.\" $OpenBSD: queue.3,v 1.67 2020/07/13 01:28:10 schwarze Exp $ .\" $NetBSD: queue.3,v 1.4 1995/07/03 00:25:36 mycroft Exp $ .\" .\" Copyright (c) 1993 The Regents of the University of California. .\" All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" 3. Neither the name of the University nor the names of its contributors .\" may be used to endorse or promote products derived from this software .\" without specific prior written permission. .\" .\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" @(#)queue.3 8.1 (Berkeley) 12/13/93 .\" .Dd $Mdocdate: July 13 2020 $ .Dt SLIST_INIT 3 .Os .Sh NAME .Nm SLIST_ENTRY , .Nm SLIST_HEAD , .Nm SLIST_HEAD_INITIALIZER , .Nm SLIST_FIRST , .Nm SLIST_NEXT , .Nm SLIST_EMPTY , .Nm SLIST_FOREACH , .Nm SLIST_FOREACH_SAFE , .Nm SLIST_INIT , .Nm SLIST_INSERT_AFTER , .Nm SLIST_INSERT_HEAD , .Nm SLIST_REMOVE_AFTER , .Nm SLIST_REMOVE_HEAD , .Nm SLIST_REMOVE , .Nm LIST_ENTRY , .Nm LIST_HEAD , .Nm LIST_HEAD_INITIALIZER , .Nm LIST_FIRST , .Nm LIST_NEXT , .Nm LIST_EMPTY , .Nm LIST_FOREACH , .Nm LIST_FOREACH_SAFE , .Nm LIST_INIT , .Nm LIST_INSERT_AFTER , .Nm LIST_INSERT_BEFORE , .Nm LIST_INSERT_HEAD , .Nm LIST_REMOVE , .Nm LIST_REPLACE , .Nm SIMPLEQ_ENTRY , .Nm SIMPLEQ_HEAD , .Nm SIMPLEQ_HEAD_INITIALIZER , .Nm SIMPLEQ_FIRST , .Nm SIMPLEQ_NEXT , .Nm SIMPLEQ_EMPTY , .Nm SIMPLEQ_FOREACH , .Nm SIMPLEQ_FOREACH_SAFE , .Nm SIMPLEQ_INIT , .Nm SIMPLEQ_INSERT_AFTER , .Nm SIMPLEQ_INSERT_HEAD , .Nm SIMPLEQ_INSERT_TAIL , .Nm SIMPLEQ_REMOVE_AFTER , .Nm SIMPLEQ_REMOVE_HEAD , .Nm SIMPLEQ_CONCAT , .Nm TAILQ_ENTRY , .Nm TAILQ_HEAD , .Nm TAILQ_HEAD_INITIALIZER , .Nm TAILQ_FIRST , .Nm TAILQ_NEXT , .Nm TAILQ_LAST , .Nm TAILQ_PREV , .Nm TAILQ_EMPTY , .Nm TAILQ_FOREACH , .Nm TAILQ_FOREACH_SAFE , .Nm TAILQ_FOREACH_REVERSE , .Nm TAILQ_FOREACH_REVERSE_SAFE , .Nm TAILQ_INIT , .Nm TAILQ_INSERT_AFTER , .Nm TAILQ_INSERT_BEFORE , .Nm TAILQ_INSERT_HEAD , .Nm TAILQ_INSERT_TAIL , .Nm TAILQ_REMOVE , .Nm TAILQ_REPLACE , .Nm TAILQ_CONCAT .Nd intrusive singly-linked and doubly-linked lists, simple queues, and tail queues .Sh SYNOPSIS .In sys/queue.h .Pp .Fn SLIST_ENTRY "TYPE" .Fn SLIST_HEAD "HEADNAME" "TYPE" .Fn SLIST_HEAD_INITIALIZER "SLIST_HEAD head" .Ft "struct TYPE *" .Fn SLIST_FIRST "SLIST_HEAD *head" .Ft "struct TYPE *" .Fn SLIST_NEXT "struct TYPE *listelm" "FIELDNAME" .Ft int .Fn SLIST_EMPTY "SLIST_HEAD *head" .Fn SLIST_FOREACH "VARNAME" "SLIST_HEAD *head" "FIELDNAME" .Fn SLIST_FOREACH_SAFE "VARNAME" "SLIST_HEAD *head" "FIELDNAME" "TEMP_VARNAME" .Ft void .Fn SLIST_INIT "SLIST_HEAD *head" .Ft void .Fn SLIST_INSERT_AFTER "struct TYPE *listelm" "struct TYPE *elm" "FIELDNAME" .Ft void .Fn SLIST_INSERT_HEAD "SLIST_HEAD *head" "struct TYPE *elm" "FIELDNAME" .Ft void .Fn SLIST_REMOVE_AFTER "struct TYPE *elm" "FIELDNAME" .Ft void .Fn SLIST_REMOVE_HEAD "SLIST_HEAD *head" "FIELDNAME" .Ft void .Fn SLIST_REMOVE "SLIST_HEAD *head" "struct TYPE *elm" "TYPE" "FIELDNAME" .Pp .Fn LIST_ENTRY "TYPE" .Fn LIST_HEAD "HEADNAME" "TYPE" .Fn LIST_HEAD_INITIALIZER "LIST_HEAD head" .Ft "struct TYPE *" .Fn LIST_FIRST "LIST_HEAD *head" .Ft "struct TYPE *" .Fn LIST_NEXT "struct TYPE *listelm" "FIELDNAME" .Ft int .Fn LIST_EMPTY "LIST_HEAD *head" .Fn LIST_FOREACH "VARNAME" "LIST_HEAD *head" "FIELDNAME" .Fn LIST_FOREACH_SAFE "VARNAME" "LIST_HEAD *head" "FIELDNAME" "TEMP_VARNAME" .Ft void .Fn LIST_INIT "LIST_HEAD *head" .Ft void .Fn LIST_INSERT_AFTER "struct TYPE *listelm" "struct TYPE *elm" "FIELDNAME" .Ft void .Fn LIST_INSERT_BEFORE "struct TYPE *listelm" "struct TYPE *elm" "FIELDNAME" .Ft void .Fn LIST_INSERT_HEAD "LIST_HEAD *head" "struct TYPE *elm" "FIELDNAME" .Ft void .Fn LIST_REMOVE "struct TYPE *elm" "FIELDNAME" .Ft void .Fn LIST_REPLACE "struct TYPE *elm" "struct TYPE *elm2" "FIELDNAME" .Pp .Fn SIMPLEQ_ENTRY "TYPE" .Fn SIMPLEQ_HEAD "HEADNAME" "TYPE" .Fn SIMPLEQ_HEAD_INITIALIZER "SIMPLEQ_HEAD head" .Ft "struct TYPE *" .Fn SIMPLEQ_FIRST "SIMPLEQ_HEAD *head" .Ft "struct TYPE *" .Fn SIMPLEQ_NEXT "struct TYPE *listelm" "FIELDNAME" .Ft int .Fn SIMPLEQ_EMPTY "SIMPLEQ_HEAD *head" .Fn SIMPLEQ_FOREACH "VARNAME" "SIMPLEQ_HEAD *head" "FIELDNAME" .Fn SIMPLEQ_FOREACH_SAFE "VARNAME" "SIMPLEQ_HEAD *head" "FIELDNAME" "TEMP_VARNAME" .Ft void .Fn SIMPLEQ_INIT "SIMPLEQ_HEAD *head" .Ft void .Fn SIMPLEQ_INSERT_AFTER "SIMPLEQ_HEAD *head" "struct TYPE *listelm" "struct TYPE *elm" "FIELDNAME" .Ft void .Fn SIMPLEQ_INSERT_HEAD "SIMPLEQ_HEAD *head" "struct TYPE *elm" "FIELDNAME" .Ft void .Fn SIMPLEQ_INSERT_TAIL "SIMPLEQ_HEAD *head" "struct TYPE *elm" "FIELDNAME" .Ft void .Fn SIMPLEQ_REMOVE_AFTER "SIMPLEQ_HEAD *head" "struct TYPE *elm" "FIELDNAME" .Ft void .Fn SIMPLEQ_REMOVE_HEAD "SIMPLEQ_HEAD *head" "FIELDNAME" .Fn SIMPLEQ_CONCAT "SIMPLEQ_HEAD *head1" "SIMPLEQ_HEAD *head2" .Pp .Fn TAILQ_ENTRY "TYPE" .Fn TAILQ_HEAD "HEADNAME" "TYPE" .Fn TAILQ_HEAD_INITIALIZER "TAILQ_HEAD head" .Ft "struct TYPE *" .Fn TAILQ_FIRST "TAILQ_HEAD *head" .Ft "struct TYPE *" .Fn TAILQ_NEXT "struct TYPE *listelm" "FIELDNAME" .Ft "struct TYPE *" .Fn TAILQ_LAST "TAILQ_HEAD *head" "HEADNAME" .Ft "struct TYPE *" .Fn TAILQ_PREV "struct TYPE *listelm" "HEADNAME" "FIELDNAME" .Ft int .Fn TAILQ_EMPTY "TAILQ_HEAD *head" .Fn TAILQ_FOREACH "VARNAME" "TAILQ_HEAD *head" "FIELDNAME" .Fn TAILQ_FOREACH_SAFE "VARNAME" "TAILQ_HEAD *head" "FIELDNAME" "TEMP_VARNAME" .Fn TAILQ_FOREACH_REVERSE "VARNAME" "TAILQ_HEAD *head" "HEADNAME" "FIELDNAME" .Fn TAILQ_FOREACH_REVERSE_SAFE "VARNAME" "TAILQ_HEAD *head" "HEADNAME" "FIELDNAME" "TEMP_VARNAME" .Ft void .Fn TAILQ_INIT "TAILQ_HEAD *head" .Ft void .Fn TAILQ_INSERT_AFTER "TAILQ_HEAD *head" "struct TYPE *listelm" "struct TYPE *elm" "FIELDNAME" .Ft void .Fn TAILQ_INSERT_BEFORE "struct TYPE *listelm" "struct TYPE *elm" "FIELDNAME" .Ft void .Fn TAILQ_INSERT_HEAD "TAILQ_HEAD *head" "struct TYPE *elm" "FIELDNAME" .Ft void .Fn TAILQ_INSERT_TAIL "TAILQ_HEAD *head" "struct TYPE *elm" "FIELDNAME" .Ft void .Fn TAILQ_REMOVE "TAILQ_HEAD *head" "struct TYPE *elm" "FIELDNAME" .Ft void .Fn TAILQ_REPLACE "TAILQ_HEAD *head" "struct TYPE *elm" "struct TYPE *elm2" "FIELDNAME" .Fn TAILQ_CONCAT "TAILQ_HEAD *head1" "TAILQ_HEAD *head2" "FIELDNAME" .Sh DESCRIPTION These macros define and operate on four types of data structures: singly-linked lists, simple queues, lists, and tail queues. All four structures support the following functionality: .Pp .Bl -enum -compact -offset indent .It Insertion of a new entry at the head of the list. .It Insertion of a new entry after any element in the list. .It Removal of an entry from the head of the list. .It Forward traversal through the list. .El .Pp The following table provides a quick overview of which types support which additional macros: .Bl -column -offset 6n "LAST, PREV, FOREACH_REVERSE" SLIST LIST SIMPLEQ TAILQ .It LAST, PREV, FOREACH_REVERSE Ta - Ta - Ta - Ta TAILQ .It INSERT_BEFORE, REPLACE Ta - Ta LIST Ta - Ta TAILQ .It INSERT_TAIL, CONCAT Ta - Ta - Ta SIMPLEQ Ta TAILQ .It REMOVE_AFTER, REMOVE_HEAD Ta SLIST Ta - Ta SIMPLEQ Ta - .It REMOVE Ta SLIST Ta LIST Ta - Ta TAILQ .El .Pp Singly-linked lists are the simplest of the four data structures and support only the above functionality. Singly-linked lists are ideal for applications with large datasets and few or no removals, or for implementing a LIFO queue. .Pp Simple queues add the following functionality: .Pp .Bl -enum -compact -offset indent .It Entries can be added at the end of a list. .El .Pp However: .Pp .Bl -enum -compact -offset indent .It All list insertions must specify the head of the list. .It Each head entry requires two pointers rather than one. .It Code size is about 15% greater and operations run about 20% slower than singly-linked lists. .El .Pp Simple queues are ideal for applications with large datasets and few or no removals, or for implementing a FIFO queue. .Pp All doubly linked types of data structures (lists and tail queues) additionally allow: .Pp .Bl -enum -compact -offset indent .It Insertion of a new entry before any element in the list. .It Removal of any entry in the list. .El .Pp However: .Pp .Bl -enum -compact -offset indent .It Each element requires two pointers rather than one. .It Code size and execution time of operations (except for removal) is about twice that of the singly-linked data-structures. .El .Pp Lists are the simplest of the doubly linked data structures and support only the above functionality over singly-linked lists. .Pp Tail queues add the following functionality: .Pp .Bl -enum -compact -offset indent .It Entries can be added at the end of a list. .It They may be traversed backwards, at a cost. .El .Pp However: .Pp .Bl -enum -compact -offset indent .It All list insertions and removals must specify the head of the list. .It Each head entry requires two pointers rather than one. .It Code size is about 15% greater and operations run about 20% slower than singly-linked lists. .El .Pp An additional type of data structure, circular queues, violated the C language aliasing rules and were miscompiled as a result. All code using them should be converted to another structure; tail queues are usually the easiest to convert to. .Pp All these lists and queues are intrusive: they link together user defined structures containing a field of type .Li SLIST_ENTRY , .Li LIST_ENTRY , .Li SIMPLEQ_ENTRY , or .Li TAILQ_ENTRY . In the macro definitions, .Fa TYPE is the name tag of the user defined structure and .Fa FIELDNAME is the name of the .Li *_ENTRY field. If an instance of the user defined structure needs to be a member of multiple lists at the same time, the structure requires multiple .Li *_ENTRY fields, one for each list. .Pp The argument .Fa HEADNAME is the name tag of a user defined structure that must be declared using the macros .Fn SLIST_HEAD , .Fn LIST_HEAD , .Fn SIMPLEQ_HEAD , or .Fn TAILQ_HEAD . See the examples below for further explanation of how these macros are used. .Sh SINGLY-LINKED LISTS A singly-linked list is headed by a structure defined by the .Fn SLIST_HEAD macro. This structure contains a single pointer to the first element on the list. The elements are singly linked for minimum space and pointer manipulation overhead at the expense of O(n) removal for arbitrary elements. New elements can be added to the list after an existing element or at the head of the list. A .Fa SLIST_HEAD structure is declared as follows: .Bd -literal -offset indent SLIST_HEAD(HEADNAME, TYPE) head; .Ed .Pp where .Fa HEADNAME is the name of the structure to be defined, and struct .Fa TYPE is the type of the elements to be linked into the list. A pointer to the head of the list can later be declared as: .Bd -literal -offset indent struct HEADNAME *headp; .Ed .Pp (The names .Li head and .Li headp are user selectable.) .Pp The .Fa HEADNAME facility is often not used, leading to the following bizarre code: .Bd -literal -offset indent SLIST_HEAD(, TYPE) head, *headp; .Ed .Pp The .Fn SLIST_ENTRY macro declares a structure that connects the elements in the list. .Pp The .Fn SLIST_INIT macro initializes the list referenced by .Fa head . .Pp The list can also be initialized statically by using the .Fn SLIST_HEAD_INITIALIZER macro like this: .Bd -literal -offset indent SLIST_HEAD(HEADNAME, TYPE) head = SLIST_HEAD_INITIALIZER(head); .Ed .Pp The .Fn SLIST_INSERT_HEAD macro inserts the new element .Fa elm at the head of the list. .Pp The .Fn SLIST_INSERT_AFTER macro inserts the new element .Fa elm after the element .Fa listelm . .Pp The .Fn SLIST_REMOVE_HEAD macro removes the first element of the list pointed by .Fa head . .Pp The .Fn SLIST_REMOVE_AFTER macro removes the list element immediately following .Fa elm . .Pp The .Fn SLIST_REMOVE macro removes the element .Fa elm of the list pointed by .Fa head . .Pp The .Fn SLIST_FIRST and .Fn SLIST_NEXT macros can be used to traverse the list: .Bd -literal -offset indent for (np = SLIST_FIRST(&head); np != NULL; np = SLIST_NEXT(np, FIELDNAME)) .Ed .Pp Or, for simplicity, one can use the .Fn SLIST_FOREACH macro: .Bd -literal -offset indent SLIST_FOREACH(np, head, FIELDNAME) .Ed .Pp The macro .Fn SLIST_FOREACH_SAFE traverses the list referenced by head in a forward direction, assigning each element in turn to var. However, unlike .Fn SLIST_FOREACH it is permitted to remove var as well as free it from within the loop safely without interfering with the traversal. .Pp The .Fn SLIST_EMPTY macro should be used to check whether a simple list is empty. .Sh SINGLY-LINKED LIST EXAMPLE .Bd -literal SLIST_HEAD(listhead, entry) head; struct entry { ... SLIST_ENTRY(entry) entries; /* Simple list. */ ... } *n1, *n2, *np; SLIST_INIT(&head); /* Initialize simple list. */ n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ SLIST_INSERT_HEAD(&head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ SLIST_INSERT_AFTER(n1, n2, entries); SLIST_FOREACH(np, &head, entries) /* Forward traversal. */ np-> ... while (!SLIST_EMPTY(&head)) { /* Delete. */ n1 = SLIST_FIRST(&head); SLIST_REMOVE_HEAD(&head, entries); free(n1); } .Ed .Sh LISTS A list is headed by a structure defined by the .Fn LIST_HEAD macro. This structure contains a single pointer to the first element on the list. The elements are doubly linked so that an arbitrary element can be removed without traversing the list. New elements can be added to the list after an existing element, before an existing element, or at the head of the list. A .Fa LIST_HEAD structure is declared as follows: .Bd -literal -offset indent LIST_HEAD(HEADNAME, TYPE) head; .Ed .Pp where .Fa HEADNAME is the name of the structure to be defined, and struct .Fa TYPE is the type of the elements to be linked into the list. A pointer to the head of the list can later be declared as: .Bd -literal -offset indent struct HEADNAME *headp; .Ed .Pp (The names .Li head and .Li headp are user selectable.) .Pp The .Fa HEADNAME facility is often not used, leading to the following bizarre code: .Bd -literal -offset indent LIST_HEAD(, TYPE) head, *headp; .Ed .Pp The .Fn LIST_ENTRY macro declares a structure that connects the elements in the list. .Pp The .Fn LIST_INIT macro initializes the list referenced by .Fa head . .Pp The list can also be initialized statically by using the .Fn LIST_HEAD_INITIALIZER macro like this: .Bd -literal -offset indent LIST_HEAD(HEADNAME, TYPE) head = LIST_HEAD_INITIALIZER(head); .Ed .Pp The .Fn LIST_INSERT_HEAD macro inserts the new element .Fa elm at the head of the list. .Pp The .Fn LIST_INSERT_AFTER macro inserts the new element .Fa elm after the element .Fa listelm . .Pp The .Fn LIST_INSERT_BEFORE macro inserts the new element .Fa elm before the element .Fa listelm . .Pp The .Fn LIST_REMOVE macro removes the element .Fa elm from the list. .Pp The .Fn LIST_REPLACE macro replaces the list element .Fa elm with the new element .Fa elm2 . .Pp The .Fn LIST_FIRST and .Fn LIST_NEXT macros can be used to traverse the list: .Bd -literal -offset indent for (np = LIST_FIRST(&head); np != NULL; np = LIST_NEXT(np, FIELDNAME)) .Ed .Pp Or, for simplicity, one can use the .Fn LIST_FOREACH macro: .Bd -literal -offset indent LIST_FOREACH(np, head, FIELDNAME) .Ed .Pp The macro .Fn LIST_FOREACH_SAFE traverses the list referenced by head in a forward direction, assigning each element in turn to var. However, unlike .Fn LIST_FOREACH it is permitted to remove var as well as free it from within the loop safely without interfering with the traversal. .Pp The .Fn LIST_EMPTY macro should be used to check whether a list is empty. .Sh LIST EXAMPLE .Bd -literal LIST_HEAD(listhead, entry) head; struct entry { ... LIST_ENTRY(entry) entries; /* List. */ ... } *n1, *n2, *np; LIST_INIT(&head); /* Initialize list. */ n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ LIST_INSERT_HEAD(&head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ LIST_INSERT_AFTER(n1, n2, entries); n2 = malloc(sizeof(struct entry)); /* Insert before. */ LIST_INSERT_BEFORE(n1, n2, entries); /* Forward traversal. */ LIST_FOREACH(np, &head, entries) np-> ... while (!LIST_EMPTY(&head)) { /* Delete. */ n1 = LIST_FIRST(&head); LIST_REMOVE(n1, entries); free(n1); } .Ed .Sh SIMPLE QUEUES A simple queue is headed by a structure defined by the .Fn SIMPLEQ_HEAD macro. This structure contains a pair of pointers, one to the first element in the simple queue and the other to the last element in the simple queue. The elements are singly linked. New elements can be added to the queue after an existing element, at the head of the queue or at the tail of the queue. A .Fa SIMPLEQ_HEAD structure is declared as follows: .Bd -literal -offset indent SIMPLEQ_HEAD(HEADNAME, TYPE) head; .Ed .Pp where .Fa HEADNAME is the name of the structure to be defined, and struct .Fa TYPE is the type of the elements to be linked into the queue. A pointer to the head of the queue can later be declared as: .Bd -literal -offset indent struct HEADNAME *headp; .Ed .Pp (The names .Li head and .Li headp are user selectable.) .Pp The .Fn SIMPLEQ_ENTRY macro declares a structure that connects the elements in the queue. .Pp The .Fn SIMPLEQ_INIT macro initializes the queue referenced by .Fa head . .Pp The queue can also be initialized statically by using the .Fn SIMPLEQ_HEAD_INITIALIZER macro like this: .Bd -literal -offset indent SIMPLEQ_HEAD(HEADNAME, TYPE) head = SIMPLEQ_HEAD_INITIALIZER(head); .Ed .Pp The .Fn SIMPLEQ_INSERT_AFTER macro inserts the new element .Fa elm after the element .Fa listelm . .Pp The .Fn SIMPLEQ_INSERT_HEAD macro inserts the new element .Fa elm at the head of the queue. .Pp The .Fn SIMPLEQ_INSERT_TAIL macro inserts the new element .Fa elm at the end of the queue. .Pp The .Fn SIMPLEQ_REMOVE_AFTER macro removes the queue element immediately following .Fa elm . .Pp The .Fn SIMPLEQ_REMOVE_HEAD macro removes the first element from the queue. .Pp The .Fn SIMPLEQ_CONCAT macro concatenates all the elements of the queue referenced by .Fa head2 to the end of the queue referenced by .Fa head1 , emptying .Fa head2 in the process. This is more efficient than removing and inserting the individual elements as it does not actually traverse .Fa head2 . .Pp The .Fn SIMPLEQ_FIRST and .Fn SIMPLEQ_NEXT macros can be used to traverse the queue. The .Fn SIMPLEQ_FOREACH is used for queue traversal: .Bd -literal -offset indent SIMPLEQ_FOREACH(np, head, FIELDNAME) .Ed .Pp The macro .Fn SIMPLEQ_FOREACH_SAFE traverses the queue referenced by head in a forward direction, assigning each element in turn to var. However, unlike .Fn SIMPLEQ_FOREACH it is permitted to remove var as well as free it from within the loop safely without interfering with the traversal. .Pp The .Fn SIMPLEQ_EMPTY macro should be used to check whether a list is empty. .Sh SIMPLE QUEUE EXAMPLE .Bd -literal SIMPLEQ_HEAD(listhead, entry) head = SIMPLEQ_HEAD_INITIALIZER(head); struct entry { ... SIMPLEQ_ENTRY(entry) entries; /* Simple queue. */ ... } *n1, *n2, *np; n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ SIMPLEQ_INSERT_HEAD(&head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ SIMPLEQ_INSERT_AFTER(&head, n1, n2, entries); n2 = malloc(sizeof(struct entry)); /* Insert at the tail. */ SIMPLEQ_INSERT_TAIL(&head, n2, entries); /* Forward traversal. */ SIMPLEQ_FOREACH(np, &head, entries) np-> ... /* Delete. */ while (!SIMPLEQ_EMPTY(&head)) { n1 = SIMPLEQ_FIRST(&head); SIMPLEQ_REMOVE_HEAD(&head, entries); free(n1); } .Ed .Sh TAIL QUEUES A tail queue is headed by a structure defined by the .Fn TAILQ_HEAD macro. This structure contains a pair of pointers, one to the first element in the tail queue and the other to the last element in the tail queue. The elements are doubly linked so that an arbitrary element can be removed without traversing the tail queue. New elements can be added to the queue after an existing element, before an existing element, at the head of the queue, or at the end of the queue. A .Fa TAILQ_HEAD structure is declared as follows: .Bd -literal -offset indent TAILQ_HEAD(HEADNAME, TYPE) head; .Ed .Pp where .Fa HEADNAME is the name of the structure to be defined, and struct .Fa TYPE is the type of the elements to be linked into the tail queue. A pointer to the head of the tail queue can later be declared as: .Bd -literal -offset indent struct HEADNAME *headp; .Ed .Pp (The names .Li head and .Li headp are user selectable.) .Pp The .Fn TAILQ_ENTRY macro declares a structure that connects the elements in the tail queue. .Pp The .Fn TAILQ_INIT macro initializes the tail queue referenced by .Fa head . .Pp The tail queue can also be initialized statically by using the .Fn TAILQ_HEAD_INITIALIZER macro. .Pp The .Fn TAILQ_INSERT_HEAD macro inserts the new element .Fa elm at the head of the tail queue. .Pp The .Fn TAILQ_INSERT_TAIL macro inserts the new element .Fa elm at the end of the tail queue. .Pp The .Fn TAILQ_INSERT_AFTER macro inserts the new element .Fa elm after the element .Fa listelm . .Pp The .Fn TAILQ_INSERT_BEFORE macro inserts the new element .Fa elm before the element .Fa listelm . .Pp The .Fn TAILQ_REMOVE macro removes the element .Fa elm from the tail queue. .Pp The .Fn TAILQ_REPLACE macro replaces the list element .Fa elm with the new element .Fa elm2 . .Pp The .Fn TAILQ_CONCAT macro concatenates all the elements of the tail queue referenced by .Fa head2 to the end of the tail queue referenced by .Fa head1 , emptying .Fa head2 in the process. This is more efficient than removing and inserting the individual elements as it does not actually traverse .Fa head2 . .Pp .Fn TAILQ_FOREACH and .Fn TAILQ_FOREACH_REVERSE are used for traversing a tail queue. .Fn TAILQ_FOREACH starts at the first element and proceeds towards the last. .Fn TAILQ_FOREACH_REVERSE starts at the last element and proceeds towards the first. .Bd -literal -offset indent TAILQ_FOREACH(np, &head, FIELDNAME) TAILQ_FOREACH_REVERSE(np, &head, HEADNAME, FIELDNAME) .Ed .Pp The macros .Fn TAILQ_FOREACH_SAFE and .Fn TAILQ_FOREACH_REVERSE_SAFE traverse the list referenced by head in a forward or reverse direction respectively, assigning each element in turn to var. However, unlike their unsafe counterparts, they permit both the removal of var as well as freeing it from within the loop safely without interfering with the traversal. .Pp The .Fn TAILQ_FIRST , .Fn TAILQ_NEXT , .Fn TAILQ_LAST and .Fn TAILQ_PREV macros can be used to manually traverse a tail queue or an arbitrary part of one. .Pp The .Fn TAILQ_EMPTY macro should be used to check whether a tail queue is empty. .Sh TAIL QUEUE EXAMPLE .Bd -literal TAILQ_HEAD(tailhead, entry) head; struct entry { ... TAILQ_ENTRY(entry) entries; /* Tail queue. */ ... } *n1, *n2, *np; TAILQ_INIT(&head); /* Initialize queue. */ n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ TAILQ_INSERT_HEAD(&head, n1, entries); n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */ TAILQ_INSERT_TAIL(&head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ TAILQ_INSERT_AFTER(&head, n1, n2, entries); n2 = malloc(sizeof(struct entry)); /* Insert before. */ TAILQ_INSERT_BEFORE(n1, n2, entries); /* Forward traversal. */ TAILQ_FOREACH(np, &head, entries) np-> ... /* Manual forward traversal. */ for (np = n2; np != NULL; np = TAILQ_NEXT(np, entries)) np-> ... /* Delete. */ while ((np = TAILQ_FIRST(&head))) { TAILQ_REMOVE(&head, np, entries); free(np); } .Ed .Sh SEE ALSO .Xr tree 3 .Sh NOTES It is an error to assume the next and previous fields are preserved after an element has been removed from a list or queue. Using any macro (except the various forms of insertion) on an element removed from a list or queue is incorrect. An example of erroneous usage is removing the same element twice. .Pp The .Fn SLIST_END , .Fn LIST_END , .Fn SIMPLEQ_END and .Fn TAILQ_END macros are deprecated; they provided symmetry with the historical .Fn CIRCLEQ_END and just expand to .Dv NULL . .Pp Trying to free a list in the following way is a common error: .Bd -literal -offset indent LIST_FOREACH(var, head, entry) free(var); free(head); .Ed .Pp Since .Va var is free'd, the FOREACH macros refer to a pointer that may have been reallocated already. A similar situation occurs when the current element is deleted from the list. In cases like these the data structure's FOREACH_SAFE macros should be used instead. .Sh HISTORY The .Nm queue functions first appeared in .Bx 4.4 . The historical circle queue macros were deprecated in .Ox 5.5 .