/* $OpenBSD: scc.c,v 1.30 2017/04/30 16:45:45 mpi Exp $ */ /* $NetBSD: scc.c,v 1.58 2002/03/17 19:40:27 atatat Exp $ */ /* * Copyright (c) 1991,1990,1989,1994,1995,1996 Carnegie Mellon University * All Rights Reserved. * * Permission to use, copy, modify and distribute this software and its * documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /*- * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Ralph Campbell and Rick Macklem. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)scc.c 8.2 (Berkeley) 11/30/93 */ /* * Intel 82530 dual usart chip driver. Supports the serial port(s) on the * Personal DECstation 5000/xx and DECstation 5000/1xx, plus the keyboard * and mouse on the 5000/1xx. (Don't ask me where the A channel signals * are on the 5000/xx.) * * See: Intel MicroCommunications Handbook, Section 2, pg. 155-173, 1992. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #undef SCCDEV #define SCCDEV 15 /* XXX */ #define raster_console() 1 /* Treat test for cn_screen as true */ #define CONSOLE_ON_UNIT(unit) 0 /* No raster console on Alphas */ #define NSCCLINE (NSCC*2) #define SCCUNIT(dev) (minor(dev) >> 1) #define SCCLINE(dev) (minor(dev) & 0x1) #ifdef DEBUG int debugChar; #endif int alpha_donot_kludge_scc; struct scc_softc { struct device sc_dv; struct pdma scc_pdma[2]; struct { u_char wr1; u_char wr3; u_char wr4; u_char wr5; u_char wr14; } scc_wreg[2]; struct tty *scc_tty[2]; int scc_softCAR; int scc_flags[2]; #define SCC_CHAN_NEEDSDELAY 0x01 /* sw must delay 1.6us between output*/ #define SCC_CHAN_NOMODEM 0x02 /* don't touch modem ctl lines (may be left floating or x-wired */ #define SCC_CHAN_MODEM_CROSSED 0x04 /* modem lines wired to other channel*/ #define SCC_CHAN_KBDLINE 0x08 /* XXX special-case keyboard lines */ }; /* * BRG formula is: * ClockFrequency * BRGconstant = --------------------------- - 2 * 2 * BaudRate * ClockDivider * * Speed selections with Pclk=7.3728MHz, clock x16 */ const struct speedtab sccspeedtab[] = { { 0, 0, }, { 50, 4606, }, { 75, 3070, }, { 110, 2093, }, { 134.5, 1711, }, { 150, 1534, }, { 200, 1150, }, { 300, 766, }, { 600, 382, }, { 1200, 190, }, { 1800, 126, }, { 2400, 94, }, { 4800, 46, }, { 7200, 30, }, /* non-POSIX */ { 9600, 22, }, { 14400, 14, }, /* non-POSIX */ { 19200, 10, }, { 28800, 6, }, /* non-POSIX */ { 38400, 4, }, /* non-POSIX */ { 57600, 2, }, /* non-POSIX */ { -1, -1, }, }; #ifndef PORTSELECTOR #define ISPEED TTYDEF_SPEED #define LFLAG TTYDEF_LFLAG #else #define ISPEED B4800 #define LFLAG (TTYDEF_LFLAG & ~ECHO) #endif /* Definition of the driver for autoconfig. */ int sccmatch(struct device *, void *, void *); void sccattach(struct device *, struct device *, void *); struct cfattach scc_ca = { sizeof (struct scc_softc), sccmatch, sccattach, }; struct cfdriver scc_cd = { NULL, "scc", DV_TTY, }; cdev_decl(scc); int sccGetc(dev_t); void sccPutc(dev_t, int); void sccPollc(dev_t, int); int sccparam(struct tty *, struct termios *); void sccstart(struct tty *); int sccmctl(struct scc_softc *, int, int, int); int cold_sccparam(struct tty *, struct termios *, struct scc_softc *sc, int line); #ifdef SCC_DEBUG void rr(char *, scc_regmap_t *); #endif void scc_modem_intr(dev_t); void sccreset(struct scc_softc *); int sccintr(void *); void scc_alphaintr(int); /* * console variables, for using serial console while still cold and * autoconfig has not attached the scc device. */ scc_regmap_t *scc_cons_addr = 0; struct consdev scccons = { NULL, NULL, sccGetc, sccPutc, sccPollc, NULL, NODEV, 0 }; /* * Test to see if device is present. * Return true if found. */ int sccmatch(parent, vcf, aux) struct device *parent; void *vcf, *aux; { extern struct cfdriver ioasic_cd; /* XXX */ struct ioasicdev_attach_args *d = aux; struct cfdata *cf = vcf; void *sccaddr; if (parent->dv_cfdata->cf_driver != &ioasic_cd) { #ifdef DIAGNOSTIC printf("Cannot attach scc on %s\n", parent->dv_xname); #endif return (0); } /* Make sure that we're looking for this type of device. */ if ((strncmp(d->iada_modname, "z8530 ", TC_ROM_LLEN) != 0) && (strncmp(d->iada_modname, "scc", TC_ROM_LLEN)!= 0)) return (0); /* * Check user-specified offset against the ioasic offset. * Allow it to be wildcarded. */ if (cf->cf_loc[0] != -1 && cf->cf_loc[0] != d->iada_offset) return (0); /* Get the address, and check it for validity. */ sccaddr = (void *)d->iada_addr; #ifdef SPARSE sccaddr = (void *)TC_DENSE_TO_SPARSE((tc_addr_t)sccaddr); #endif if (badaddr(sccaddr, 2)) return (0); return (1); } /* * Enable ioasic SCC interrupts and scc DMA engine interrupts. * XXX does not really belong here. */ void scc_alphaintr(onoff) int onoff; { if (onoff) { *(volatile u_int *)(ioasic_base + IOASIC_IMSK) |= IOASIC_INTR_SCC_1 | IOASIC_INTR_SCC_0; #if !defined(DEC_3000_300) && defined(SCC_DMA) *(volatile u_int *)(ioasic_base + IOASIC_CSR) |= IOASIC_CSR_DMAEN_T1 | IOASIC_CSR_DMAEN_R1 | IOASIC_CSR_DMAEN_T2 | IOASIC_CSR_DMAEN_R2; #endif } else { *(volatile u_int *)(ioasic_base + IOASIC_IMSK) &= ~(IOASIC_INTR_SCC_1 | IOASIC_INTR_SCC_0); #if !defined(DEC_3000_300) && defined(SCC_DMA) *(volatile u_int *)(ioasic_base + IOASIC_CSR) &= ~(IOASIC_CSR_DMAEN_T1 | IOASIC_CSR_DMAEN_R1 | IOASIC_CSR_DMAEN_T2 | IOASIC_CSR_DMAEN_R2); #endif } tc_mb(); } void sccattach(parent, self, aux) struct device *parent; struct device *self; void *aux; { struct scc_softc *sc = (struct scc_softc *)self; struct ioasicdev_attach_args *d = aux; struct pdma *pdp; struct tty *tp; void *sccaddr; int cntr; struct termios cterm; struct tty ctty; int s; int unit; unit = sc->sc_dv.dv_unit; /* Get the address, and check it for validity. */ sccaddr = (void *)d->iada_addr; #ifdef SPARSE sccaddr = (void *)TC_DENSE_TO_SPARSE((tc_addr_t)sccaddr); #endif /* Register the interrupt handler. */ ioasic_intr_establish(parent, d->iada_cookie, IPL_TTY, sccintr, (void *)sc, self->dv_xname); /* * For a remote console, wait a while for previous output to * complete. */ if ((cputype == ST_DEC_3000_500 && sc->sc_dv.dv_unit == 1) || (cputype == ST_DEC_3000_300 && sc->sc_dv.dv_unit == 0)) DELAY(10000); pdp = &sc->scc_pdma[0]; /* init pseudo DMA structures */ for (cntr = 0; cntr < 2; cntr++) { pdp->p_addr = (void *)sccaddr; tp = sc->scc_tty[cntr] = ttymalloc(0); pdp->p_arg = (long)tp; pdp->p_fcn = (void (*)(struct tty*))0; tp->t_dev = (dev_t)((sc->sc_dv.dv_unit << 1) | cntr); pdp++; } /* What's the warning here? Defaulting to softCAR on line 2? */ sc->scc_softCAR = sc->sc_dv.dv_cfdata->cf_flags | 0x2; /* XXX */ /* reset chip, initialize register-copies in softc */ sccreset(sc); /* * Special handling for consoles. */ if (1 /* SCCUNIT(cn_tab.cn_dev) == sc->sc_dv.dv_unit */) { s = spltty(); cterm.c_cflag = (TTYDEF_CFLAG & ~(CSIZE | PARENB)) | CS8; cterm.c_ospeed = cterm.c_ispeed = 9600; (void) cold_sccparam(&ctty, &cterm, sc, SCCLINE((sc->sc_dv.dv_unit == 0) ? SCCCOMM2_PORT : SCCCOMM3_PORT)); DELAY(1000); splx(s); } /* * XXX * Unit 1 is the remote console, wire it up now. */ if ((cputype == ST_DEC_3000_500 && sc->sc_dv.dv_unit == 1) || (cputype == ST_DEC_3000_300 && sc->sc_dv.dv_unit == 0)) { if (alpha_donot_kludge_scc) printf("\nSWITCHING TO SERIAL CONSOLE!\n"); cn_tab = &scccons; cn_tab->cn_dev = makedev(SCCDEV, sc->sc_dv.dv_unit * 2); printf("%s console\n", alpha_donot_kludge_scc ? "\n***" : ":"); /* wire carrier for console. */ sc->scc_softCAR |= SCCLINE(cn_tab->cn_dev); } else printf("\n"); } /* * Reset the chip. */ void sccreset(sc) register struct scc_softc *sc; { register scc_regmap_t *regs; register u_char val; regs = (scc_regmap_t *)sc->scc_pdma[0].p_addr; /* * Chip once-only initialization * * NOTE: The wiring we assume is the one on the 3min: * * out A-TxD --> TxD keybd or mouse * in A-RxD --> RxD keybd or mouse * out A-DTR~ --> DTR comm * out A-RTS~ --> RTS comm * in A-CTS~ --> SI comm * in A-DCD~ --> RI comm * in A-SYNCH~--> DSR comm * out B-TxD --> TxD comm * in B-RxD --> RxD comm * in B-RxC --> TRxCB comm * in B-TxC --> RTxCB comm * out B-RTS~ --> SS comm * in B-CTS~ --> CTS comm * in B-DCD~ --> CD comm */ SCC_INIT_REG(regs, SCC_CHANNEL_A); SCC_INIT_REG(regs, SCC_CHANNEL_B); SCC_WRITE_REG(regs, SCC_CHANNEL_A, SCC_WR9, ZSWR9_HARD_RESET); DELAY(50000); /*enough ? */ SCC_WRITE_REG(regs, SCC_CHANNEL_A, SCC_WR9, 0); /* program the interrupt vector */ SCC_WRITE_REG(regs, SCC_CHANNEL_A, ZSWR_IVEC, 0xf0); SCC_WRITE_REG(regs, SCC_CHANNEL_B, ZSWR_IVEC, 0xf0); SCC_WRITE_REG(regs, SCC_CHANNEL_A, SCC_WR9, ZSWR9_VECTOR_INCL_STAT); /* receive parameters and control */ sc->scc_wreg[SCC_CHANNEL_A].wr3 = 0; sc->scc_wreg[SCC_CHANNEL_B].wr3 = 0; /* timing base defaults */ sc->scc_wreg[SCC_CHANNEL_A].wr4 = ZSWR4_CLK_X16; sc->scc_wreg[SCC_CHANNEL_B].wr4 = ZSWR4_CLK_X16; /* enable DTR, RTS and SS */ sc->scc_wreg[SCC_CHANNEL_B].wr5 = 0; sc->scc_wreg[SCC_CHANNEL_A].wr5 = ZSWR5_RTS | ZSWR5_DTR; /* baud rates */ val = ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK; sc->scc_wreg[SCC_CHANNEL_B].wr14 = val; sc->scc_wreg[SCC_CHANNEL_A].wr14 = val; /* interrupt conditions */ val = ZSWR1_RIE | ZSWR1_PE_SC | ZSWR1_SIE | ZSWR1_TIE; sc->scc_wreg[SCC_CHANNEL_A].wr1 = val; sc->scc_wreg[SCC_CHANNEL_B].wr1 = val; } int sccopen(dev, flag, mode, p) dev_t dev; int flag, mode; struct proc *p; { register struct scc_softc *sc; register struct tty *tp; register int unit, line; int s, error = 0; int firstopen = 0; unit = SCCUNIT(dev); if (unit >= scc_cd.cd_ndevs) return (ENXIO); sc = scc_cd.cd_devs[unit]; if (!sc) return (ENXIO); line = SCCLINE(dev); if (sc->scc_pdma[line].p_addr == NULL) return (ENXIO); tp = sc->scc_tty[line]; if (tp == NULL) { tp = sc->scc_tty[line] = ttymalloc(0); } tp->t_oproc = sccstart; tp->t_param = sccparam; tp->t_dev = dev; if ((tp->t_state & TS_ISOPEN) == 0) { ttychars(tp); firstopen = 1; #ifndef PORTSELECTOR if (tp->t_ispeed == 0) { #endif tp->t_iflag = TTYDEF_IFLAG; tp->t_oflag = TTYDEF_OFLAG; tp->t_cflag = TTYDEF_CFLAG; tp->t_lflag = LFLAG; tp->t_ispeed = tp->t_ospeed = ISPEED; #ifdef PORTSELECTOR tp->t_cflag |= HUPCL; #else } #endif (void) sccparam(tp, &tp->t_termios); ttsetwater(tp); } else if ((tp->t_state & TS_XCLUDE) && suser(curproc, 0) != 0) return (EBUSY); (void) sccmctl(sc, SCCLINE(dev), DML_DTR, DMSET); s = spltty(); while (!(flag & O_NONBLOCK) && !(tp->t_cflag & CLOCAL) && !(tp->t_state & TS_CARR_ON)) { tp->t_state |= TS_WOPEN; error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH, ttopen, 0); tp->t_state &= ~TS_WOPEN; if (error != 0) break; } splx(s); if (error) return (error); error = (*linesw[tp->t_line].l_open)(dev, tp, p); return (error); } /*ARGSUSED*/ int sccclose(dev, flag, mode, p) dev_t dev; int flag, mode; struct proc *p; { register struct scc_softc *sc = scc_cd.cd_devs[SCCUNIT(dev)]; register struct tty *tp; register int line; line = SCCLINE(dev); tp = sc->scc_tty[line]; if (sc->scc_wreg[line].wr5 & ZSWR5_BREAK) { sc->scc_wreg[line].wr5 &= ~ZSWR5_BREAK; ttyoutput(0, tp); } (*linesw[tp->t_line].l_close)(tp, flag, p); if ((tp->t_cflag & HUPCL) || (tp->t_state & TS_WOPEN) || !(tp->t_state & TS_ISOPEN)) (void) sccmctl(sc, line, 0, DMSET); return (ttyclose(tp)); } int sccread(dev, uio, flag) dev_t dev; struct uio *uio; int flag; { register struct scc_softc *sc; register struct tty *tp; sc = scc_cd.cd_devs[SCCUNIT(dev)]; /* XXX*/ tp = sc->scc_tty[SCCLINE(dev)]; return ((*linesw[tp->t_line].l_read)(tp, uio, flag)); } int sccwrite(dev, uio, flag) dev_t dev; struct uio *uio; int flag; { register struct scc_softc *sc; register struct tty *tp; sc = scc_cd.cd_devs[SCCUNIT(dev)]; /* XXX*/ tp = sc->scc_tty[SCCLINE(dev)]; return ((*linesw[tp->t_line].l_write)(tp, uio, flag)); } struct tty * scctty(dev) dev_t dev; { register struct scc_softc *sc; register struct tty *tp; register int unit = SCCUNIT(dev); if ((unit >= scc_cd.cd_ndevs) || (sc = scc_cd.cd_devs[unit]) == 0) return (0); tp = sc->scc_tty[SCCLINE(dev)]; return (tp); } /*ARGSUSED*/ int sccioctl(dev, cmd, data, flag, p) dev_t dev; u_long cmd; caddr_t data; int flag; struct proc *p; { register struct scc_softc *sc; register struct tty *tp; int error, line; line = SCCLINE(dev); sc = scc_cd.cd_devs[SCCUNIT(dev)]; tp = sc->scc_tty[line]; error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p); if (error >= 0) return (error); error = ttioctl(tp, cmd, data, flag, p); if (error >= 0) return (error); switch (cmd) { case TIOCSBRK: sc->scc_wreg[line].wr5 |= ZSWR5_BREAK; ttyoutput(0, tp); break; case TIOCCBRK: sc->scc_wreg[line].wr5 &= ~ZSWR5_BREAK; ttyoutput(0, tp); break; case TIOCSDTR: (void) sccmctl(sc, line, DML_DTR|DML_RTS, DMBIS); break; case TIOCCDTR: (void) sccmctl(sc, line, DML_DTR|DML_RTS, DMBIC); break; case TIOCMSET: (void) sccmctl(sc, line, *(int *)data, DMSET); break; case TIOCMBIS: (void) sccmctl(sc, line, *(int *)data, DMBIS); break; case TIOCMBIC: (void) sccmctl(sc, line, *(int *)data, DMBIC); break; case TIOCMGET: *(int *)data = sccmctl(sc, line, 0, DMGET); break; default: return (ENOTTY); } return (0); } /* * Set line parameters -- tty t_param entry point. */ int sccparam(tp, t) register struct tty *tp; register struct termios *t; { register struct scc_softc *sc; /* Extract the softc and call cold_sccparam to do all the work. */ sc = scc_cd.cd_devs[SCCUNIT(tp->t_dev)]; return cold_sccparam(tp, t, sc, SCCLINE(tp->t_dev)); } /* * Do what sccparam() (t_param entry point) does, but callable when cold. */ int cold_sccparam(tp, t, sc, line) register struct tty *tp; register struct termios *t; register struct scc_softc *sc; register int line; { register scc_regmap_t *regs; register u_char value, wvalue; register int cflag = t->c_cflag; int ospeed; /* Check arguments */ if (t->c_ispeed && t->c_ispeed != t->c_ospeed) return (EINVAL); ospeed = ttspeedtab(t->c_ospeed, sccspeedtab); if (ospeed < 0) return (EINVAL); /* and copy to tty */ tp->t_ispeed = t->c_ispeed; tp->t_ospeed = t->c_ospeed; tp->t_cflag = cflag; /* * Handle console specially. */ { cflag = CS8; ospeed = ttspeedtab(9600, sccspeedtab); } if (ospeed == 0) { (void) sccmctl(sc, line, 0, DMSET); /* hang up line */ return (0); } regs = (scc_regmap_t *)sc->scc_pdma[line].p_addr; /* * pmax driver used to reset the SCC here. That reset causes the * other channel on the SCC to drop outpur chars: at least that's * what CGD reports for the Alpha. It's a bug. */ #if 0 /* reset line */ if (line == SCC_CHANNEL_A) value = ZSWR9_A_RESET; else value = ZSWR9_B_RESET; SCC_WRITE_REG(regs, line, SCC_WR9, value); DELAY(25); #endif /* stop bits, normally 1 */ value = sc->scc_wreg[line].wr4 & 0xf0; if (cflag & CSTOPB) value |= ZSWR4_TWOSB; else value |= ZSWR4_ONESB; if ((cflag & PARODD) == 0) value |= ZSWR4_EVENP; if (cflag & PARENB) value |= ZSWR4_PARENB; /* set it now, remember it must be first after reset */ sc->scc_wreg[line].wr4 = value; SCC_WRITE_REG(regs, line, SCC_WR4, value); /* vector again */ SCC_WRITE_REG(regs, line, ZSWR_IVEC, 0xf0); /* clear break, keep rts dtr */ wvalue = sc->scc_wreg[line].wr5 & (ZSWR5_DTR|ZSWR5_RTS); switch (cflag & CSIZE) { case CS5: value = ZSWR3_RX_5; wvalue |= ZSWR5_TX_5; break; case CS6: value = ZSWR3_RX_6; wvalue |= ZSWR5_TX_6; break; case CS7: value = ZSWR3_RX_7; wvalue |= ZSWR5_TX_7; break; case CS8: default: value = ZSWR3_RX_8; wvalue |= ZSWR5_TX_8; }; sc->scc_wreg[line].wr3 = value; SCC_WRITE_REG(regs, line, SCC_WR3, value); sc->scc_wreg[line].wr5 = wvalue; SCC_WRITE_REG(regs, line, SCC_WR5, wvalue); /* * XXX Does the SCC chip require us to refresh the WR5 register * for the other channel after writing the other, or not? */ #ifdef notdef /* XXX */ { int otherline = (line + 1) & 1; SCC_WRITE_REG(regs, otherline, SCC_WR5, sc->scc_wreg[otherline].wr5); } #endif SCC_WRITE_REG(regs, line, ZSWR_SYNCLO, 0); SCC_WRITE_REG(regs, line, ZSWR_SYNCHI, 0); SCC_WRITE_REG(regs, line, SCC_WR9, ZSWR9_VECTOR_INCL_STAT); SCC_WRITE_REG(regs, line, SCC_WR10, 0); value = ZSWR11_RXCLK_BAUD | ZSWR11_TXCLK_BAUD | ZSWR11_TRXC_OUT_ENA | ZSWR11_TRXC_BAUD; SCC_WRITE_REG(regs, line, SCC_WR11, value); SCC_SET_TIMING_BASE(regs, line, ospeed); value = sc->scc_wreg[line].wr14; SCC_WRITE_REG(regs, line, SCC_WR14, value); if (sc->sc_dv.dv_unit == 1) { /* On unit one, on the flamingo, modem control is floating! */ value = ZSWR15_BREAK_IE; } else { value = ZSWR15_BREAK_IE | ZSWR15_CTS_IE | ZSWR15_DCD_IE; } SCC_WRITE_REG(regs, line, SCC_WR15, value); /* and now the enables */ value = sc->scc_wreg[line].wr3 | ZSWR3_RX_ENABLE; SCC_WRITE_REG(regs, line, SCC_WR3, value); value = sc->scc_wreg[line].wr5 | ZSWR5_TX_ENABLE; sc->scc_wreg[line].wr5 = value; SCC_WRITE_REG(regs, line, SCC_WR5, value); /* master inter enable */ value = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT; SCC_WRITE_REG(regs, line, SCC_WR9, value); SCC_WRITE_REG(regs, line, SCC_WR1, sc->scc_wreg[line].wr1); tc_mb(); scc_alphaintr(1); /* XXX XXX XXX */ return (0); } /* * Check for interrupts from all devices. */ int sccintr(xxxsc) void *xxxsc; { register struct scc_softc *sc = (struct scc_softc *)xxxsc; register int unit = (long)sc->sc_dv.dv_unit; register scc_regmap_t *regs; register struct tty *tp; register struct pdma *dp; register int cc, chan, rr1, rr2, rr3; int overrun = 0; rr1 = 0; /* shut up gcc -Wall */ regs = (scc_regmap_t *)sc->scc_pdma[0].p_addr; unit <<= 1; for (;;) { SCC_READ_REG(regs, SCC_CHANNEL_B, ZSRR_IVEC, rr2); rr2 = SCC_RR2_STATUS(rr2); /* are we done yet ? */ if (rr2 == 6) { /* strange, distinguished value */ SCC_READ_REG(regs, SCC_CHANNEL_A, ZSRR_IPEND, rr3); if (rr3 == 0) return 1; } SCC_WRITE_REG(regs, SCC_CHANNEL_A, SCC_RR0, ZSWR0_CLR_INTR); if ((rr2 == SCC_RR2_A_XMIT_DONE) || (rr2 == SCC_RR2_B_XMIT_DONE)) { chan = (rr2 == SCC_RR2_A_XMIT_DONE) ? SCC_CHANNEL_A : SCC_CHANNEL_B; tp = sc->scc_tty[chan]; dp = &sc->scc_pdma[chan]; if (dp->p_mem < dp->p_end) { SCC_WRITE_DATA(regs, chan, *dp->p_mem++); tc_mb(); } else { tp->t_state &= ~TS_BUSY; if (tp->t_state & TS_FLUSH) tp->t_state &= ~TS_FLUSH; else { ndflush(&tp->t_outq, dp->p_mem - (caddr_t) tp->t_outq.c_cf); dp->p_end = dp->p_mem = tp->t_outq.c_cf; } (*linesw[tp->t_line].l_start)(tp); if (tp->t_outq.c_cc == 0 || !(tp->t_state & TS_BUSY)) { SCC_READ_REG(regs, chan, SCC_RR15, cc); cc &= ~ZSWR15_TXUEOM_IE; SCC_WRITE_REG(regs, chan, SCC_WR15, cc); cc = sc->scc_wreg[chan].wr1 & ~ZSWR1_TIE; SCC_WRITE_REG(regs, chan, SCC_WR1, cc); sc->scc_wreg[chan].wr1 = cc; tc_mb(); } } } else if (rr2 == SCC_RR2_A_RECV_DONE || rr2 == SCC_RR2_B_RECV_DONE || rr2 == SCC_RR2_A_RECV_SPECIAL || rr2 == SCC_RR2_B_RECV_SPECIAL) { if (rr2 == SCC_RR2_A_RECV_DONE || rr2 == SCC_RR2_A_RECV_SPECIAL) chan = SCC_CHANNEL_A; else chan = SCC_CHANNEL_B; tp = sc->scc_tty[chan]; SCC_READ_DATA(regs, chan, cc); if (rr2 == SCC_RR2_A_RECV_SPECIAL || rr2 == SCC_RR2_B_RECV_SPECIAL) { SCC_READ_REG(regs, chan, SCC_RR1, rr1); SCC_WRITE_REG(regs, chan, SCC_RR0, ZSWR0_RESET_ERRORS); if ((rr1 & ZSRR1_DO) && overrun == 0) { log(LOG_WARNING, "scc%d,%d: silo overflow\n", unit >> 1, chan); overrun = 1; } } if (!(tp->t_state & TS_ISOPEN)) { wakeup((caddr_t)&tp->t_rawq); #ifdef PORTSELECTOR if (!(tp->t_state & TS_WOPEN)) #endif continue; } if (rr2 == SCC_RR2_A_RECV_SPECIAL || rr2 == SCC_RR2_B_RECV_SPECIAL) { if (rr1 & ZSRR1_PE) cc |= TTY_PE; if (rr1 & ZSRR1_FE) cc |= TTY_FE; } (*linesw[tp->t_line].l_rint)(cc, tp); } else if ((rr2 == SCC_RR2_A_EXT_STATUS) || (rr2 == SCC_RR2_B_EXT_STATUS)) { chan = (rr2 == SCC_RR2_A_EXT_STATUS) ? SCC_CHANNEL_A : SCC_CHANNEL_B; SCC_WRITE_REG(regs, chan, SCC_RR0, ZSWR0_RESET_STATUS); scc_modem_intr(unit | chan); } } return 0; /* XXX */ } void sccstart(tp) register struct tty *tp; { register struct pdma *dp; register scc_regmap_t *regs; register struct scc_softc *sc; register int cc, chan; u_char temp; int s, sendone; sc = scc_cd.cd_devs[SCCUNIT(tp->t_dev)]; dp = &sc->scc_pdma[SCCLINE(tp->t_dev)]; regs = (scc_regmap_t *)dp->p_addr; s = spltty(); if (tp->t_state & (TS_TIMEOUT|TS_BUSY|TS_TTSTOP)) goto out; ttwakeupwr(tp); if (tp->t_outq.c_cc == 0) goto out; /* handle console specially */ if (tp == scctty(makedev(SCCDEV,SCCKBD_PORT)) && raster_console()) { while (tp->t_outq.c_cc > 0) { cc = getc(&tp->t_outq) & 0x7f; cnputc(cc); } /* * After we flush the output queue we may need to wake * up the process that made the output. */ ttwakeupwr(tp); goto out; } cc = ndqb(&tp->t_outq, 0); tp->t_state |= TS_BUSY; dp->p_end = dp->p_mem = tp->t_outq.c_cf; dp->p_end += cc; /* * Enable transmission and send the first char, as required. */ chan = SCCLINE(tp->t_dev); SCC_READ_REG(regs, chan, SCC_RR0, temp); sendone = (temp & ZSRR0_TX_READY); SCC_READ_REG(regs, chan, SCC_RR15, temp); temp |= ZSWR15_TXUEOM_IE; SCC_WRITE_REG(regs, chan, SCC_WR15, temp); temp = sc->scc_wreg[chan].wr1 | ZSWR1_TIE; SCC_WRITE_REG(regs, chan, SCC_WR1, temp); sc->scc_wreg[chan].wr1 = temp; if (sendone) { #ifdef DIAGNOSTIC if (cc == 0) panic("sccstart: No chars"); #endif SCC_WRITE_DATA(regs, chan, *dp->p_mem++); } tc_mb(); out: splx(s); } /* * Stop output on a line. */ /*ARGSUSED*/ int sccstop(tp, flag) register struct tty *tp; int flag; { register struct pdma *dp; register struct scc_softc *sc; register int s; sc = scc_cd.cd_devs[SCCUNIT(tp->t_dev)]; dp = &sc->scc_pdma[SCCLINE(tp->t_dev)]; s = spltty(); if (tp->t_state & TS_BUSY) { dp->p_end = dp->p_mem; if (!(tp->t_state & TS_TTSTOP)) tp->t_state |= TS_FLUSH; } splx(s); return 0; } int sccmctl(sc, line, bits, how) struct scc_softc *sc; int line, bits, how; { register scc_regmap_t *regs; register int mbits; register u_char value; int s; regs = (scc_regmap_t *)sc->scc_pdma[line].p_addr; s = spltty(); /* * only channel B has modem control, however the DTR and RTS * pins on the comm port are wired to the DTR and RTS A channel * signals. */ mbits = DML_DTR | DML_DSR | DML_CAR; if (line == SCC_CHANNEL_B) { if (sc->scc_wreg[SCC_CHANNEL_A].wr5 & ZSWR5_DTR) mbits = DML_DTR | DML_DSR; else mbits = 0; SCC_READ_REG_ZERO(regs, SCC_CHANNEL_B, value); if (value & ZSRR0_DCD) mbits |= DML_CAR; } switch (how) { case DMSET: mbits = bits; break; case DMBIS: mbits |= bits; break; case DMBIC: mbits &= ~bits; break; case DMGET: (void) splx(s); return (mbits); } if (line == SCC_CHANNEL_B) { if (mbits & DML_DTR) sc->scc_wreg[SCC_CHANNEL_A].wr5 |= ZSWR5_DTR; else sc->scc_wreg[SCC_CHANNEL_A].wr5 &= ~ZSWR5_DTR; SCC_WRITE_REG(regs, SCC_CHANNEL_A, SCC_WR5, sc->scc_wreg[SCC_CHANNEL_A].wr5); } if ((mbits & DML_DTR) || (sc->scc_softCAR & (1 << line))) sc->scc_tty[line]->t_state |= TS_CARR_ON; (void) splx(s); return (mbits); } /* * Check for carrier transition. */ void scc_modem_intr(dev) dev_t dev; { register scc_regmap_t *regs; register struct scc_softc *sc; register struct tty *tp; register int car, chan; register u_char value; int s; chan = SCCLINE(dev); sc = scc_cd.cd_devs[SCCUNIT(dev)]; tp = sc->scc_tty[chan]; regs = (scc_regmap_t *)sc->scc_pdma[chan].p_addr; if (chan == SCC_CHANNEL_A) return; s = spltty(); if (sc->scc_softCAR & (1 << chan)) car = 1; else { SCC_READ_REG_ZERO(regs, chan, value); car = value & ZSRR0_DCD; } /* Break on serial console drops into the debugger */ if ((value & ZSRR0_BREAK) && CONSOLE_ON_UNIT(sc->sc_dv.dv_unit)) { #ifdef DDB splx(s); /* spl0()? */ db_enter(); return; #else /* XXX maybe fall back to PROM? */ #endif } splx(s); } /* * Get a char off the appropriate line via. a busy wait loop. */ int sccGetc(dev) dev_t dev; { register scc_regmap_t *regs; register int c, line; register u_char value; int s; line = SCCLINE(dev); if (cold && scc_cons_addr) { regs = scc_cons_addr; } else { register struct scc_softc *sc; sc = scc_cd.cd_devs[SCCUNIT(dev)]; regs = (scc_regmap_t *)sc->scc_pdma[line].p_addr; } if (!regs) return (0); s = splhigh(); for (;;) { SCC_READ_REG(regs, line, SCC_RR0, value); if (value & ZSRR0_RX_READY) { SCC_READ_REG(regs, line, SCC_RR1, value); SCC_READ_DATA(regs, line, c); if (value & (ZSRR1_PE | ZSRR1_DO | ZSRR1_FE)) { SCC_WRITE_REG(regs, line, SCC_WR0, ZSWR0_RESET_ERRORS); SCC_WRITE_REG(regs, SCC_CHANNEL_A, SCC_WR0, ZSWR0_CLR_INTR); } else { SCC_WRITE_REG(regs, SCC_CHANNEL_A, SCC_WR0, ZSWR0_CLR_INTR); splx(s); return (c & 0xff); } } else DELAY(10); } } /* * Send a char on a port, via a busy wait loop. */ void sccPutc(dev, c) dev_t dev; int c; { register scc_regmap_t *regs; register int line; register u_char value; int s; s = splhigh(); line = SCCLINE(dev); if (cold && scc_cons_addr) { regs = scc_cons_addr; } else { register struct scc_softc *sc; sc = scc_cd.cd_devs[SCCUNIT(dev)]; regs = (scc_regmap_t *)sc->scc_pdma[line].p_addr; } /* * Wait for transmitter to be not busy. */ do { SCC_READ_REG(regs, line, SCC_RR0, value); if (value & ZSRR0_TX_READY) break; DELAY(100); } while (1); /* * Send the char. */ SCC_WRITE_DATA(regs, line, c); tc_mb(); splx(s); return; } /* * Enable/disable polling mode */ void sccPollc(dev, on) dev_t dev; int on; { } #ifdef SCC_DEBUG void rr(msg, regs) char *msg; scc_regmap_t *regs; { u_char value; int r0, r1, r2, r3, r10, r15; printf("%s: register: %lx\n", msg, regs); #define L(reg, r) { \ SCC_READ_REG(regs, SCC_CHANNEL_A, reg, value); \ r = value; \ } L(SCC_RR0, r0); L(SCC_RR1, r1); L(ZSRR_IVEC, r2); L(ZSRR_IPEND, r3); L(SCC_RR10, r10); L(SCC_RR15, r15); printf("A: 0: %x 1: %x 2(vec): %x 3: %x 10: %x 15: %x\n", r0, r1, r2, r3, r10, r15); #undef L #define L(reg, r) { \ SCC_READ_REG(regs, SCC_CHANNEL_B, reg, value); \ r = value; \ } L(SCC_RR0, r0); L(SCC_RR1, r1); L(ZSRR_IVEC, r2); L(SCC_RR10, r10); L(SCC_RR15, r15); printf("B: 0: %x 1: %x 2(state): %x 10: %x 15: %x\n", r0, r1, r2, r10, r15); } #endif /* SCC_DEBUG */