.\" $OpenBSD: netintro.4,v 1.16 2000/02/19 14:41:11 deraadt Exp $ .\" $NetBSD: netintro.4,v 1.4 1995/10/19 08:03:40 jtc Exp $ .\" .\" Copyright (c) 1983, 1990, 1991, 1993 .\" The Regents of the University of California. All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" 3. All advertising materials mentioning features or use of this software .\" must display the following acknowledgement: .\" This product includes software developed by the University of .\" California, Berkeley and its contributors. .\" 4. Neither the name of the University nor the names of its contributors .\" may be used to endorse or promote products derived from this software .\" without specific prior written permission. .\" .\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" @(#)netintro.4 8.2 (Berkeley) 11/30/93 .\" .Dd September 3, 1994 .Dt NETINTRO 4 .Os .Sh NAME .Nm networking .Nd introduction to networking facilities .Sh SYNOPSIS .Fd #include .Fd #include .Fd #include .Sh DESCRIPTION This section is a general introduction to the networking facilities available in the system. Documentation in this part of section 4 is broken up into three areas: .Em protocol families (domains), .Em protocols , and .Em network interfaces . .Pp All network protocols are associated with a specific .Em protocol family . A protocol family provides basic services to the protocol implementation to allow it to function within a specific network environment. These services may include packet fragmentation and reassembly, routing, addressing, and basic transport. A protocol family may support multiple methods of addressing, though the current protocol implementations do not. A protocol family is normally comprised of a number of protocols, one per .Xr socket 2 type. It is not required that a protocol family support all socket types. A protocol family may contain multiple protocols supporting the same socket abstraction. .Pp A protocol supports one of the socket abstractions detailed in .Xr socket 2 . A specific protocol may be accessed either by creating a socket of the appropriate type and protocol family, or by requesting the protocol explicitly when creating a socket. Protocols normally accept only one type of address format, usually determined by the addressing structure inherent in the design of the protocol family/network architecture. Certain semantics of the basic socket abstractions are protocol specific. All protocols are expected to support the basic model for their particular socket type, but may, in addition, provide non-standard facilities or extensions to a mechanism. For example, a protocol supporting the .Dv SOCK_STREAM abstraction may allow more than one byte of out-of-band data to be transmitted per out-of-band message. .Pp A network interface is similar to a device interface. Network interfaces comprise the lowest layer of the networking subsystem, interacting with the actual transport hardware. An interface may support one or more protocol families and/or address formats. The SYNOPSIS section of each network interface entry gives a sample specification of the related drivers for use in providing a system description to the .Xr config 8 program. The DIAGNOSTICS section lists messages which may appear on the console and/or in the system error log, .Pa /var/log/messages (see .Xr syslogd 8 ) , due to errors in device operation. .Sh PROTOCOLS The system currently supports the Internet protocols, the Xerox Network Systems(tm) protocols, and some of the .Tn ISO OSI protocols. Raw socket interfaces are provided to the .Tn IP protocol layer of the Internet, and to the .Tn IDP protocol of Xerox .Tn NS . Consult the appropriate manual pages in this section for more information regarding the support for each protocol family. .Sh ADDRESSING Associated with each protocol family is an address format. All network addresses adhere to a general structure, called a sockaddr, described below. However, each protocol imposes a finer, more specific structure, generally renaming the variant, which is discussed in the protocol family manual page alluded to above. .Bd -literal -offset indent struct sockaddr { u_int8_t sa_len; sa_family_t sa_family; char sa_data[14]; }; .Ed .Pp The field .Ar sa_len contains the total length of the structure, which may exceed 16 bytes. The following address values for .Ar sa_family are known to the system (and additional formats are defined for possible future implementation): .Bd -literal #define AF_UNIX 1 /* local to host (pipes, portals) */ #define AF_INET 2 /* internetwork: UDP, TCP, etc. */ #define AF_NS 6 /* Xerox NS protocols */ #define AF_CCITT 10 /* CCITT protocols, X.25 etc */ #define AF_HYLINK 15 /* NSC Hyperchannel */ #define AF_APPLETALK 16 /* AppleTalk */ #define AF_ISO 18 /* ISO protocols */ #define AF_IPX 23 /* Novell Internet Protocol */ #define AF_INET6 24 /* IPv6 */ #define AF_NATM 27 /* native ATM access */ .Ed .Sh ROUTING .Tn UNIX provides some packet routing facilities. The kernel maintains a routing information database, which is used in selecting the appropriate network interface when transmitting packets. .Pp A user process (or possibly multiple co-operating processes) maintains this database by sending messages over a special kind of socket. This supplants fixed size .Xr ioctl 2 used in earlier releases. .Pp This facility is described in .Xr route 4 . .Sh INTERFACES Each network interface in a system corresponds to a path through which messages may be sent and received. A network interface usually has a hardware device associated with it, though certain interfaces such as the loopback interface, .Xr lo 4 , do not. .Pp The following .Xr ioctl calls may be used to manipulate network interfaces. The .Xr ioctl is made on a socket (typically of type .Dv SOCK_DGRAM ) in the desired domain. Most of the requests supported in earlier releases take an .Ar ifreq structure as its parameter. This structure has the form .Bd -literal struct ifreq { #define IFNAMSIZ 16 char ifr_name[IFNAMSIZ]; /* if name, e.g. "en0" */ union { struct sockaddr ifru_addr; struct sockaddr ifru_dstaddr; struct sockaddr ifru_broadaddr; short ifru_flags; int ifru_metric; caddr_t ifru_data; } ifr_ifru; #define ifr_addr ifr_ifru.ifru_addr /* address */ #define ifr_dstaddr ifr_ifru.ifru_dstaddr /* other end of p-to-p link */ #define ifr_broadaddr ifr_ifru.ifru_broadaddr /* broadcast address */ #define ifr_flags ifr_ifru.ifru_flags /* flags */ #define ifr_metric ifr_ifru.ifru_metric /* metric */ #define ifr_media ifr_ifru.ifru_metric /* media options (overload) */ #define ifr_data ifr_ifru.ifru_data /* for use by interface */ }; .Ed .Pp Calls which are now deprecated are: .Bl -tag -width SIOCGIFBRDADDR .It Dv SIOCSIFADDR Set interface address for protocol family. Following the address assignment, the ``initialization'' routine for the interface is called. .It Dv SIOCSIFDSTADDR Set point to point address for protocol family and interface. .It Dv SIOCSIFBRDADDR Set broadcast address for protocol family and interface. .El .Pp .Xr Ioctl requests to obtain addresses and requests both to set and retrieve other data are still fully supported and use the .Ar ifreq structure: .Bl -tag -width SIOCGIFBRDADDR .It Dv SIOCGIFADDR Get interface address for protocol family. .It Dv SIOCGIFDSTADDR Get point to point address for protocol family and interface. .It Dv SIOCGIFBRDADDR Get broadcast address for protocol family and interface. .It Dv SIOCSIFFLAGS Set interface flags field. If the interface is marked down, any processes currently routing packets through the interface are notified; some interfaces may be reset so that incoming packets are no longer received. When marked up again, the interface is reinitialized. .It Dv SIOCGIFFLAGS Get interface flags. .It Dv SIOCSIFMEDIA Set interface media. See .Xr ifmedia 4 for possible values. .It Dv SIOCGIFMEDIA Get interface media. See .Xr ifmedia 4 for interpretting this value. .It Dv SIOCSIFMETRIC Set interface routing metric. The metric is used only by user-level routers. .It Dv SIOCGIFMETRIC Get interface metric. .El .Pp There are two requests that make use of a new structure: .Bl -tag -width SIOCGIFBRDADDR .It Dv SIOCAIFADDR An interface may have more than one address associated with it in some protocols. This request provides a means to add additional addresses (or modify characteristics of the primary address if the default address for the address family is specified). Rather than making separate calls to set destination or broadcast addresses, or network masks (now an integral feature of multiple protocols) a separate structure is used to specify all three facets simultaneously (see below). One would use a slightly tailored version of this struct specific to each family (replacing each sockaddr by one of the family-specific type). Where the sockaddr itself is larger than the default size, one needs to modify the .Xr ioctl identifier itself to include the total size, as described in .Xr ioctl . .It Dv SIOCDIFADDR This request deletes the specified address from the list associated with an interface. It also uses the .Ar if_aliasreq structure to allow for the possibility of protocols allowing multiple masks or destination addresses, and also adopts the convention that specification of the default address means to delete the first address for the interface belonging to the address family in which the original socket was opened. .It Dv SIOCGIFCONF Get interface configuration list. This request takes an .Ar ifconf structure (see below) as a value-result parameter. The .Ar ifc_len field should be initially set to the size of the buffer pointed to by .Ar ifc_buf . On return it will contain the length, in bytes, of the configuration list. Alternately, if the .Ar ifc_len passed in is set to 0, .Dv SIOCGIFCONF will set .Ar ifc_len to the size that .Ar ifc_buf needs to be to fit the entire configuration list and not fill in the other parameters. This is useful for determining the exact size that .Ar ifc_buf needs to be in advance. Note, however, that this is an extension that not all operating systems support. .El .Bd -literal /* * Structure used in SIOCAIFADDR request. */ struct ifaliasreq { char ifra_name[IFNAMSIZ]; /* if name, e.g. "en0" */ struct sockaddr ifra_addr; struct sockaddr ifra_broadaddr; struct sockaddr ifra_mask; }; .Ed .Pp .Bd -literal /* * Structure used in SIOCGIFCONF request. * Used to retrieve interface configuration * for machine (useful for programs which * must know all networks accessible). */ struct ifconf { int ifc_len; /* size of associated buffer */ union { caddr_t ifcu_buf; struct ifreq *ifcu_req; } ifc_ifcu; #define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */ #define ifc_req ifc_ifcu.ifcu_req /* array of structures returned */ }; .Ed .Sh SEE ALSO .Xr ioctl 2 , .Xr socket 2 , .Xr bridge 4 , .Xr ifmedia 4 , .Xr intro 4 , .Xr config 8 , .Xr routed 8 .Sh HISTORY The .Nm netintro manual appeared in .Bx 4.3 tahoe .