/* $OpenBSD: altq_subr.c,v 1.2 2001/08/09 14:32:59 deraadt Exp $ */ /* $KAME: altq_subr.c,v 1.8 2000/12/14 08:12:46 thorpej Exp $ */ /* * Copyright (C) 1997-2000 * Sony Computer Science Laboratories Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #endif #include #include #include #include #ifdef __FreeBSD__ #include "opt_cpu.h" /* for FreeBSD-2.2.8 to get i586_ctr_freq */ #include #endif /* * internal function prototypes */ static void tbr_timeout __P((void *)); static int extract_ports4 __P((struct mbuf *, struct ip *, struct flowinfo_in *)); #ifdef INET6 static int extract_ports6 __P((struct mbuf *, struct ip6_hdr *, struct flowinfo_in6 *)); #endif static int apply_filter4 __P((u_int32_t, struct flow_filter *, struct flowinfo_in *)); static int apply_ppfilter4 __P((u_int32_t, struct flow_filter *, struct flowinfo_in *)); #ifdef INET6 static int apply_filter6 __P((u_int32_t, struct flow_filter6 *, struct flowinfo_in6 *)); #endif static int apply_tosfilter4 __P((u_int32_t, struct flow_filter *, struct flowinfo_in *)); static u_long get_filt_handle __P((struct acc_classifier *, int)); static struct acc_filter *filth_to_filtp __P((struct acc_classifier *, u_long)); static u_int32_t filt2fibmask __P((struct flow_filter *)); static void ip4f_cache __P((struct ip *, struct flowinfo_in *)); static int ip4f_lookup __P((struct ip *, struct flowinfo_in *)); static int ip4f_init __P((void)); static struct ip4_frag *ip4f_alloc __P((void)); static void ip4f_free __P((struct ip4_frag *)); int (*altq_input) __P((struct mbuf *, int)) = NULL; static int tbr_timer = 0; /* token bucket regulator timer */ static struct callout tbr_callout = CALLOUT_INITIALIZER; /* * alternate queueing support routines */ /* look up the queue state by the interface name and the queuing type. */ void * altq_lookup(name, type) char *name; int type; { struct ifnet *ifp; if ((ifp = ifunit(name)) != NULL) { if (type != ALTQT_NONE && ifp->if_snd.altq_type == type) return (ifp->if_snd.altq_disc); } return NULL; } int altq_attach(ifq, type, discipline, enqueue, dequeue, request, clfier, classify) struct ifaltq *ifq; int type; void *discipline; int (*enqueue)(struct ifaltq *, struct mbuf *, struct altq_pktattr *); struct mbuf *(*dequeue)(struct ifaltq *, int); int (*request)(struct ifaltq *, int, void *); void *clfier; void *(*classify)(void *, struct mbuf *, int); { if (!ALTQ_IS_READY(ifq)) return ENXIO; if (ALTQ_IS_ENABLED(ifq)) return EBUSY; if (ALTQ_IS_ATTACHED(ifq)) return EEXIST; ifq->altq_type = type; ifq->altq_disc = discipline; ifq->altq_enqueue = enqueue; ifq->altq_dequeue = dequeue; ifq->altq_request = request; ifq->altq_clfier = clfier; ifq->altq_classify = classify; ifq->altq_flags &= ALTQF_CANTCHANGE; #ifdef ALTQ_KLD altq_module_incref(type); #endif return 0; } int altq_detach(ifq) struct ifaltq *ifq; { if (!ALTQ_IS_READY(ifq)) return ENXIO; if (ALTQ_IS_ENABLED(ifq)) return EBUSY; if (!ALTQ_IS_ATTACHED(ifq)) return (0); #ifdef ALTQ_KLD altq_module_declref(ifq->altq_type); #endif ifq->altq_type = ALTQT_NONE; ifq->altq_disc = NULL; ifq->altq_enqueue = NULL; ifq->altq_dequeue = NULL; ifq->altq_request = NULL; ifq->altq_clfier = NULL; ifq->altq_classify = NULL; ifq->altq_flags &= ALTQF_CANTCHANGE; return 0; } int altq_enable(ifq) struct ifaltq *ifq; { int s; if (!ALTQ_IS_READY(ifq)) return ENXIO; if (ALTQ_IS_ENABLED(ifq)) return 0; s = splimp(); IFQ_PURGE(ifq); ASSERT(ifq->ifq_len == 0); ifq->altq_flags |= ALTQF_ENABLED; if (ifq->altq_clfier != NULL) ifq->altq_flags |= ALTQF_CLASSIFY; splx(s); return 0; } int altq_disable(ifq) struct ifaltq *ifq; { int s; if (!ALTQ_IS_ENABLED(ifq)) return 0; s = splimp(); IFQ_PURGE(ifq); ASSERT(ifq->ifq_len == 0); ifq->altq_flags &= ~(ALTQF_ENABLED|ALTQF_CLASSIFY); splx(s); return 0; } void altq_assert(file, line, failedexpr) const char *file, *failedexpr; int line; { (void)printf("altq assertion \"%s\" failed: file \"%s\", line %d\n", failedexpr, file, line); panic("altq assertion"); /* NOTREACHED */ } /* * internal representation of token bucket parameters * rate: byte_per_unittime << 32 * (((bits_per_sec) / 8) << 32) / machclk_freq * depth: byte << 32 * */ #define TBR_SHIFT 32 #define TBR_SCALE(x) ((int64_t)(x) << TBR_SHIFT) #define TBR_UNSCALE(x) ((x) >> TBR_SHIFT) struct mbuf * tbr_dequeue(ifq, op) struct ifaltq *ifq; int op; { struct tb_regulator *tbr; struct mbuf *m; int64_t interval; u_int64_t now; tbr = ifq->altq_tbr; if (op == ALTDQ_REMOVE && tbr->tbr_lastop == ALTDQ_POLL) { /* if this is a remove after poll, bypass tbr check */ } else { /* update token only when it is negative */ if (tbr->tbr_token <= 0) { now = read_machclk(); interval = now - tbr->tbr_last; if (interval >= tbr->tbr_filluptime) tbr->tbr_token = tbr->tbr_depth; else { tbr->tbr_token += interval * tbr->tbr_rate; if (tbr->tbr_token > tbr->tbr_depth) tbr->tbr_token = tbr->tbr_depth; } tbr->tbr_last = now; } /* if token is still negative, don't allow dequeue */ if (tbr->tbr_token <= 0) return (NULL); } if (ALTQ_IS_ENABLED(ifq)) m = (*ifq->altq_dequeue)(ifq, op); else { if (op == ALTDQ_POLL) IF_POLL(ifq, m); else IF_DEQUEUE(ifq, m); } if (m != NULL && op == ALTDQ_REMOVE) tbr->tbr_token -= TBR_SCALE(m_pktlen(m)); tbr->tbr_lastop = op; return (m); } /* * set a token bucket regulator. * if the specified rate is zero, the token bucket regulator is deleted. */ int tbr_set(ifq, profile) struct ifaltq *ifq; struct tb_profile *profile; { struct tb_regulator *tbr, *otbr; if (machclk_freq == 0) init_machclk(); if (machclk_freq == 0) { printf("tbr_set: no cpu clock available!\n"); return (ENXIO); } if (profile->rate == 0) { /* delete this tbr */ if ((tbr = ifq->altq_tbr) == NULL) return (ENOENT); ifq->altq_tbr = NULL; FREE(tbr, M_DEVBUF); return (0); } MALLOC(tbr, struct tb_regulator *, sizeof(struct tb_regulator), M_DEVBUF, M_WAITOK); if (tbr == NULL) return (ENOMEM); bzero(tbr, sizeof(struct tb_regulator)); tbr->tbr_rate = TBR_SCALE(profile->rate / 8) / machclk_freq; tbr->tbr_depth = TBR_SCALE(profile->depth); if (tbr->tbr_rate > 0) tbr->tbr_filluptime = tbr->tbr_depth / tbr->tbr_rate; else tbr->tbr_filluptime = 0xffffffffffffffffLL; tbr->tbr_token = tbr->tbr_depth; tbr->tbr_last = read_machclk(); tbr->tbr_lastop = ALTDQ_REMOVE; otbr = ifq->altq_tbr; ifq->altq_tbr = tbr; /* set the new tbr */ if (otbr != NULL) FREE(otbr, M_DEVBUF); else { if (tbr_timer == 0) { CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0); tbr_timer = 1; } } return (0); } /* * tbr_timeout goes through the interface list, and kicks the drivers * if necessary. */ static void tbr_timeout(arg) void *arg; { struct ifnet *ifp; int active, s; active = 0; s = splimp(); #ifdef __FreeBSD__ #if (__FreeBSD_version < 300000) for (ifp = ifnet; ifp; ifp = ifp->if_next) #else for (ifp = ifnet.tqh_first; ifp != NULL; ifp = ifp->if_link.tqe_next) #endif #else /* !FreeBSD */ for (ifp = ifnet.tqh_first; ifp != NULL; ifp = ifp->if_list.tqe_next) #endif { if (!TBR_IS_ENABLED(&ifp->if_snd)) continue; active++; if (!IFQ_IS_EMPTY(&ifp->if_snd) && ifp->if_start != NULL) (*ifp->if_start)(ifp); } splx(s); if (active > 0) CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0); else tbr_timer = 0; /* don't need tbr_timer anymore */ #if defined(__alpha__) && !defined(ALTQ_NOPCC) { /* * XXX read out the machine dependent clock once a second * to detect counter wrap-around. */ static u_int cnt; if (++cnt >= hz) { (void)read_machclk(); cnt = 0; } } #endif /* __alpha__ && !ALTQ_NOPCC */ } /* * get token bucket regulator profile */ int tbr_get(ifq, profile) struct ifaltq *ifq; struct tb_profile *profile; { struct tb_regulator *tbr; if ((tbr = ifq->altq_tbr) == NULL) { profile->rate = 0; profile->depth = 0; } else { profile->rate = (u_int)TBR_UNSCALE(tbr->tbr_rate * 8 * machclk_freq); profile->depth = (u_int)TBR_UNSCALE(tbr->tbr_depth); } return (0); } #ifndef IPPROTO_ESP #define IPPROTO_ESP 50 /* encapsulating security payload */ #endif #ifndef IPPROTO_AH #define IPPROTO_AH 51 /* authentication header */ #endif /* * extract flow information from a given packet. * filt_mask shows flowinfo fields required. * we assume the ip header is in one mbuf, and addresses and ports are * in network byte order. */ int altq_extractflow(m, af, flow, filt_bmask) struct mbuf *m; int af; struct flowinfo *flow; u_int32_t filt_bmask; { switch (af) { case PF_INET: { struct flowinfo_in *fin; struct ip *ip; ip = mtod(m, struct ip *); if (ip->ip_v != 4) break; fin = (struct flowinfo_in *)flow; fin->fi_len = sizeof(struct flowinfo_in); fin->fi_family = AF_INET; fin->fi_proto = ip->ip_p; fin->fi_tos = ip->ip_tos; fin->fi_src.s_addr = ip->ip_src.s_addr; fin->fi_dst.s_addr = ip->ip_dst.s_addr; if (filt_bmask & FIMB4_PORTS) /* if port info is required, extract port numbers */ extract_ports4(m, ip, fin); else { fin->fi_sport = 0; fin->fi_dport = 0; fin->fi_gpi = 0; } return (1); } #ifdef INET6 case PF_INET6: { struct flowinfo_in6 *fin6; struct ip6_hdr *ip6; ip6 = mtod(m, struct ip6_hdr *); /* should we check the ip version? */ fin6 = (struct flowinfo_in6 *)flow; fin6->fi6_len = sizeof(struct flowinfo_in6); fin6->fi6_family = AF_INET6; fin6->fi6_proto = ip6->ip6_nxt; fin6->fi6_tclass = (ntohl(ip6->ip6_flow) >> 20) & 0xff; fin6->fi6_flowlabel = ip6->ip6_flow & htonl(0x000fffff); fin6->fi6_src = ip6->ip6_src; fin6->fi6_dst = ip6->ip6_dst; if ((filt_bmask & FIMB6_PORTS) || ((filt_bmask & FIMB6_PROTO) && ip6->ip6_nxt > IPPROTO_IPV6)) /* * if port info is required, or proto is required * but there are option headers, extract port * and protocol numbers. */ extract_ports6(m, ip6, fin6); else { fin6->fi6_sport = 0; fin6->fi6_dport = 0; fin6->fi6_gpi = 0; } return (1); } #endif /* INET6 */ default: break; } /* failed */ flow->fi_len = sizeof(struct flowinfo); flow->fi_family = AF_UNSPEC; return (0); } /* * helper routine to extract port numbers */ /* structure for ipsec and ipv6 option header template */ struct _opt6 { u_int8_t opt6_nxt; /* next header */ u_int8_t opt6_hlen; /* header extension length */ u_int16_t _pad; u_int32_t ah_spi; /* security parameter index for authentication header */ }; /* * extract port numbers from a ipv4 packet. */ static int extract_ports4(m, ip, fin) struct mbuf *m; struct ip *ip; struct flowinfo_in *fin; { struct mbuf *m0; u_short ip_off; u_int8_t proto; int off; fin->fi_sport = 0; fin->fi_dport = 0; fin->fi_gpi = 0; ip_off = ntohs(ip->ip_off); /* if it is a fragment, try cached fragment info */ if (ip_off & IP_OFFMASK) { ip4f_lookup(ip, fin); return (1); } /* locate the mbuf containing the protocol header */ for (m0 = m; m0 != NULL; m0 = m0->m_next) if (((caddr_t)ip >= m0->m_data) && ((caddr_t)ip < m0->m_data + m0->m_len)) break; if (m0 == NULL) { #ifdef ALTQ_DEBUG printf("extract_ports4: can't locate header! ip=%p\n", ip); #endif return (0); } off = ((caddr_t)ip - m0->m_data) + (ip->ip_hl << 2); proto = ip->ip_p; #ifdef ALTQ_IPSEC again: #endif while (off >= m0->m_len) { off -= m0->m_len; m0 = m0->m_next; } ASSERT(m0->m_len >= off + 4); switch (proto) { case IPPROTO_TCP: case IPPROTO_UDP: { struct udphdr *udp; udp = (struct udphdr *)(mtod(m0, caddr_t) + off); fin->fi_sport = udp->uh_sport; fin->fi_dport = udp->uh_dport; fin->fi_proto = proto; } break; #ifdef ALTQ_IPSEC case IPPROTO_ESP: if (fin->fi_gpi == 0){ u_int32_t *gpi; gpi = (u_int32_t *)(mtod(m0, caddr_t) + off); fin->fi_gpi = *gpi; } fin->fi_proto = proto; break; case IPPROTO_AH: { /* get next header and header length */ struct _opt6 *opt6; opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off); proto = opt6->opt6_nxt; off += 8 + (opt6->opt6_hlen * 4); if (fin->fi_gpi == 0) fin->fi_gpi = opt6->ah_spi; } /* goto the next header */ goto again; #endif /* ALTQ_IPSEC */ default: fin->fi_proto = proto; return (0); } /* if this is a first fragment, cache it. */ if (ip_off & IP_MF) ip4f_cache(ip, fin); return (1); } #ifdef INET6 static int extract_ports6(m, ip6, fin6) struct mbuf *m; struct ip6_hdr *ip6; struct flowinfo_in6 *fin6; { struct mbuf *m0; int off; u_int8_t proto; fin6->fi6_gpi = 0; fin6->fi6_sport = 0; fin6->fi6_dport = 0; /* locate the mbuf containing the protocol header */ for (m0 = m; m0 != NULL; m0 = m0->m_next) if (((caddr_t)ip6 >= m0->m_data) && ((caddr_t)ip6 < m0->m_data + m0->m_len)) break; if (m0 == NULL) { #ifdef ALTQ_DEBUG printf("extract_ports6: can't locate header! ip6=%p\n", ip6); #endif return (0); } off = ((caddr_t)ip6 - m0->m_data) + sizeof(struct ip6_hdr); proto = ip6->ip6_nxt; do { while (off >= m0->m_len) { off -= m0->m_len; m0 = m0->m_next; } ASSERT(m0->m_len >= off + 4); switch (proto) { case IPPROTO_TCP: case IPPROTO_UDP: { struct udphdr *udp; udp = (struct udphdr *)(mtod(m0, caddr_t) + off); fin6->fi6_sport = udp->uh_sport; fin6->fi6_dport = udp->uh_dport; fin6->fi6_proto = proto; } return (1); case IPPROTO_ESP: if (fin6->fi6_gpi == 0) { u_int32_t *gpi; gpi = (u_int32_t *)(mtod(m0, caddr_t) + off); fin6->fi6_gpi = *gpi; } fin6->fi6_proto = proto; return (1); case IPPROTO_AH: { /* get next header and header length */ struct _opt6 *opt6; opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off); if (fin6->fi6_gpi == 0) fin6->fi6_gpi = opt6->ah_spi; proto = opt6->opt6_nxt; off += 8 + (opt6->opt6_hlen * 4); /* goto the next header */ break; } case IPPROTO_HOPOPTS: case IPPROTO_ROUTING: case IPPROTO_DSTOPTS: { /* get next header and header length */ struct _opt6 *opt6; opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off); proto = opt6->opt6_nxt; off += (opt6->opt6_hlen + 1) * 8; /* goto the next header */ break; } case IPPROTO_FRAGMENT: /* ipv6 fragmentations are not supported yet */ default: fin6->fi6_proto = proto; return (0); } } while (1); /*NOTREACHED*/ } #endif /* INET6 */ /* * altq common classifier */ int acc_add_filter(classifier, filter, class, phandle) struct acc_classifier *classifier; struct flow_filter *filter; void *class; u_long *phandle; { struct acc_filter *afp, *prev, *tmp; int i, s; #ifdef INET6 if (filter->ff_flow.fi_family != AF_INET && filter->ff_flow.fi_family != AF_INET6) return (EINVAL); #else if (filter->ff_flow.fi_family != AF_INET) return (EINVAL); #endif MALLOC(afp, struct acc_filter *, sizeof(struct acc_filter), M_DEVBUF, M_WAITOK); if (afp == NULL) return (ENOMEM); bzero(afp, sizeof(struct acc_filter)); afp->f_filter = *filter; afp->f_class = class; i = ACC_WILDCARD_INDEX; if (filter->ff_flow.fi_family == AF_INET) { struct flow_filter *filter4 = &afp->f_filter; /* * if address is 0, it's a wildcard. if address mask * isn't set, use full mask. */ if (filter4->ff_flow.fi_dst.s_addr == 0) filter4->ff_mask.mask_dst.s_addr = 0; else if (filter4->ff_mask.mask_dst.s_addr == 0) filter4->ff_mask.mask_dst.s_addr = 0xffffffff; if (filter4->ff_flow.fi_src.s_addr == 0) filter4->ff_mask.mask_src.s_addr = 0; else if (filter4->ff_mask.mask_src.s_addr == 0) filter4->ff_mask.mask_src.s_addr = 0xffffffff; /* clear extra bits in addresses */ filter4->ff_flow.fi_dst.s_addr &= filter4->ff_mask.mask_dst.s_addr; filter4->ff_flow.fi_src.s_addr &= filter4->ff_mask.mask_src.s_addr; /* * if dst address is a wildcard, use hash-entry * ACC_WILDCARD_INDEX. */ if (filter4->ff_mask.mask_dst.s_addr != 0xffffffff) i = ACC_WILDCARD_INDEX; else i = ACC_GET_HASH_INDEX(filter4->ff_flow.fi_dst.s_addr); } #ifdef INET6 else if (filter->ff_flow.fi_family == AF_INET6) { struct flow_filter6 *filter6 = (struct flow_filter6 *)&afp->f_filter; #ifndef IN6MASK0 /* taken from kame ipv6 */ #define IN6MASK0 {{{ 0, 0, 0, 0 }}} #define IN6MASK128 {{{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }}} const struct in6_addr in6mask0 = IN6MASK0; const struct in6_addr in6mask128 = IN6MASK128; #endif if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_dst)) filter6->ff_mask6.mask6_dst = in6mask0; else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_dst)) filter6->ff_mask6.mask6_dst = in6mask128; if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_src)) filter6->ff_mask6.mask6_src = in6mask0; else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_src)) filter6->ff_mask6.mask6_src = in6mask128; /* clear extra bits in addresses */ for (i = 0; i < 16; i++) filter6->ff_flow6.fi6_dst.s6_addr[i] &= filter6->ff_mask6.mask6_dst.s6_addr[i]; for (i = 0; i < 16; i++) filter6->ff_flow6.fi6_src.s6_addr[i] &= filter6->ff_mask6.mask6_src.s6_addr[i]; if (filter6->ff_flow6.fi6_flowlabel == 0) i = ACC_WILDCARD_INDEX; else i = ACC_GET_HASH_INDEX(filter6->ff_flow6.fi6_flowlabel); } #endif /* INET6 */ afp->f_handle = get_filt_handle(classifier, i); /* update filter bitmask */ afp->f_fbmask = filt2fibmask(filter); classifier->acc_fbmask |= afp->f_fbmask; /* * add this filter to the filter list. * filters are ordered from the highest rule number. */ s = splimp(); prev = NULL; LIST_FOREACH(tmp, &classifier->acc_filters[i], f_chain) { if (tmp->f_filter.ff_ruleno > afp->f_filter.ff_ruleno) prev = tmp; else break; } if (prev == NULL) LIST_INSERT_HEAD(&classifier->acc_filters[i], afp, f_chain); else LIST_INSERT_AFTER(prev, afp, f_chain); splx(s); *phandle = afp->f_handle; return (0); } int acc_delete_filter(classifier, handle) struct acc_classifier *classifier; u_long handle; { struct acc_filter *afp; int s; if ((afp = filth_to_filtp(classifier, handle)) == NULL) return (EINVAL); s = splimp(); LIST_REMOVE(afp, f_chain); splx(s); FREE(afp, M_DEVBUF); /* todo: update filt_bmask */ return (0); } /* * delete filters referencing to the specified class. * if the all flag is not 0, delete all the filters. */ int acc_discard_filters(classifier, class, all) struct acc_classifier *classifier; void *class; int all; { struct acc_filter *afp; int i, s; s = splimp(); for (i = 0; i < ACC_FILTER_TABLESIZE; i++) { do { LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain) if (all || afp->f_class == class) { LIST_REMOVE(afp, f_chain); FREE(afp, M_DEVBUF); /* start again from the head */ break; } } while (afp != NULL); } splx(s); if (all) classifier->acc_fbmask = 0; return (0); } void * acc_classify(clfier, m, af) void *clfier; struct mbuf *m; int af; { struct acc_classifier *classifier; struct flowinfo flow; struct acc_filter *afp; int i; classifier = (struct acc_classifier *)clfier; altq_extractflow(m, af, &flow, classifier->acc_fbmask); if (flow.fi_family == AF_INET) { struct flowinfo_in *fp = (struct flowinfo_in *)&flow; if ((classifier->acc_fbmask & FIMB4_ALL) == FIMB4_TOS) { /* only tos is used */ LIST_FOREACH(afp, &classifier->acc_filters[ACC_WILDCARD_INDEX], f_chain) if (apply_tosfilter4(afp->f_fbmask, &afp->f_filter, fp)) /* filter matched */ return (afp->f_class); } else if ((classifier->acc_fbmask & (~(FIMB4_PROTO|FIMB4_SPORT|FIMB4_DPORT) & FIMB4_ALL)) == 0) { /* only proto and ports are used */ LIST_FOREACH(afp, &classifier->acc_filters[ACC_WILDCARD_INDEX], f_chain) if (apply_ppfilter4(afp->f_fbmask, &afp->f_filter, fp)) /* filter matched */ return (afp->f_class); } else { /* get the filter hash entry from its dest address */ i = ACC_GET_HASH_INDEX(fp->fi_dst.s_addr); do { /* * go through this loop twice. first for dst * hash, second for wildcards. */ LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain) if (apply_filter4(afp->f_fbmask, &afp->f_filter, fp)) /* filter matched */ return (afp->f_class); /* * check again for filters with a dst addr * wildcard. * (daddr == 0 || dmask != 0xffffffff). */ if (i != ACC_WILDCARD_INDEX) i = ACC_WILDCARD_INDEX; else break; } while (1); } } #ifdef INET6 else if (flow.fi_family == AF_INET6) { struct flowinfo_in6 *fp6 = (struct flowinfo_in6 *)&flow; /* get the filter hash entry from its flow ID */ if (fp6->fi6_flowlabel != 0) i = ACC_GET_HASH_INDEX(fp6->fi6_flowlabel); else /* flowlable can be zero */ i = ACC_WILDCARD_INDEX; /* go through this loop twice. first for flow hash, second for wildcards. */ do { LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain) if (apply_filter6(afp->f_fbmask, (struct flow_filter6 *)&afp->f_filter, fp6)) /* filter matched */ return (afp->f_class); /* * check again for filters with a wildcard. */ if (i != ACC_WILDCARD_INDEX) i = ACC_WILDCARD_INDEX; else break; } while (1); } #endif /* INET6 */ /* no filter matched */ return (NULL); } static int apply_filter4(fbmask, filt, pkt) u_int32_t fbmask; struct flow_filter *filt; struct flowinfo_in *pkt; { if (filt->ff_flow.fi_family != AF_INET) return (0); if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport) return (0); if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport) return (0); if ((fbmask & FIMB4_DADDR) && filt->ff_flow.fi_dst.s_addr != (pkt->fi_dst.s_addr & filt->ff_mask.mask_dst.s_addr)) return (0); if ((fbmask & FIMB4_SADDR) && filt->ff_flow.fi_src.s_addr != (pkt->fi_src.s_addr & filt->ff_mask.mask_src.s_addr)) return (0); if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto) return (0); if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos != (pkt->fi_tos & filt->ff_mask.mask_tos)) return (0); if ((fbmask & FIMB4_GPI) && filt->ff_flow.fi_gpi != (pkt->fi_gpi)) return (0); /* match */ return (1); } /* * filter matching function optimized for a common case that checks * only protocol and port numbers */ static int apply_ppfilter4(fbmask, filt, pkt) u_int32_t fbmask; struct flow_filter *filt; struct flowinfo_in *pkt; { if (filt->ff_flow.fi_family != AF_INET) return (0); if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport) return (0); if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport) return (0); if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto) return (0); /* match */ return (1); } /* * filter matching function only for tos field. */ static int apply_tosfilter4(fbmask, filt, pkt) u_int32_t fbmask; struct flow_filter *filt; struct flowinfo_in *pkt; { if (filt->ff_flow.fi_family != AF_INET) return (0); if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos != (pkt->fi_tos & filt->ff_mask.mask_tos)) return (0); /* match */ return (1); } #ifdef INET6 static int apply_filter6(fbmask, filt, pkt) u_int32_t fbmask; struct flow_filter6 *filt; struct flowinfo_in6 *pkt; { int i; if (filt->ff_flow6.fi6_family != AF_INET6) return (0); if ((fbmask & FIMB6_FLABEL) && filt->ff_flow6.fi6_flowlabel != pkt->fi6_flowlabel) return (0); if ((fbmask & FIMB6_PROTO) && filt->ff_flow6.fi6_proto != pkt->fi6_proto) return (0); if ((fbmask & FIMB6_SPORT) && filt->ff_flow6.fi6_sport != pkt->fi6_sport) return (0); if ((fbmask & FIMB6_DPORT) && filt->ff_flow6.fi6_dport != pkt->fi6_dport) return (0); if (fbmask & FIMB6_SADDR) { for (i = 0; i < 4; i++) if (filt->ff_flow6.fi6_src.s6_addr32[i] != (pkt->fi6_src.s6_addr32[i] & filt->ff_mask6.mask6_src.s6_addr32[i])) return (0); } if (fbmask & FIMB6_DADDR) { for (i = 0; i < 4; i++) if (filt->ff_flow6.fi6_dst.s6_addr32[i] != (pkt->fi6_dst.s6_addr32[i] & filt->ff_mask6.mask6_dst.s6_addr32[i])) return (0); } if ((fbmask & FIMB6_TCLASS) && filt->ff_flow6.fi6_tclass != (pkt->fi6_tclass & filt->ff_mask6.mask6_tclass)) return (0); if ((fbmask & FIMB6_GPI) && filt->ff_flow6.fi6_gpi != pkt->fi6_gpi) return (0); /* match */ return (1); } #endif /* INET6 */ /* * filter handle: * bit 20-28: index to the filter hash table * bit 0-19: unique id in the hash bucket. */ static u_long get_filt_handle(classifier, i) struct acc_classifier *classifier; int i; { static u_long handle_number = 1; u_long handle; struct acc_filter *afp; while (1) { handle = handle_number++ & 0x000fffff; if (LIST_EMPTY(&classifier->acc_filters[i])) break; LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain) if ((afp->f_handle & 0x000fffff) == handle) break; if (afp == NULL) break; /* this handle is already used, try again */ } return ((i << 20) | handle); } /* convert filter handle to filter pointer */ static struct acc_filter * filth_to_filtp(classifier, handle) struct acc_classifier *classifier; u_long handle; { struct acc_filter *afp; int i; i = ACC_GET_HINDEX(handle); LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain) if (afp->f_handle == handle) return (afp); return (NULL); } /* create flowinfo bitmask */ static u_int32_t filt2fibmask(filt) struct flow_filter *filt; { u_int32_t mask = 0; #ifdef INET6 struct flow_filter6 *filt6; #endif switch (filt->ff_flow.fi_family) { case AF_INET: if (filt->ff_flow.fi_proto != 0) mask |= FIMB4_PROTO; if (filt->ff_flow.fi_tos != 0) mask |= FIMB4_TOS; if (filt->ff_flow.fi_dst.s_addr != 0) mask |= FIMB4_DADDR; if (filt->ff_flow.fi_src.s_addr != 0) mask |= FIMB4_SADDR; if (filt->ff_flow.fi_sport != 0) mask |= FIMB4_SPORT; if (filt->ff_flow.fi_dport != 0) mask |= FIMB4_DPORT; if (filt->ff_flow.fi_gpi != 0) mask |= FIMB4_GPI; break; #ifdef INET6 case AF_INET6: filt6 = (struct flow_filter6 *)filt; if (filt6->ff_flow6.fi6_proto != 0) mask |= FIMB6_PROTO; if (filt6->ff_flow6.fi6_tclass != 0) mask |= FIMB6_TCLASS; if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_dst)) mask |= FIMB6_DADDR; if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_src)) mask |= FIMB6_SADDR; if (filt6->ff_flow6.fi6_sport != 0) mask |= FIMB6_SPORT; if (filt6->ff_flow6.fi6_dport != 0) mask |= FIMB6_DPORT; if (filt6->ff_flow6.fi6_gpi != 0) mask |= FIMB6_GPI; if (filt6->ff_flow6.fi6_flowlabel != 0) mask |= FIMB6_FLABEL; break; #endif /* INET6 */ } return (mask); } /* * helper functions to handle IPv4 fragments. * currently only in-sequence fragments are handled. * - fragment info is cached in a LRU list. * - when a first fragment is found, cache its flow info. * - when a non-first fragment is found, lookup the cache. */ struct ip4_frag { TAILQ_ENTRY(ip4_frag) ip4f_chain; char ip4f_valid; u_short ip4f_id; struct flowinfo_in ip4f_info; }; static TAILQ_HEAD(ip4f_list, ip4_frag) ip4f_list; /* IPv4 fragment cache */ #define IP4F_TABSIZE 16 /* IPv4 fragment cache size */ static void ip4f_cache(ip, fin) struct ip *ip; struct flowinfo_in *fin; { struct ip4_frag *fp; if (TAILQ_EMPTY(&ip4f_list)) { /* first time call, allocate fragment cache entries. */ if (ip4f_init() < 0) /* allocation failed! */ return; } fp = ip4f_alloc(); fp->ip4f_id = ip->ip_id; /* save port numbers */ fp->ip4f_info.fi_sport = fin->fi_sport; fp->ip4f_info.fi_dport = fin->fi_dport; fp->ip4f_info.fi_gpi = fin->fi_gpi; } static int ip4f_lookup(ip, fin) struct ip *ip; struct flowinfo_in *fin; { struct ip4_frag *fp; for (fp = TAILQ_FIRST(&ip4f_list); fp != NULL && fp->ip4f_valid; fp = TAILQ_NEXT(fp, ip4f_chain)) if (ip->ip_id == fp->ip4f_id && ip->ip_src.s_addr == fp->ip4f_info.fi_src.s_addr && ip->ip_dst.s_addr == fp->ip4f_info.fi_dst.s_addr && ip->ip_p == fp->ip4f_info.fi_proto) { /* found the matching entry */ fin->fi_sport = fp->ip4f_info.fi_sport; fin->fi_dport = fp->ip4f_info.fi_dport; fin->fi_gpi = fp->ip4f_info.fi_gpi; if ((ntohs(ip->ip_off) & IP_MF) == 0) /* this is the last fragment, release the entry. */ ip4f_free(fp); return (1); } /* no matching entry found */ return (0); } static int ip4f_init(void) { struct ip4_frag *fp; int i; TAILQ_INIT(&ip4f_list); for (i=0; iip4f_valid = 0; TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain); } return (0); } static struct ip4_frag * ip4f_alloc(void) { struct ip4_frag *fp; /* reclaim an entry at the tail, put it at the head */ fp = TAILQ_LAST(&ip4f_list, ip4f_list); TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain); fp->ip4f_valid = 1; TAILQ_INSERT_HEAD(&ip4f_list, fp, ip4f_chain); return (fp); } static void ip4f_free(fp) struct ip4_frag *fp; { TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain); fp->ip4f_valid = 0; TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain); } /* * read and write diffserv field in IPv4 or IPv6 header */ u_int8_t read_dsfield(m, pktattr) struct mbuf *m; struct altq_pktattr *pktattr; { struct mbuf *m0; u_int8_t ds_field = 0; if (pktattr == NULL || (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6)) return ((u_int8_t)0); /* verify that pattr_hdr is within the mbuf data */ for (m0 = m; m0 != NULL; m0 = m0->m_next) if ((pktattr->pattr_hdr >= m0->m_data) && (pktattr->pattr_hdr < m0->m_data + m0->m_len)) break; if (m0 == NULL) { /* ick, pattr_hdr is stale */ pktattr->pattr_af = AF_UNSPEC; #ifdef ALTQ_DEBUG printf("read_dsfield: can't locate header!\n"); #endif return ((u_int8_t)0); } if (pktattr->pattr_af == AF_INET) { struct ip *ip = (struct ip *)pktattr->pattr_hdr; if (ip->ip_v != 4) return ((u_int8_t)0); /* version mismatch! */ ds_field = ip->ip_tos; } #ifdef INET6 else if (pktattr->pattr_af == AF_INET6) { struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr; u_int32_t flowlabel; flowlabel = ntohl(ip6->ip6_flow); if ((flowlabel >> 28) != 6) return ((u_int8_t)0); /* version mismatch! */ ds_field = (flowlabel >> 20) & 0xff; } #endif return (ds_field); } void write_dsfield(m, pktattr, dsfield) struct mbuf *m; struct altq_pktattr *pktattr; u_int8_t dsfield; { struct mbuf *m0; if (pktattr == NULL || (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6)) return; /* verify that pattr_hdr is within the mbuf data */ for (m0 = m; m0 != NULL; m0 = m0->m_next) if ((pktattr->pattr_hdr >= m0->m_data) && (pktattr->pattr_hdr < m0->m_data + m0->m_len)) break; if (m0 == NULL) { /* ick, pattr_hdr is stale */ pktattr->pattr_af = AF_UNSPEC; #ifdef ALTQ_DEBUG printf("write_dsfield: can't locate header!\n"); #endif return; } if (pktattr->pattr_af == AF_INET) { struct ip *ip = (struct ip *)pktattr->pattr_hdr; u_int8_t old; int32_t sum; if (ip->ip_v != 4) return; /* version mismatch! */ old = ip->ip_tos; dsfield |= old & 3; /* leave CU bits */ if (old == dsfield) return; ip->ip_tos = dsfield; /* * update checksum (from RFC1624) * HC' = ~(~HC + ~m + m') */ sum = ~ntohs(ip->ip_sum) & 0xffff; sum += 0xff00 + (~old & 0xff) + dsfield; sum = (sum >> 16) + (sum & 0xffff); sum += (sum >> 16); /* add carry */ ip->ip_sum = htons(~sum & 0xffff); } #ifdef INET6 else if (pktattr->pattr_af == AF_INET6) { struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr; u_int32_t flowlabel; flowlabel = ntohl(ip6->ip6_flow); if ((flowlabel >> 28) != 6) return; /* version mismatch! */ flowlabel = (flowlabel & 0xf03fffff) | (dsfield << 20); ip6->ip6_flow = htonl(flowlabel); } #endif return; } /* * high resolution clock support taking advantage of a machine dependent * high resolution time counter (e.g., timestamp counter of intel pentium). * we assume * - 64-bit-long monotonically-increasing counter * - frequency range is 100M-4GHz (CPU speed) */ u_int32_t machclk_freq = 0; u_int32_t machclk_per_tick = 0; #if (defined(__i386__) || defined(__alpha__)) && !defined(ALTQ_NOPCC) #ifdef __FreeBSD__ /* freebsd makes clock frequency accessible */ #ifdef __alpha__ extern u_int32_t cycles_per_sec; /* alpha cpu clock frequency */ #endif void init_machclk(void) { #if defined(__i386__) #if (__FreeBSD_version > 300000) machclk_freq = tsc_freq; #else machclk_freq = i586_ctr_freq; #endif #elif defined(__alpha__) machclk_freq = cycles_per_sec; #endif /* __alpha__ */ machclk_per_tick = machclk_freq / hz; } #else /* !__FreeBSD__ */ /* * measure Pentium TSC or Alpha PCC clock frequency */ void init_machclk(void) { static int wait; struct timeval tv_start, tv_end; u_int64_t start, end, diff; int timo; microtime(&tv_start); start = read_machclk(); timo = hz; /* 1 sec */ (void)tsleep(&wait, PWAIT | PCATCH, "init_machclk", timo); microtime(&tv_end); end = read_machclk(); diff = (u_int64_t)(tv_end.tv_sec - tv_start.tv_sec) * 1000000 + tv_end.tv_usec - tv_start.tv_usec; if (diff != 0) machclk_freq = (u_int)((end - start) * 1000000 / diff); machclk_per_tick = machclk_freq / hz; printf("altq: CPU clock: %uHz\n", machclk_freq); } #endif /* !__FreeBSD__ */ #ifdef __alpha__ /* * make a 64bit counter value out of the 32bit alpha processor cycle counter. * read_machclk must be called within a half of its wrap-around cycle * (about 5 sec for 400MHz cpu) to properly detect a counter wrap-around. * tbr_timeout calls read_machclk once a second. */ u_int64_t read_machclk(void) { static u_int32_t last_pcc, upper; u_int32_t pcc; pcc = (u_int32_t)alpha_rpcc(); if (pcc <= last_pcc) upper++; last_pcc = pcc; return (((u_int64_t)upper << 32) + pcc); } #endif /* __alpha__ */ #else /* !i386 && !alpha */ /* use microtime() for now */ void init_machclk(void) { machclk_freq = 1000000 << MACHCLK_SHIFT; machclk_per_tick = machclk_freq / hz; printf("altq: emulate %uHz cpu clock\n", machclk_freq); } #endif /* !i386 && !alpha */