.\" $OpenBSD: audio.9,v 1.27 2019/03/12 08:18:34 ratchov Exp $ .\" $NetBSD: audio.9,v 1.14 2000/02/11 22:56:15 kleink Exp $ .\" .\" Copyright (c) 1999, 2000 The NetBSD Foundation, Inc. .\" All rights reserved. .\" .\" This code is derived from software contributed to The NetBSD Foundation .\" by Lennart Augustsson. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" .\" THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS .\" ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED .\" TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR .\" PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS .\" BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR .\" CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF .\" SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS .\" INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN .\" CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) .\" ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE .\" POSSIBILITY OF SUCH DAMAGE. .\" .Dd $Mdocdate: March 12 2019 $ .Dt AUDIO 9 .Os .Sh NAME .Nm audio .Nd interface between low and high level audio drivers .Sh DESCRIPTION The audio device driver is divided into a high level, hardware independent layer, and a low level, hardware dependent layer. The interface between these is the .Va audio_hw_if structure. .Bd -literal struct audio_hw_if { int (*open)(void *, int); void (*close)(void *); int (*set_params)(void *, int, int, struct audio_params *, struct audio_params *); int (*round_blocksize)(void *, int); int (*commit_settings)(void *); int (*init_output)(void *, void *, int); int (*init_input)(void *, void *, int); int (*start_output)(void *, void *, int, void (*)(void *), void *); int (*start_input)(void *, void *, int, void (*)(void *), void *); int (*halt_output)(void *); int (*halt_input)(void *); int (*speaker_ctl)(void *, int); #define SPKR_ON 1 #define SPKR_OFF 0 int (*setfd)(void *, int); int (*set_port)(void *, struct mixer_ctrl *); int (*get_port)(void *, struct mixer_ctrl *); int (*query_devinfo)(void *, struct mixer_devinfo *); void *(*allocm)(void *, int, size_t, int, int); void (*freem)(void *, void *, int); size_t (*round_buffersize)(void *, int, size_t); int (*get_props)(void *); int (*trigger_output)(void *, void *, void *, int, void (*)(void *), void *, struct audio_params *); int (*trigger_input)(void *, void *, void *, int, void (*)(void *), void *, struct audio_params *); void (*copy_output)(void *hdl, size_t bytes); void (*underrun)(void *hdl); }; struct audio_params { u_long sample_rate; /* sample rate */ u_int encoding; /* mu-law, linear, etc */ u_int precision; /* bits/sample */ u_int bps; /* bytes/sample */ u_int msb; /* data alignment */ u_int channels; /* mono(1), stereo(2) */ }; .Ed .Pp The high level audio driver attaches to the low level driver when the latter calls .Fn audio_attach_mi . This call is: .Bd -literal -offset indent struct device * audio_attach_mi(struct audio_hw_if *ahwp, void *hdl, struct device *dev); .Ed .Pp The .Va audio_hw_if struct is as shown above. The .Fa hdl argument is a handle to some low level data structure. It is sent as the first argument to all the functions in .Fa ahwp when the high level driver calls them. .Fa dev is the device struct for the hardware device. .Pp The upper layer of the audio driver allocates one buffer for playing and one for recording. It handles the buffering of data from the user processes in these. The data is presented to the lower level in smaller chunks, called blocks. During playback, if there is no data available from the user process when the hardware requests another block, a block of silence will be used instead. Similarly, if the user process does not read data quickly enough during recording, data will be thrown away. .Pp The fields of .Va audio_hw_if are described in some more detail below. Some fields are optional and can be set to .Dv NULL if not needed. .Bl -tag -width indent .It Fn "int (*open)" "void *hdl" "int flags" This function is called when the audio device is opened, with .Fa flags the kernel representation of flags passed to the .Xr open 2 system call .Po see .Dv OFLAGS and .Dv FFLAGS in .In sys/fcntl.h .Pc . It initializes the hardware for I/O. Every successful call to .Fn open is matched by a call to .Fn close . This function returns 0 on success, otherwise an error code. .It Fn "void (*close)" "void *hdl" This function is called when the audio device is closed. .It Fn "int (*set_params)" "void *hdl" "int setmode" "int usemode" \ "struct audio_params *play" "struct audio_params *rec" This function is called to set the audio encoding mode. .Fa setmode is a combination of the .Dv AUMODE_RECORD and .Dv AUMODE_PLAY flags to indicate which mode(s) are to be set. .Fa usemode is also a combination of these flags, but indicates the current mode of the device (i.e., the value corresponding to the .Va flags argument to the .Fn open function). The .Fa play and .Fa rec structures contain the encoding parameters that will be set. The values of the structures must also be modified if the hardware cannot be set to exactly the requested mode (e.g., if the requested sampling rate is not supported, but one close enough is). Except the channel count, the same value is passed in both .Fa play and .Fa rec . .Pp The machine independent audio driver does some preliminary parameter checking; it verifies that the precision is compatible with the encoding, and it translates .Dv AUDIO_ENCODING_[US]LINEAR to .Dv AUDIO_ENCODING_[US]LINEAR_{LE,BE} . .Pp This function returns 0 on success, otherwise an error code. .It Fn "int (*round_blocksize)" "void *hdl" "int bs" This function is optional. If supplied, it is called with the block size, .Fa bs , which has been computed by the upper layer. It returns a block size, possibly changed according to the needs of the hardware driver. .It Fn "int (*commit_settings)" "void *hdl" This function is optional. If supplied, it is called after all calls to .Fn set_params and .Fn set_port are done. A hardware driver that needs to get the hardware in and out of command mode for each change can save all the changes during previous calls and do them all here. This function returns 0 on success, otherwise an error code. .It Fn "int (*init_output)" "void *hdl" "void *buffer" "int size" This function is optional. If supplied, it is called before any output starts, but only after the total .Fa size of the output .Fa buffer has been determined. It can be used to initialize looping DMA for hardware that needs it. This function returns 0 on success, otherwise an error code. .It Fn "int (*init_input)" "void *hdl" "void *buffer" "int size" This function is optional. If supplied, it is called before any input starts, but only after the total .Fa size of the input .Fa buffer has been determined. It can be used to initialize looping DMA for hardware that needs it. This function returns 0 on success, otherwise an error code. .It Fn "int (*start_output)" "void *hdl" "void *block" "int bsize" \ "void (*intr)(void *)" "void *intrarg" This function is called to start the transfer of .Fa bsize bytes from .Fa block to the audio hardware. The call returns when the data transfer has been initiated (normally with DMA). When the hardware is ready to accept more samples the function .Fa intr will be called with the argument .Fa intrarg . Calling .Fa intr will normally initiate another call to .Fn start_output . This function returns 0 on success, otherwise an error code. .It Fn "int (*start_input)" "void *hdl" "void *block" "int bsize" \ "void (*intr)(void *)" "void *intrarg" This function is called to start the transfer of .Fa bsize bytes to .Fa block from the audio hardware. The call returns when the data transfer has been initiated (normally with DMA). When the hardware is ready to deliver more samples the function .Fa intr will be called with the argument .Fa intrarg . Calling .Fa intr will normally initiate another call to .Fn start_input . This function returns 0 on success, otherwise an error code. .It Fn "int (*halt_output)" "void *hdl" This function is called to abort the output transfer (started by .Fn start_output ) in progress. This function returns 0 on success, otherwise an error code. .It Fn "int (*halt_input)" "void *hdl" This function is called to abort the input transfer (started by .Fn start_input ) in progress. This function returns 0 on success, otherwise an error code. .It Fn "int (*speaker_ctl)" "void *hdl" "int on" This function is optional. If supplied, it is called when a half duplex device changes between playing and recording. It can, e.g., be used to turn the speaker on and off. This function returns 0 on success, otherwise an error code. .It Fn "int (*setfd)" "void *hdl" "int fd" This function is optional. If supplied, it is called when the device is opened in full-duplex mode, but only if the device has .Dv AUDIO_PROP_FULLDUPLEX set. This function returns 0 on success, otherwise an error code. .It Fn "int (*set_port)" "void *hdl" "struct mixer_ctrl *mc" This function is called when the .Dv AUDIO_MIXER_WRITE .Xr ioctl 2 is used. It takes data from .Fa mc and sets the corresponding mixer values. This function returns 0 on success, otherwise an error code. .It Fn "int (*get_port)" "void *hdl" "struct mixer_ctrl *mc" This function is called when the .Dv AUDIO_MIXER_READ .Xr ioctl 2 is used. It fills .Fa mc and returns 0 on success, or it returns an error code on failure. .It Fn "int (*query_devinfo)" "void *hdl" "struct mixer_devinfo *di" This function is called when the .Dv AUDIO_MIXER_DEVINFO .Xr ioctl 2 is used. It fills .Fa di and returns 0 on success, or it returns an error code on failure. .It Fn "void *(*allocm)" "void *hdl" "int direction" "size_t size" "int type" \ "int flags" This function is optional. If supplied, it is called to allocate the device buffers. If not supplied, .Xr malloc 9 is used instead (with the same arguments but the first two). The reason for using a device dependent routine instead of .Xr malloc 9 is that some buses need special allocation to do DMA. .Fa direction is .Dv AUMODE_PLAY or .Dv AUMODE_RECORD . This function returns the address of the buffer on success, or 0 on failure. .It Fn "void (*freem)" "void *hdl" "void *addr" "int type" This function is optional. If supplied, it is called to free memory allocated by .Fn allocm . If not supplied, .Xr free 9 is used instead. .\" XXX: code passes int instead of size_t, but decl is size_t .It Fn "size_t (*round_buffersize)" "void *hdl" "int direction" \ "size_t bufsize" This function is optional. If supplied, it is called at startup to determine the audio buffer size. The upper layer supplies the suggested size in .Fa bufsize , which the hardware driver can then change if needed. E.g., DMA on the ISA bus cannot exceed 65536 bytes. Note that the buffer size is always a multiple of the block size, so .Fn round_blocksize and .Fn round_buffersize must be consistent. .It Fn "int (*get_props)" "void *hdl" This function returns a combination of .Dv AUDIO_PROP_xxx properties. .It Fn "int (*trigger_output)" "void *hdl" "void *start" "void *end" "int blksize" \ "void (*intr)(void *)" "void *intrarg" "struct audio_params *param" This function is optional. If supplied, it is called to start the transfer of data from the circular buffer delimited by .Fa start and .Fa end to the audio hardware, parameterized as in .Fa param . The call returns when the data transfer has been initiated (normally with DMA). When the hardware is finished transferring each .Fa blksize sized block, the function .Fa intr will be called with the argument .Fa intrarg (typically from the audio hardware interrupt service routine). Once started, the transfer may be stopped using .Fn halt_output . This function returns 0 on success, otherwise an error code. .It Fn "int (*trigger_input)" "void *hdl" "void *start" "void *end" "int blksize" \ "void (*intr)(void *)" "void *intrarg" "struct audio_params *param" This function is optional. If supplied, it is called to start the transfer of data from the audio hardware, parameterized as in .Fa param , to the circular buffer delimited by .Fa start and .Fa end . The call returns when the data transfer has been initiated (normally with DMA). When the hardware is finished transferring each .Fa blksize sized block, the function .Fa intr will be called with the argument .Fa intrarg (typically from the audio hardware interrupt service routine). Once started, the transfer may be stopped using .Fn halt_input . This function returns 0 on success, otherwise an error code. .It Fn "void (*copy_output)" "void *hdl" "size_t bytes" This function is called whenever the given amount of bytes was appended to the play ring buffer, typically during a .Xr write 2 system call. Drivers using bounce buffers for transfers between the audio ring buffer and the device could implement this function to copy the given amount of bytes into their bounce buffers. There's no analogue function for recording as data is produced by the device and could simply be copied upon transfer completion. .It Fn "void (*underrun)" "void *hdl" This function is called at interrupt context whenever a play block was skipped by the .Xr audio 4 driver. Drivers using bounce buffers for transfers between the audio ring buffer and the device must implement this method to skip one block from the audio ring buffer and transfer the corresponding amount of silence to the device. .El .Pp If the audio hardware is capable of input from more than one source it should define .Dv AudioNsource in class .Dv AudioCrecord . This mixer control should be of type .Dv AUDIO_MIXER_ENUM or .Dv AUDIO_MIXER_SET and enumerate the possible input sources. For each of the named sources there should be a control in the .Dv AudioCinputs class of type .Dv AUDIO_MIXER_VALUE if recording level of the source can be set. If the overall recording level can be changed (i.e., regardless of the input source) then this control should be named .Dv AudioNrecord and be of class .Dv AudioCinputs . .Pp If the audio hardware is capable of output to more than one destination it should define .Dv AudioNoutput in class .Dv AudioCmonitor . This mixer control should be of type .Dv AUDIO_MIXER_ENUM or .Dv AUDIO_MIXER_SET and enumerate the possible destinations. For each of the named destinations there should be a control in the .Dv AudioCoutputs class of type .Dv AUDIO_MIXER_VALUE if output level of the destination can be set. If the overall output level can be changed (i.e., regardless of the destination) then this control should be named .Dv AudioNmaster and be of class .Dv AudioCoutputs . .Sh SEE ALSO .Xr ioctl 2 , .Xr open 2 , .Xr sio_open 3 , .Xr audio 4 , .Xr free 9 , .Xr malloc 9 .Sh HISTORY This .Nm interface first appeared in .Ox 1.2 .