of the elements to be linked into the list. A pointer to the head of the list can later be declared as: .Bd -literal -offset indent struct HEADNAME *headp; .Ed .Pp (The names .Li head and .Li headp are user selectable.) .Pp The .Fa HEADNAME facility is often not used, leading to the following bizarre code: .Bd -literal -offset indent SLIST_HEAD(, TYPE) head, *headp; .Ed .Pp The .Fn SLIST_ENTRY macro declares a structure that connects the elements in the list. .Pp The .Fn SLIST_INIT macro initializes the list referenced by .Fa head . .Pp The list can also be initialized statically by using the .Fn SLIST_HEAD_INITIALIZER macro like this: .Bd -literal -offset indent SLIST_HEAD(HEADNAME, TYPE) head = SLIST_HEAD_INITIALIZER(head); .Ed .Pp The .Fn SLIST_INSERT_HEAD macro inserts the new element .Fa elm at the head of the list. .Pp The .Fn SLIST_INSERT_AFTER macro inserts the new element .Fa elm after the element .Fa listelm . .Pp The .Fn SLIST_REMOVE_HEAD macro removes the first element of the list pointed by .Fa head . .Pp The .Fn SLIST_REMOVE macro removes the element .Fa elm of the list pointed by .Fa head . .Pp The .Fn SLIST_FIRST , and .Fn SLIST_NEXT macros can be used to traverse the list: .Bd -literal -offset indent for (np = SLIST_FIRST(&head); np != NULL; np = SLIST_NEXT(np, NAME)) .Ed .Pp Or, for simplicity, one can use the .Fn SLIST_FOREACH macro: .Bd -literal -offset indent SLIST_FOREACH(np, head, NAME) .Ed .Pp The .Fn SLIST_EMPTY macro should be used to check whether a simple list is empty. .Sh LISTS A list is headed by a structure defined by the .Fn LIST_HEAD macro. This structure contains a single pointer to the first element on the list. The elements are doubly linked so that an arbitrary element can be removed without traversing the list. New elements can be added to the list after an existing element, before an existing element, or at the head of the list. A .Fa LIST_HEAD structure is declared as follows: .Bd -literal -offset indent LIST_HEAD(HEADNAME, TYPE) head; .Ed .Pp where .Fa HEADNAME is the name of the structure to be defined, and struct .Fa TYPE is the type of the elements to be linked into the list. A pointer to the head of the list can later be declared as: .Bd -literal -offset indent struct HEADNAME *headp; .Ed .Pp (The names .Li head and .Li headp are user selectable.) .Pp The .Fa HEADNAME facility is often not used, leading to the following bizarre code: .Bd -literal -offset indent LIST_HEAD(, TYPE) head, *headp; .Ed .Pp The .Fn LIST_ENTRY macro declares a structure that connects the elements in the list. .Pp The .Fn LIST_INIT macro initializes the list referenced by .Fa head . .Pp The list can also be initialized statically by using the .Fn LIST_HEAD_INITIALIZER macro like this: .Bd -literal -offset indent LIST_HEAD(HEADNAME, TYPE) head = LIST_HEAD_INITIALIZER(head); .Ed .Pp The .Fn LIST_INSERT_HEAD macro inserts the new element .Fa elm at the head of the list. .Pp The .Fn LIST_INSERT_AFTER macro inserts the new element .Fa elm after the element .Fa listelm . .Pp The .Fn LIST_INSERT_BEFORE macro inserts the new element .Fa elm before the element .Fa listelm . .Pp The .Fn LIST_REMOVE macro removes the element .Fa elm from the list. .Pp The .Fn LIST_REPLACE macro replaces the list element .Fa elm with the new element .Fa elm2 . .Pp The .Fn LIST_FIRST , and .Fn LIST_NEXT macros can be used to traverse the list: .Bd -literal -offset indent for (np = LIST_FIRST(&head); np != NULL; np = LIST_NEXT(np, NAME)) .Ed .Pp Or, for simplicity, one can use the .Fn LIST_FOREACH macro: .Bd -literal -offset indent LIST_FOREACH(np, head, NAME) .Ed .Pp The .Fn LIST_EMPTY macro should be used to check whether a list is empty. .Sh LIST EXAMPLE .Bd -literal LIST_HEAD(listhead, entry) head; struct listhead *headp; /* List head. */ struct entry { ... LIST_ENTRY(entry) entries; /* List. */ ... } *n1, *n2, *np; LIST_INIT(&head); /* Initialize list. */ n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ LIST_INSERT_HEAD(&head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ LIST_INSERT_AFTER(n1, n2, entries); n2 = malloc(sizeof(struct entry)); /* Insert before. */ LIST_INSERT_BEFORE(n1, n2, entries); /* Forward traversal. */ for (np = head.lh_first; np != NULL; np = np->entries.le_next) np-> ... while (head.lh_first != NULL) /* Delete. */ LIST_REMOVE(head.lh_first, entries); .Ed .Sh SIMPLE QUEUES A simple queue is headed by a structure defined by the .Fn SIMPLEQ_HEAD macro. This structure contains a pair of pointers, one to the first element in the simple queue and the other to the last element in the simple queue. The elements are singly linked. New elements can be added to the queue after an existing element, at the head of the queue or at the tail of the queue. A .Fa SIMPLEQ_HEAD structure is declared as follows: .Bd -literal -offset indent SIMPLEQ_HEAD(HEADNAME, TYPE) head; .Ed .Pp where .Fa HEADNAME is the name of the structure to be defined, and struct .Fa TYPE is the type of the elements to be linked into the queue. A pointer to the head of the queue can later be declared as: .Bd -literal -offset indent struct HEADNAME *headp; .Ed .Pp (The names .Li head and .Li headp are user selectable.) .Pp The .Fn SIMPLEQ_ENTRY macro declares a structure that connects the elements in the queue. .Pp The .Fn SIMPLEQ_INIT macro initializes the queue referenced by .Fa head . .Pp The queue can also be initialized statically by using the .Fn SIMPLEQ_HEAD_INITIALIZER macro like this: .Bd -literal -offset indent SIMPLEQ_HEAD(HEADNAME, TYPE) head = SIMPLEQ_HEAD_INITIALIZER(head); .Ed .Pp The .Fn SIMPLEQ_INSERT_HEAD macro inserts the new element .Fa elm at the head of the queue. .Pp The .Fn SIMPLEQ_INSERT_TAIL macro inserts the new element .Fa elm at the end of the queue. .Pp The .Fn SIMPLEQ_INSERT_AFTER macro inserts the new element .Fa elm after the element .Fa listelm . .Pp The .Fn SIMPLEQ_REMOVE_HEAD macro removes the first element from the queue. .Pp The .Fn SIMPLEQ_FIRST , and .Fn SIMPLEQ_NEXT macros can be used to traverse the queue. The .Fn SIMPLEQ_FOREACH is used for queue traversal .Bd -literal -offset indent SIMPLEQ_FOREACH(np, head, NAME) .Ed .Pp The .Fn SIMPLEQ_EMPTY macro should be used to check whether a list is empty. .Sh SIMPLE QUEUE EXAMPLE .Bd -literal SIMPLEQ_HEAD(listhead, entry) head = SIMPLEQ_HEAD_INITIALIZER(head); struct entry { ... SIMPLEQ_ENTRY(entry) entries; /* List. */ ... } *n1, *n2, *np; n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ SIMPLEQ_INSERT_HEAD(&head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ SIMPLEQ_INSERT_AFTER(n1, n2, entries); n2 = malloc(sizeof(struct entry)); /* Insert at the tail. */ SIMPLEQ_INSERT_TAIL(&head, n1, entries); /* Forward traversal. */ for (np = SIMPLEQ_FIRST(&head); np != NULL; np = SIMPLEQ_NEXT(np, entries)) np-> ... /* Delete. */ while (SIMPLEQ_FIRST(&head) != NULL) SIMPLEQ_REMOVE_HEAD(&head, n1, entries); .Ed .Sh TAIL QUEUES A tail queue is headed by a structure defined by the .Fn TAILQ_HEAD macro. This structure contains a pair of pointers, one to the first element in the tail queue and the other to the last element in the tail queue. The elements are doubly linked so that an arbitrary element can be removed without traversing the tail queue. New elements can be added to the queue after an existing element, before an existing element, at the head of the queue, or at the end of the queue. A .Fa TAILQ_HEAD structure is declared as follows: .Bd -literal -offset indent TAILQ_HEAD(HEADNAME, TYPE) head; .Ed .Pp where .Fa HEADNAME is the name of the structure to be defined, and struct .Fa TYPE is the type of the elements to be linked into the tail queue. A pointer to the head of the tail queue can later be declared as: .Bd -literal -offset indent struct HEADNAME *headp; .Ed .Pp (The names .Li head and .Li headp are user selectable.) .Pp The .Fn TAILQ_ENTRY macro declares a structure that connects the elements in the tail queue. .Pp The .Fn TAILQ_INIT macro initializes the tail queue referenced by .Fa head . .Pp The tail queue can also be initialized statically by using the .Fn TAILQ_HEAD_INITIALIZER macro. .Pp The .Fn TAILQ_INSERT_HEAD macro inserts the new element .Fa elm at the head of the tail queue. .Pp The .Fn TAILQ_INSERT_TAIL macro inserts the new element .Fa elm at the end of the tail queue. .Pp The .Fn TAILQ_INSERT_AFTER macro inserts the new element .Fa elm after the element .Fa listelm . .Pp The .Fn TAILQ_INSERT_BEFORE macro inserts the new element .Fa elm before the element .Fa listelm . .Pp The .Fn TAILQ_REMOVE macro removes the element .Fa elm from the tail queue. .Pp The .Fn TAIL_FIRST , .Fn TAILQ_NEXT , .Fn TAILQ_LAST and .Fn TAILQ_PREV macros can be used to traverse a tail queue. The .Fn TAILQ_FOREACH is used for tail queue traversal .Bd -literal -offset indent TAILQ_FOREACH(np, head, NAME) .Ed .Pp The .Fn TAILQ_FOREACH_REVERSE acts like .Fn TAILQ_FOREACH but traverses the tail queue in reverse. .Pp The .Fn TAILQ_EMPTY macro should be used to check whether a tail queue is empty. .Sh TAIL QUEUE EXAMPLE .Bd -literal TAILQ_HEAD(tailhead, entry) head; struct tailhead *headp; /* Tail queue head. */ struct entry { ... TAILQ_ENTRY(entry) entries; /* Tail queue. */ ... } *n1, *n2, *np; TAILQ_INIT(&head); /* Initialize queue. */ n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ TAILQ_INSERT_HEAD(&head, n1, entries); n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */ TAILQ_INSERT_TAIL(&head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ TAILQ_INSERT_AFTER(&head, n1, n2, entries); n2 = malloc(sizeof(struct entry)); /* Insert before. */ TAILQ_INSERT_BEFORE(n1, n2, entries); /* Forward traversal. */ for (np = TAILQ_FIRST(&head); np; np = TAILQ_NEXT(np, entries)) np-> ... /* Delete. */ while (np = TAILQ_FIRST(&head)) TAILQ_REMOVE(&head, np, entries); .Ed .Sh CIRCULAR QUEUES A circular queue is headed by a structure defined by the .Fn CIRCLEQ_HEAD macro. This structure contains a pair of pointers, one to the first element in the circular queue and the other to the last element in the circular queue. The elements are doubly linked so that an arbitrary element can be removed without traversing the queue. New elements can be added to the queue after an existing element, before an existing element, at the head of the queue, or at the end of the queue. A .Fa CIRCLEQ_HEAD structure is declared as follows: .Bd -literal -offset indent CIRCLEQ_HEAD(HEADNAME, TYPE) head; .Ed .Pp where .Fa HEADNAME is the name of the structure to be defined, and struct .Fa TYPE is the type of the elements to be linked into the circular queue. A pointer to the head of the circular queue can later be declared as: .Bd -literal -offset indent struct HEADNAME *headp; .Ed .Pp (The names .Li head and .Li headp are user selectable.) .Pp The .Fn CIRCLEQ_ENTRY macro declares a structure that connects the elements in the circular queue. .Pp The .Fn CIRCLEQ_INIT macro initializes the circular queue referenced by .Fa head . .Pp The circular queue can also be initialized statically by using the .Fn CIRCLEQ_HEAD_INITIALIZER macro. .Pp The .Fn CIRCLEQ_INSERT_HEAD macro inserts the new element .Fa elm at the head of the circular queue. .Pp The .Fn CIRCLEQ_INSERT_TAIL macro inserts the new element .Fa elm at the end of the circular queue. .Pp The .Fn CIRCLEQ_INSERT_AFTER macro inserts the new element .Fa elm after the element .Fa listelm . .Pp The .Fn CIRCLEQ_INSERT_BEFORE macro inserts the new element .Fa elm before the element .Fa listelm . .Pp The .Fn CIRCLEQ_REMOVE macro removes the element .Fa elm from the circular queue. .Pp The .Fn CIRCLEQ_FIRST , .Fn CIRCLEQ_LAST , .Fn CIRCLEQ_END , .Fn CIRCLEQ_NEXT and .Fn CIRCLEQ_PREV macros can be used to traverse a circular queue. The .Fn CIRCLEQ_FOREACH is used for circular queue forward traversal .Bd -literal -offset indent CIRCLEQ_FOREACH(np, head, NAME) .Ed .Pp The .Fn CIRCLEQ_FOREACH_REVERSE macro acts like .Fn CIRCLEQ_FOREACH but traverses the circular queue backwards. .Pp The .Fn CIRCLEQ_EMPTY macro should be used to check whether a circular queue is empty. .Sh CIRCULAR QUEUE EXAMPLE .Bd -literal CIRCLEQ_HEAD(circleq, entry) head; struct circleq *headp; /* Circular queue head. */ struct entry { ... CIRCLEQ_ENTRY entries; /* Circular queue. */ ... } *n1, *n2, *np; CIRCLEQ_INIT(&head); /* Initialize circular queue. */ n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ CIRCLEQ_INSERT_HEAD(&head, n1, entries); n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */ CIRCLEQ_INSERT_TAIL(&head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ CIRCLEQ_INSERT_AFTER(&head, n1, n2, entries); n2 = malloc(sizeof(struct entry)); /* Insert before. */ CIRCLEQ_INSERT_BEFORE(&head, n1, n2, entries); /* Forward traversal. */ for (np = CIRCLEQ_FIRST(&head); np != CIRCLEQ_END(&head); np = CIRCLEQ_NEXT(np, entries)) np-> ... /* Reverse traversal. */ for (np = CIRCLEQ_LAST(&head); np != CIRCLEQ_END(&head); np = CIRCLEQ_PREV(np, entries)) np-> ... /* Delete. */ while (CIRCLEQ_FIRST(&head) != CIRCLEQ_END(&head)) CIRCLEQ_REMOVE(&head, CIRCLEQ_FIRST(&head), entries); .Ed .Sh NOTES The .Fn SLIST_END , .Fn LIST_END , .Fn SIMPLEQ_END and .Fn TAILQ_END macros are provided for symmetry with .Fn CIRCLEQ_END . They expand to .Dv NULL and don't serve any useful purpose. .Pp Trying to free a list in the following way is a common error: .Bd -literal -offset indent LIST_FOREACH(var, head, entry) free(var); free(head); .Ed .Pp Since .Va var is free'd, the .Fn FOREACH macro refers to a pointer that may have been reallocated already. Proper code needs a second variable. .Bd -literal -offset indent for (var = LIST_FIRST(head); var != LIST_END(head); var = nxt) { nxt = LIST_NEXT(var); free(var); } LIST_INIT(head); /* to put the list back in order */ .Ed .Sh HISTORY The .Nm queue functions first appeared in .Bx 4.4 .