.\" $OpenBSD: vpn.8,v 1.40 2000/07/21 00:20:18 angelos Exp $ .\" Copyright 1998 Niels Provos .\" All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" 3. All advertising materials mentioning features or use of this software .\" must display the following acknowledgement: .\" This product includes software developed by Niels Provos. .\" 4. The name of the author may not be used to endorse or promote products .\" derived from this software without specific prior written permission. .\" .\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR .\" IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES .\" OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. .\" IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, .\" INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT .\" NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, .\" DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY .\" THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT .\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF .\" THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. .\" .\" Manual page, using -mandoc macros .\" .Dd February 9, 1999 .Dt VPN 8 .Os .Sh NAME .Nm vpn .Nd configuring the system for virtual private networks .Sh DESCRIPTION A virtual private network is used to securely connect two or more subnets over the internet. For each subnet there is a security gateway which is linked via a cryptographically secured tunnel to the security gateway of the other subnet. .Xr ipsec 4 is used to provide the necessary network-layer cryptographic services. This document describes the configuration process for setting up a .Nm VPN . .Pp Briefly, creating a VPN consists of the following steps: .Pp .Bl -enum -compact .It Choose a key exchange method: manual keyed, or automated via .Xr isakmpd 8 or .Xr photurisd 8 . .It For manual keying, create the Security Associations (SA), one for each endpoint. .It For manual keying, create the appropriate IPSec flows. .It For automated keying, create a configuration file for the keying daemon. .It Configure your firewall rules appropriately. .El .Ss Choosing a key exchange method There are currently three key exchange methods available: .Pp .Bl -bullet -inset -compact .It manual (symmetric shared secret) .It .Xr isakmpd 8 .It .Xr photurisd 8 .El .Pp At present, .Xr photurisd 8 has a limitation in that the IP adress of the security gateway must fall within the range of adresses being tunnelled to, making VPNs between (non-routable) private (RFC 1918) networks difficult. This does not apply to .Xr isakmpd 8 . .Ss Enabling the Appropriate Kernel Operations .Xr ipsec 4 operations must be first enabled using .Xr sysctl 8 . Before doing either manual or automated keying, or performing encryption (ESP) or authentication (AH) operations, ensure the appropriate kernel operation has been enabled: .Bd -literal sysctl -w net.inet.esp.enable=1 sysctl -w net.inet.ah.enable=1 .Ed .Pp and .Bd -literal sysctl -w net.inet.ip.ipsec-acl=1 .Ed .Pp if inbound packet verification is desired (strongly recommended). .Pp For security gateways, enabling packet forwarding is often required: .Bd -literal sysctl -w net.inet.ip.forwarding=1 .Ed .Pp For more permanent operation, these options should be enabled in your .Xr sysctl.conf 5 . .Pp .Ss Generating Manual Keys [manual keying] The shared secret symmetric keys used to create a VPN can be any hexadecimal value, so long as both sides of the connection use the same values. Since the security of the VPN is based on these keys being unguessable, it is very important that the keys be chosen using a strong random source. One practical method of generating them is by using the .Xr random 4 device. To produce 160 bits (20 bytes) of randomness, for example, do: .Bd -literal openssl rand 20 | hexdump -e '20/1 "%02x"' .Ed .Pp or: .Bd -literal openssl rand 20 | perl -pe 's/./unpack("H2",$&)/ges' .Ed .Pp Different cipher types may require different sized keys. .Pp .Bl -column "Cipher" "Key Length" -compact .It Em Cipher Key Length .It Li DES Ta "56 bits" .It Li 3DES Ta "168 bits" .It Li BLF Ta "Variable (160 bits recommended)" .It Li CAST Ta "Variable (128 bits maximum and recommended)" .It Li SKIPJACK Ta "80 bits" .El .Pp Use of DES or SKIPJACK as an encryption algorithm is not recommended (except for backwards compatibility) due to their short key length. Furthermore, recent attacks on SKIPJACK have shown severe weaknesses in its structure. .Pp Note that DES requires 8 bytes to form a 56-bit key and 3DES requires 24 bytes to form its 168-bit key. This is because the most significant bit of each byte is ignored by both algorithms. .Ss Creating Security Associations [manual keying] Before the IPSec flows can be defined, two Security Associations (SAs) must be defined on each end of the VPN, e.g.: .Bd -literal ipsecadm new esp -spi SPI_AB -src A_EXTERNAL_IP -dst B_EXTERNAL_IP -forcetunnel -enc 3des -auth sha1 -keyfile ENCRYPTION_KEY_FILE -authkeyfile AUTHENTICATION_KEY_FILE ipsecadm new esp -spi SPI_BA -src B_EXTERNAL_IP -dst A_EXTERNAL_IP -forcetunnel -enc 3des -auth sha1 -keyfile ENCRYPTION_KEY_FILE -authkeyfile AUTHENTICATION_KEY_FILE .Ed .Pp Note that the .Fl key and .Fl authkey options may be used to specify the keys directly in the .Xr ipsecadm 8 command line. However, another user could view the keys by using the .Xr ps 1 command at the appropriate time (or use a program for doing so). .Pp .Ss Creating IPSec Flows [manual keying] Both IPsec gateways need to configure .Xr ipsec 4 routes with the .Xr ipsecadm 8 tool: .Pp On the security gateway of subnet A: .Bd -literal ipsecadm flow -dst B_EXTERNAL_IP -spi SPI_AB -proto esp -addr A_EXTERNAL_IP 255.255.255.255 B_EXTERNAL_IP 255.255.255.255 ipsecadm flow -dst B_EXTERNAL_IP -spi SPI_AB -proto esp -addr A_INTERNAL_NETWORK A_INTERNAL_NETMASK B_INTERNAL_NETWORK B_INTERNAL_NETMASK ipsecadm flow -dst B_EXTERNAL_IP -spi SPI_AB -proto esp -addr A_EXTERNAL_IP 255.255.255.255 B_INTERNAL_NETWORK B_INTERNAL_NETMASK ipsecadm flow -dst B_EXTERNAL_IP -spi SPI_AB -proto esp -addr A_INTERNAL_NETWORK A_INTERNAL_NETMASK B_EXTERNAL_IP 255.255.255.255 ipsecadm flow -dst A_EXTERNAL_IP -spi SPI_BA -proto esp -addr B_EXTERNAL_IP 255.255.255.255 A_EXTERNAL_IP 255.255.255.255 -ingress ipsecadm flow -dst A_EXTERNAL_IP -spi SPI_BA -proto esp -addr B_INTERNAL_NETWORK B_INTERNAL_NETMASK A_INTERNAL_NETWORK A_INTERNAL_NETMASK -ingress ipsecadm flow -dst A_EXTERNAL_IP -spi SPI_BA -proto esp -addr B_EXTERNAL_IP 255.255.255.255 A_INTERNAL_NETWORK A_INTERNAL_NETMASK -ingress ipsecadm flow -dst A_EXTERNAL_IP -spi SPI_BA -proto esp -addr B_INTERNAL_NETWORK B_INTERNAL_NETMASK A_EXTERNAL_IP 255.255.255.255 -ingress .Ed .Pp and on the security gateway of subnet B: .Bd -literal ipsecadm flow -dst A_EXTERNAL_IP -spi SPI_BA -proto esp -addr B_EXTERNAL_IP 255.255.255.255 A_EXTERNAL_IP 255.255.255.255 ipsecadm flow -dst A_EXTERNAL_IP -spi SPI_BA -proto esp -addr B_INTERNAL_NETWORK B_INTERNAL_NETMASK A_INTERNAL_NETWORK A_INTERNAL_NETMASK ipsecadm flow -dst A_EXTERNAL_IP -spi SPI_BA -proto esp -addr B_EXTERNAL_IP 255.255.255.255 A_INTERNAL_NETWORK A_INTERNAL_NETMASK ipsecadm flow -dst A_EXTERNAL_IP -spi SPI_BA -proto esp -addr B_INTERNAL_NETWORK B_INTERNAL_NETMASK A_EXTERNAL_IP 255.255.255.255 ipsecadm flow -dst B_EXTERNAL_IP -spi SPI_AB -proto esp -addr A_EXTERNAL_IP 255.255.255.255 B_EXTERNAL_IP 255.255.255.255 -ingress ipsecadm flow -dst B_EXTERNAL_IP -spi SPI_AB -proto esp -addr A_INTERNAL_NETWORK A_INTERNAL_NETMASK B_INTERNAL_NETWORK B_INTERNAL_NETMASK -ingress ipsecadm flow -dst B_EXTERNAL_IP -spi SPI_AB -proto esp -addr A_EXTERNAL_IP 255.255.255.255 B_INTERNAL_NETWORK B_INTERNAL_NETMASK -ingress ipsecadm flow -dst B_EXTERNAL_IP -spi SPI_AB -proto esp -addr A_INTERNAL_NETWORK A_INTERNAL_NETMASK B_EXTERNAL_IP 255.255.255.255 -ingress .Ed .Pp .Ss Configure and run the keying daemon [automated keying] Unless manual keying is used, both security gateways need to start either the .Xr isakmpd 8 or .Xr photurisd 8 key management daemon. To make sure the daemon is properly configured to provide the required security services (typically, encryption and authentication) start the daemon with debugging or verbose output. .Pp .Xr isakmpd 8 implements security policy using the .Em KeyNote trust management system. .Ss Configuring Firewall Rules .Xr ipf 8 needs to be configured such that all packets from the outside are blocked by default. Only successfully IPSec-processed packets (from the .Xr enc0 4 interface), or key management packets (for .Xr photurisd 8 , .Tn UDP packets with source and destination ports of 468, and for .Xr isakmpd 8 , .Tn UDP packets with source and destination ports of 500) should be allowed to pass. .Pp The .Xr ipf 5 rules for a tunnel which uses encryption (the ESP IPsec protocol) and .Xr photurisd 8 on security gateway A might look like this: .Bd -literal # ne0 is the only interface going to the outside. block in log on ne0 from any to any block out log on ne0 from any to any block in log on enc0 from any to any # Passing in encrypted traffic from security gateways pass in proto esp from gatewB/32 to gatewA/32 pass out proto esp from gatewA/32 to gatewB/32 # Passing in traffic from the designated subnets. pass in on enc0 from netB/netBmask to netA/netAmask # Passing in Photuris traffic from the security gateways pass in on ne0 proto udp from gatewB/32 port = 468 to gatewA/32 port = 468 pass out on ne0 proto udp from gatewA/32 port = 468 to gatewB/32 port = 468 .Ed .Pp If there are no other .Xr ipf 5 rules, the "quick" clause can be added to the last three rules. .Sh EXAMPLES .Ss Manual keying To create a manual keyed VPN between two class C networks using 3DES encryption and the following IP addresses: .Pp .Bd -literal A_INTERNAL_IP = 10.0.50.1 A_EXTERNAL_IP = 192.168.1.254 B_EXTERNAL_IP = 192.168.2.1 B_INTERNAL_IP = 10.0.99.1 .Ed .Pp .Bl -enum .It Choose the shared secrets using a suitably random method. The 3DES encryption key needs 192 bits (3x64), or 24 bytes. The SHA-1 authentication key for needs 160 bits, or 20 bytes. .Pp .Bd -literal # openssl rand 24 | hexdump -e '24/1 "%02x"' > enc_key # openssl rand 20 | hexdump -e '20/1 "%02x"' > auth_key .Ed .Pp .It Create the Security Associations (on both endpoints): .Pp .Bd -literal # /sbin/ipsecadm new esp -src 192.168.2.1 -dst 192.168.1.254 \e\ -forcetunnel -spi 1000 -enc 3des -auth sha1 \e\ -keyfile enc_key -authkeyfile auth_key # /sbin/ipsecadm new esp -src 192.168.1.254 -dst 192.168.2.1 \e\ -forcetunnel -spi 1001 -enc 3des -auth sha1 \e\ -keyfile enc_key -authkeyfile auth_key .Ed .Pp .It Create the IPsec flows on machine A (the first four are the outbound flows, the latter four are the ingress filters for the incoming security association): .Pp .Bd -literal # /sbin/ipsecadm flow -dst 192.168.2.1 -spi 1001 -proto esp \e\ -addr 192.168.1.254 255.255.255.255 \e\ 192.168.2.1 255.255.255.255 # /sbin/ipsecadm flow -dst 192.168.2.1 -spi 1001 -proto esp \e\ -addr 10.0.50.0 255.255.255.0 10.0.99.0 255.255.255.0 # /sbin/ipsecadm flow -dst 192.168.2.1 -spi 1001 -proto esp \e\ -addr 192.168.1.254 255.255.255.255 \e\ 10.0.99.0 255.255.255.0 # /sbin/ipsecadm flow -dst 192.168.2.1 -spi 1001 -proto esp \e\ -addr 10.0.50.0 255.255.255.0 192.168.2.1 255.255.255.255 # /sbin/ipsecadm flow -dst 192.168.1.254 -spi 1000 -proto esp \e\ -addr 192.168.2.1 255.255.255.255 \e\ 192.168.1.254 255.255.255.255 -ingress # /sbin/ipsecadm flow -dst 192.168.1.254 -spi 1000 -proto esp \e\ -addr 10.0.99.0 255.255.255.0 10.0.50.0 255.255.255.0 -ingress # /sbin/ipsecadm flow -dst 192.168.1.254 -spi 1000 -proto esp \e\ -addr 192.168.2.1 255.255.255.255 \e\ 10.0.50.0 255.255.255.0 -ingress # /sbin/ipsecadm flow -dst 192.168.1.254 -spi 1000 -proto esp \e\ -addr 10.0.99.0 255.255.255.0 \e\ 192.168.1.254 255.255.255.255 -ingress .Ed .It Create the ipsec flows on machine B: .Bd -literal # /sbin/ipsecadm flow -dst 192.168.1.254 -spi 1000 -proto esp \e\ -addr 192.168.2.1 255.255.255.255 \e\ 192.168.1.254 255.255.255.255 # /sbin/ipsecadm flow -dst 192.168.1.254 -spi 1000 -proto esp \e\ -addr 10.0.99.0 255.255.255.0 10.0.50.0 255.255.255.0 # /sbin/ipsecadm flow -dst 192.168.1.254 -spi 1000 -proto esp \e\ -addr 192.168.2.1 255.255.255.255 \e\ 10.0.50.0 255.255.255.0 # /sbin/ipsecadm flow -dst 192.168.1.254 -spi 1000 -proto esp \e\ -addr 10.0.99.0 255.255.255.0 192.168.1.254 255.255.255.255 # /sbin/ipsecadm flow -dst 192.168.2.1 -spi 1001 -proto esp \e\ -addr 192.168.1.254 255.255.255.255 \e\ 192.168.2.1 255.255.255.255 -ingress # /sbin/ipsecadm flow -dst 192.168.2.1 -spi 1001 -proto esp \e\ -addr 10.0.50.0 255.255.255.0 10.0.99.0 255.255.255.0 -ingress # /sbin/ipsecadm flow -dst 192.168.2.1 -spi 1001 -proto esp \e\ -addr 192.168.1.254 255.255.255.255 \e\ 10.0.99.0 255.255.255.0 -ingress # /sbin/ipsecadm flow -dst 192.168.2.1 -spi 1001 -proto esp \e\ -addr 10.0.50.0 255.255.255.0 192.168.2.1 255.255.255.255 -ingress .Ed .It Configure the firewall rules on machine A: .Bd -literal # ne0 is the only interface going to the outside. block in log on ne0 from any to any block out log on ne0 from any to any block in log on enc0 from any to any # Passing in encrypted traffic from security gateways pass in proto esp from 192.168.2.1/32 to 192.168.1.254/32 pass out proto esp from 192.168.1.254/32 to 192.168.2.1/32 # Passing in traffic from the designated subnets. pass in quick on enc0 from 10.0.99.0/24 to 10.0.50.0/24 .Ed .It Configure the firewall rules on machine B: .Bd -literal # ne0 is the only interface going to the outside. block in log on ne0 from any to any block out log on ne0 from any to any block in log on enc0 from any to any # Passing in encrypted traffic from security gateways pass in proto esp from 192.168.1.254/32 to 192.168.2.1/32 pass out proto esp from 192.168.2.1/32 to 192.168.1.254/32 # Passing in traffic from the designated subnets. pass in quick on enc0 from 10.0.50.0/24 to 10.0.99.0/24 .Ed .El .Ss Automated keying To create a VPN between the same two C class networks as the example above, using .Xr isakmpd 8 : .Pp .Bl -enum .It Create .Pa /etc/isakmpd/isakmpd.conf for machine A: .Pp .Bd -literal # Incoming phase 1 negotiations are multiplexed on the source IP # address. Phase 1 is used to setup a protected channel just # between the two gateway machines. This channel is then used for # the phase 2 negotiation traffic (i.e encrypted & authenticated). [Phase 1] 193.168.2.1= peer-machineB # 'Phase 2' defines which connections the daemon should establish. # These connections contain the actual "IPsec VPN" information. [Phase 2] Connections= VPN-A-B # ISAKMP phase 1 peers (from [Phase 1]) [peer-machineB] Phase= 1 Transport= udp Address= 192.168.1.254 Configuration= Default-main-mode Authentication= yoursharedsecret # IPSEC phase 2 connections (from [Phase 2]) [VPN-A-B] Phase= 2 ISAKMP-peer= peer-machineB Configuration= Default-quick-mode Local-ID= machineA-internal-network Remote-ID= machineB-internal-network # ID sections (as used in [VPN-A-B]) [machineA-internal-network] ID-type= IPV4_ADDR_SUBNET Network= 10.0.50.0 Netmask= 255.255.255.0 [machineB-internal-network] ID-type= IPV4_ADDR_SUBNET Network= 10.0.99.0 Netmask= 255.255.255.0 # Main and Quick Mode descriptions (as used by peers and connections) [Default-main-mode] DOI= IPSEC EXCHANGE_TYPE= ID_PROT Transforms= 3DES-SHA,BLF-SHA [Default-quick-mode] DOI= IPSEC EXCHANGE_TYPE= QUICK_MODE Suites= QM-ESP-3DES-SHA-SUITE .Ed .Pp .It Create .Pa /etc/isakmpd/isakmpd.conf for machine B: .Bd -literal # Incoming phase 1 negotiations are multiplexed on the source IP # address. Phase 1 is used to setup a protected channel just # between the two gateway machines. This channel is then used for # the phase 2 negotiation traffic (i.e encrypted & authenticated). [Phase 1] 193.168.1.254= peer-machineA # 'Phase 2' defines which connections the daemon should establish. # These connections contain the actual "IPsec VPN" information. [Phase 2] Connections= VPN-B-A # ISAKMP phase 1 peers (from [Phase 1]) [peer-machineA] Phase= 1 Transport= udp Address= 192.168.2.1 Configuration= Default-main-mode Authentication= yoursharedsecret # IPSEC phase 2 connections (from [Phase 2]) [VPN-B-A] Phase= 2 ISAKMP-peer= peer-machineA Configuration= Default-quick-mode Local-ID= machineB-internal-network Remote-ID= machineA-internal-network # ID sections (as used in [VPN-A-B]) [machineA-internal-network] ID-type= IPV4_ADDR_SUBNET Network= 10.0.50.0 Netmask= 255.255.255.0 [machineB-internal-network] ID-type= IPV4_ADDR_SUBNET Network= 10.0.99.0 Netmask= 255.255.255.0 # Main and Quick Mode descriptions (as used by peers and connections) [Default-main-mode] DOI= IPSEC EXCHANGE_TYPE= ID_PROT Transforms= 3DES-SHA,BLF-SHA [Default-quick-mode] DOI= IPSEC EXCHANGE_TYPE= QUICK_MODE Suites= QM-ESP-3DES-SHA-SUITE .Ed .Pp .It Read through the configuration one more time. The only real differences between the two files in this example is the IP-addresses, and ordering of Local- and Remote-ID for the VPN itself. Note that the shared secret (the .Em Authentication tag) must match between machineA and machineB. .Pp Do to the shared secret information in the configuration file, it must be installed without any permissions for "group" or "other". .Bd -literal # chmod og-rwx /etc/isakmpd/isakmpd.conf .Ed .Pp .It Create a simple .Pa /etc/isakmpd/isakmpd.policy file for machineA: .Pp .Bd -literal Keynote-version: 2 Authorizer: "POLICY" Conditions: app_domain == "IPsec policy" && esp_present == "yes" && esp_enc_alg != "null" -> "true"; .Ed .Pp .It Create a simple .Pa /etc/isakmpd/isakmpd.policy file for machineB: .Pp .Bd -literal Keynote-version: 2 Authorizer: "POLICY" Conditions: app_domain == "IPsec policy" && esp_present == "yes" && esp_enc_alg != "null" -> "true"; .Ed .Pp .It Configure the firewall rules on machines A and B: .Pp Use the same ruleset as the manual keying example, but add permission for the .Xr isakmpd 8 control traffic, on .Tn UDP port 500. .Pp For machineA, add: .Bd -literal # Permit ISAKMPD control traffic between A and B pass in proto udp from 192.168.2.1/32 to 193.127.1.254/32 port = 500 pass out proto udp from 192.168.1.254/32 to 193.127.2.1/32 port = 500 .Ed .Pp For machineB, add: .Bd -literal # Permit ISAKMPD control traffic between A and B pass in proto udp from 192.168.1.254/32 to 193.127.2.1/32 port = 500 pass out proto udp from 192.168.2.1/32 to 193.127.1.254/32 port = 500 .Ed .Pp .It Start .Xr isakmpd 8 .Pp On both machines, run: .Bd -literal # /sbin/isakmpd .Ed .Pp For run with verbose debugging enabled, instead start with: .Bd -literal # /sbin/isakmpd -d -DA=99 .Ed .El .Sh FILES .Bl -tag -width /etc/photuris/photuris.conf -compact .It Pa /usr/share/ipsec/rc.vpn Sample VPN configuration file .It Pa /etc/isakmpd/isakmpd.conf .Xr isakmpd 8 configuration file .It Pa /etc/photuris/photuris.conf Photuris configuration file .It Pa /etc/ipf.rules Firewall configuration file .El .Sh BUGS .Xr photurisd 8 can not be used in VPN mode unless both of the security gateway IP addresses lie within the network ranges being tunnelled to. In situations where the gateway IP is outside the desired netrange, such as with private (RFC 1918) networks, .Xr isakmpd 8 or manual keying must be used. .Sh SEE ALSO .Xr enc 4 , .Xr ipsec 4 , .Xr options 4 , .Xr ipf 5 , .Xr ipf 8 , .Xr ipsecadm 8 , .Xr sysctl 8 , .Xr openssl 1 , .Xr isakmpd 8 , .Xr isakmpd.conf 5 , .Xr isakmpd.policy 5 , .Xr keynote 4 , .Xr photurisd 8