/* $OpenBSD: altq_rio.c,v 1.4 2002/06/14 21:34:58 todd Exp $ */ /* $KAME: altq_rio.c,v 1.8 2000/12/14 08:12:46 thorpej Exp $ */ /* * Copyright (C) 1998-2000 * Sony Computer Science Laboratories Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1990-1994 Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the Computer Systems * Engineering Group at Lawrence Berkeley Laboratory. * 4. Neither the name of the University nor of the Laboratory may be used * to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #endif #include #include #include #include #include /* * RIO: RED with IN/OUT bit * described in * "Explicit Allocation of Best Effort Packet Delivery Service" * David D. Clark and Wenjia Fang, MIT Lab for Computer Science * http://diffserv.lcs.mit.edu/Papers/exp-alloc-ddc-wf.{ps,pdf} * * this implementation is extended to support more than 2 drop precedence * values as described in RFC2597 (Assured Forwarding PHB Group). * */ /* * AF DS (differentiated service) codepoints. * (classes can be mapped to CBQ or H-FSC classes.) * * 0 1 2 3 4 5 6 7 * +---+---+---+---+---+---+---+---+ * | CLASS |DropPre| 0 | CU | * +---+---+---+---+---+---+---+---+ * * class 1: 001 * class 2: 010 * class 3: 011 * class 4: 100 * * low drop prec: 01 * medium drop prec: 10 * high drop prec: 01 */ /* normal red parameters */ #define W_WEIGHT 512 /* inverse of weight of EWMA (511/512) */ /* q_weight = 0.00195 */ /* red parameters for a slow link */ #define W_WEIGHT_1 128 /* inverse of weight of EWMA (127/128) */ /* q_weight = 0.0078125 */ /* red parameters for a very slow link (e.g., dialup) */ #define W_WEIGHT_2 64 /* inverse of weight of EWMA (63/64) */ /* q_weight = 0.015625 */ /* fixed-point uses 12-bit decimal places */ #define FP_SHIFT 12 /* fixed-point shift */ /* red parameters for drop probability */ #define INV_P_MAX 10 /* inverse of max drop probability */ #define TH_MIN 5 /* min threshold */ #define TH_MAX 15 /* max threshold */ #define RIO_LIMIT 60 /* default max queue length */ #define RIO_STATS /* collect statistics */ #define TV_DELTA(a, b, delta) { \ register int xxs; \ \ delta = (a)->tv_usec - (b)->tv_usec; \ if ((xxs = (a)->tv_sec - (b)->tv_sec) != 0) { \ if (xxs < 0) { \ printf("rm_class: bogus time values"); \ delta = 60000000; \ } else if (xxs > 4) { \ if (xxs > 60) \ delta = 60000000; \ else \ delta += xxs * 1000000; \ } else while (xxs > 0) { \ delta += 1000000; \ xxs--; \ } \ } \ } /* rio_list keeps all rio_queue_t's allocated. */ static rio_queue_t *rio_list = NULL; /* default rio parameter values */ static struct redparams default_rio_params[RIO_NDROPPREC] = { /* th_min, th_max, inv_pmax */ { TH_MAX * 2 + TH_MIN, TH_MAX * 3, INV_P_MAX }, /* low drop precedence */ { TH_MAX + TH_MIN, TH_MAX * 2, INV_P_MAX }, /* medium drop precedence */ { TH_MIN, TH_MAX, INV_P_MAX } /* high drop precedence */ }; /* internal function prototypes */ static int rio_enqueue(struct ifaltq *, struct mbuf *, struct altq_pktattr *); static struct mbuf *rio_dequeue(struct ifaltq *, int); static int rio_request(struct ifaltq *, int, void *); static int rio_detach(rio_queue_t *); static int dscp2index(u_int8_t); /* * rio device interface */ altqdev_decl(rio); int rioopen(dev, flag, fmt, p) dev_t dev; int flag, fmt; struct proc *p; { /* everything will be done when the queueing scheme is attached. */ return 0; } int rioclose(dev, flag, fmt, p) dev_t dev; int flag, fmt; struct proc *p; { rio_queue_t *rqp; int err, error = 0; while ((rqp = rio_list) != NULL) { /* destroy all */ err = rio_detach(rqp); if (err != 0 && error == 0) error = err; } return error; } int rioioctl(dev, cmd, addr, flag, p) dev_t dev; ioctlcmd_t cmd; caddr_t addr; int flag; struct proc *p; { rio_queue_t *rqp; struct rio_interface *ifacep; struct ifnet *ifp; int error = 0; /* check super-user privilege */ switch (cmd) { case RIO_GETSTATS: break; default: #if (__FreeBSD_version > 400000) if ((error = suser(p)) != 0) return (error); #else if ((error = suser(p->p_ucred, &p->p_acflag)) != 0) return (error); #endif break; } switch (cmd) { case RIO_ENABLE: ifacep = (struct rio_interface *)addr; if ((rqp = altq_lookup(ifacep->rio_ifname, ALTQT_RIO)) == NULL) { error = EBADF; break; } error = altq_enable(rqp->rq_ifq); break; case RIO_DISABLE: ifacep = (struct rio_interface *)addr; if ((rqp = altq_lookup(ifacep->rio_ifname, ALTQT_RIO)) == NULL) { error = EBADF; break; } error = altq_disable(rqp->rq_ifq); break; case RIO_IF_ATTACH: ifp = ifunit(((struct rio_interface *)addr)->rio_ifname); if (ifp == NULL) { error = ENXIO; break; } /* allocate and initialize rio_queue_t */ MALLOC(rqp, rio_queue_t *, sizeof(rio_queue_t), M_DEVBUF, M_WAITOK); if (rqp == NULL) { error = ENOMEM; break; } bzero(rqp, sizeof(rio_queue_t)); MALLOC(rqp->rq_q, class_queue_t *, sizeof(class_queue_t), M_DEVBUF, M_WAITOK); if (rqp->rq_q == NULL) { FREE(rqp, M_DEVBUF); error = ENOMEM; break; } bzero(rqp->rq_q, sizeof(class_queue_t)); rqp->rq_rio = rio_alloc(0, NULL, 0, 0); if (rqp->rq_rio == NULL) { FREE(rqp->rq_q, M_DEVBUF); FREE(rqp, M_DEVBUF); error = ENOMEM; break; } rqp->rq_ifq = &ifp->if_snd; qtail(rqp->rq_q) = NULL; qlen(rqp->rq_q) = 0; qlimit(rqp->rq_q) = RIO_LIMIT; qtype(rqp->rq_q) = Q_RIO; /* * set RIO to this ifnet structure. */ error = altq_attach(rqp->rq_ifq, ALTQT_RIO, rqp, rio_enqueue, rio_dequeue, rio_request, NULL, NULL); if (error) { rio_destroy(rqp->rq_rio); FREE(rqp->rq_q, M_DEVBUF); FREE(rqp, M_DEVBUF); break; } /* add this state to the rio list */ rqp->rq_next = rio_list; rio_list = rqp; break; case RIO_IF_DETACH: ifacep = (struct rio_interface *)addr; if ((rqp = altq_lookup(ifacep->rio_ifname, ALTQT_RIO)) == NULL) { error = EBADF; break; } error = rio_detach(rqp); break; case RIO_GETSTATS: do { struct rio_stats *q_stats; rio_t *rp; int i; q_stats = (struct rio_stats *)addr; if ((rqp = altq_lookup(q_stats->iface.rio_ifname, ALTQT_RIO)) == NULL) { error = EBADF; break; } rp = rqp->rq_rio; q_stats->q_limit = qlimit(rqp->rq_q); q_stats->weight = rp->rio_weight; q_stats->flags = rp->rio_flags; for (i = 0; i < RIO_NDROPPREC; i++) { q_stats->q_len[i] = rp->rio_precstate[i].qlen; bcopy(&rp->q_stats[i], &q_stats->q_stats[i], sizeof(struct redstats)); q_stats->q_stats[i].q_avg = rp->rio_precstate[i].avg >> rp->rio_wshift; q_stats->q_params[i].inv_pmax = rp->rio_precstate[i].inv_pmax; q_stats->q_params[i].th_min = rp->rio_precstate[i].th_min; q_stats->q_params[i].th_max = rp->rio_precstate[i].th_max; } } while (0); break; case RIO_CONFIG: do { struct rio_conf *fc; rio_t *new; int s, limit, i; fc = (struct rio_conf *)addr; if ((rqp = altq_lookup(fc->iface.rio_ifname, ALTQT_RIO)) == NULL) { error = EBADF; break; } new = rio_alloc(fc->rio_weight, &fc->q_params[0], fc->rio_flags, fc->rio_pkttime); if (new == NULL) { error = ENOMEM; break; } s = splimp(); _flushq(rqp->rq_q); limit = fc->rio_limit; if (limit < fc->q_params[RIO_NDROPPREC-1].th_max) limit = fc->q_params[RIO_NDROPPREC-1].th_max; qlimit(rqp->rq_q) = limit; rio_destroy(rqp->rq_rio); rqp->rq_rio = new; splx(s); /* write back new values */ fc->rio_limit = limit; for (i = 0; i < RIO_NDROPPREC; i++) { fc->q_params[i].inv_pmax = rqp->rq_rio->rio_precstate[i].inv_pmax; fc->q_params[i].th_min = rqp->rq_rio->rio_precstate[i].th_min; fc->q_params[i].th_max = rqp->rq_rio->rio_precstate[i].th_max; } } while (0); break; case RIO_SETDEFAULTS: do { struct redparams *rp; int i; rp = (struct redparams *)addr; for (i = 0; i < RIO_NDROPPREC; i++) default_rio_params[i] = rp[i]; } while (0); break; default: error = EINVAL; break; } return error; } static int rio_detach(rqp) rio_queue_t *rqp; { rio_queue_t *tmp; int error = 0; if (ALTQ_IS_ENABLED(rqp->rq_ifq)) altq_disable(rqp->rq_ifq); if ((error = altq_detach(rqp->rq_ifq))) return (error); if (rio_list == rqp) rio_list = rqp->rq_next; else { for (tmp = rio_list; tmp != NULL; tmp = tmp->rq_next) if (tmp->rq_next == rqp) { tmp->rq_next = rqp->rq_next; break; } if (tmp == NULL) printf("rio_detach: no state found in rio_list!\n"); } rio_destroy(rqp->rq_rio); FREE(rqp->rq_q, M_DEVBUF); FREE(rqp, M_DEVBUF); return (error); } /* * rio support routines */ static int rio_request(ifq, req, arg) struct ifaltq *ifq; int req; void *arg; { rio_queue_t *rqp = (rio_queue_t *)ifq->altq_disc; switch (req) { case ALTRQ_PURGE: _flushq(rqp->rq_q); if (ALTQ_IS_ENABLED(ifq)) ifq->ifq_len = 0; break; } return (0); } rio_t * rio_alloc(weight, params, flags, pkttime) int weight; struct redparams *params; int flags, pkttime; { rio_t *rp; int w, i; int npkts_per_sec; MALLOC(rp, rio_t *, sizeof(rio_t), M_DEVBUF, M_WAITOK); if (rp == NULL) return (NULL); bzero(rp, sizeof(rio_t)); rp->rio_flags = flags; if (pkttime == 0) /* default packet time: 1000 bytes / 10Mbps * 8 * 1000000 */ rp->rio_pkttime = 800; else rp->rio_pkttime = pkttime; if (weight != 0) rp->rio_weight = weight; else { /* use derfault */ rp->rio_weight = W_WEIGHT; /* when the link is very slow, adjust red parameters */ npkts_per_sec = 1000000 / rp->rio_pkttime; if (npkts_per_sec < 50) { /* up to about 400Kbps */ rp->rio_weight = W_WEIGHT_2; } else if (npkts_per_sec < 300) { /* up to about 2.4Mbps */ rp->rio_weight = W_WEIGHT_1; } } /* calculate wshift. weight must be power of 2 */ w = rp->rio_weight; for (i = 0; w > 1; i++) w = w >> 1; rp->rio_wshift = i; w = 1 << rp->rio_wshift; if (w != rp->rio_weight) { printf("invalid weight value %d for red! use %d\n", rp->rio_weight, w); rp->rio_weight = w; } /* allocate weight table */ rp->rio_wtab = wtab_alloc(rp->rio_weight); for (i = 0; i < RIO_NDROPPREC; i++) { struct dropprec_state *prec = &rp->rio_precstate[i]; prec->avg = 0; prec->idle = 1; if (params == NULL || params[i].inv_pmax == 0) prec->inv_pmax = default_rio_params[i].inv_pmax; else prec->inv_pmax = params[i].inv_pmax; if (params == NULL || params[i].th_min == 0) prec->th_min = default_rio_params[i].th_min; else prec->th_min = params[i].th_min; if (params == NULL || params[i].th_max == 0) prec->th_max = default_rio_params[i].th_max; else prec->th_max = params[i].th_max; /* * th_min_s and th_max_s are scaled versions of th_min * and th_max to be compared with avg. */ prec->th_min_s = prec->th_min << (rp->rio_wshift + FP_SHIFT); prec->th_max_s = prec->th_max << (rp->rio_wshift + FP_SHIFT); /* * precompute probability denominator * probd = (2 * (TH_MAX-TH_MIN) / pmax) in fixed-point */ prec->probd = (2 * (prec->th_max - prec->th_min) * prec->inv_pmax) << FP_SHIFT; microtime(&prec->last); } return (rp); } void rio_destroy(rp) rio_t *rp; { wtab_destroy(rp->rio_wtab); FREE(rp, M_DEVBUF); } void rio_getstats(rp, sp) rio_t *rp; struct redstats *sp; { int i; for (i = 0; i < RIO_NDROPPREC; i++) { bcopy(&rp->q_stats[i], sp, sizeof(struct redstats)); sp->q_avg = rp->rio_precstate[i].avg >> rp->rio_wshift; sp++; } } /* * enqueue routine: * * returns: 0 when successfully queued. * ENOBUFS when drop occurs. */ static int rio_enqueue(ifq, m, pktattr) struct ifaltq *ifq; struct mbuf *m; struct altq_pktattr *pktattr; { rio_queue_t *rqp = (rio_queue_t *)ifq->altq_disc; int error = 0; if (rio_addq(rqp->rq_rio, rqp->rq_q, m, pktattr) == 0) ifq->ifq_len++; else error = ENOBUFS; return error; } #if (RIO_NDROPPREC == 3) /* * internally, a drop precedence value is converted to an index * starting from 0. */ static int dscp2index(u_int8_t dscp) { int dpindex = dscp & AF_DROPPRECMASK; if (dpindex == 0) return (0); return ((dpindex >> 3) - 1); } #endif #if 1 /* * kludge: when a packet is dequeued, we need to know its drop precedence * in order to keep the queue length of each drop precedence. * use m_pkthdr.rcvif to pass this info. */ #define RIOM_SET_PRECINDEX(m, idx) \ do { (m)->m_pkthdr.rcvif = (struct ifnet *)((long)(idx)); } while (0) #define RIOM_GET_PRECINDEX(m) \ ({ long idx; idx = (long)((m)->m_pkthdr.rcvif); \ (m)->m_pkthdr.rcvif = NULL; idx; }) #endif int rio_addq(rp, q, m, pktattr) rio_t *rp; class_queue_t *q; struct mbuf *m; struct altq_pktattr *pktattr; { int avg, droptype; u_int8_t dsfield, odsfield; int dpindex, i, n, t; struct timeval now; struct dropprec_state *prec; dsfield = odsfield = read_dsfield(m, pktattr); dpindex = dscp2index(dsfield); /* * update avg of the precedence states whose drop precedence * is larger than or equal to the drop precedence of the packet */ now.tv_sec = 0; for (i = dpindex; i < RIO_NDROPPREC; i++) { prec = &rp->rio_precstate[i]; avg = prec->avg; if (prec->idle) { prec->idle = 0; if (now.tv_sec == 0) microtime(&now); t = (now.tv_sec - prec->last.tv_sec); if (t > 60) avg = 0; else { t = t * 1000000 + (now.tv_usec - prec->last.tv_usec); n = t / rp->rio_pkttime; /* calculate (avg = (1 - Wq)^n * avg) */ if (n > 0) avg = (avg >> FP_SHIFT) * pow_w(rp->rio_wtab, n); } } /* run estimator. (avg is scaled by WEIGHT in fixed-point) */ avg += (prec->qlen << FP_SHIFT) - (avg >> rp->rio_wshift); prec->avg = avg; /* save the new value */ /* * count keeps a tally of arriving traffic that has not * been dropped. */ prec->count++; } prec = &rp->rio_precstate[dpindex]; avg = prec->avg; /* see if we drop early */ droptype = DTYPE_NODROP; if (avg >= prec->th_min_s && prec->qlen > 1) { if (avg >= prec->th_max_s) { /* avg >= th_max: forced drop */ droptype = DTYPE_FORCED; } else if (prec->old == 0) { /* first exceeds th_min */ prec->count = 1; prec->old = 1; } else if (drop_early((avg - prec->th_min_s) >> rp->rio_wshift, prec->probd, prec->count)) { /* unforced drop by red */ droptype = DTYPE_EARLY; } } else { /* avg < th_min */ prec->old = 0; } /* * if the queue length hits the hard limit, it's a forced drop. */ if (droptype == DTYPE_NODROP && qlen(q) >= qlimit(q)) droptype = DTYPE_FORCED; if (droptype != DTYPE_NODROP) { /* always drop incoming packet (as opposed to randomdrop) */ for (i = dpindex; i < RIO_NDROPPREC; i++) rp->rio_precstate[i].count = 0; #ifdef RIO_STATS if (droptype == DTYPE_EARLY) rp->q_stats[dpindex].drop_unforced++; else rp->q_stats[dpindex].drop_forced++; PKTCNTR_ADD(&rp->q_stats[dpindex].drop_cnt, m_pktlen(m)); #endif m_freem(m); return (-1); } for (i = dpindex; i < RIO_NDROPPREC; i++) rp->rio_precstate[i].qlen++; /* save drop precedence index in mbuf hdr */ RIOM_SET_PRECINDEX(m, dpindex); if (rp->rio_flags & RIOF_CLEARDSCP) dsfield &= ~DSCP_MASK; if (dsfield != odsfield) write_dsfield(m, pktattr, dsfield); _addq(q, m); #ifdef RIO_STATS PKTCNTR_ADD(&rp->q_stats[dpindex].xmit_cnt, m_pktlen(m)); #endif return (0); } /* * dequeue routine: * must be called in splimp. * * returns: mbuf dequeued. * NULL when no packet is available in the queue. */ static struct mbuf * rio_dequeue(ifq, op) struct ifaltq *ifq; int op; { rio_queue_t *rqp = (rio_queue_t *)ifq->altq_disc; struct mbuf *m = NULL; if (op == ALTDQ_POLL) return qhead(rqp->rq_q); m = rio_getq(rqp->rq_rio, rqp->rq_q); if (m != NULL) ifq->ifq_len--; return m; } struct mbuf * rio_getq(rp, q) rio_t *rp; class_queue_t *q; { struct mbuf *m; int dpindex, i; if ((m = _getq(q)) == NULL) return NULL; dpindex = RIOM_GET_PRECINDEX(m); for (i = dpindex; i < RIO_NDROPPREC; i++) { if (--rp->rio_precstate[i].qlen == 0) { if (rp->rio_precstate[i].idle == 0) { rp->rio_precstate[i].idle = 1; microtime(&rp->rio_precstate[i].last); } } } return (m); } #ifdef KLD_MODULE static struct altqsw rio_sw = {"rio", rioopen, rioclose, rioioctl}; ALTQ_MODULE(altq_rio, ALTQT_RIO, &rio_sw); #endif /* KLD_MODULE */